Abstract

The race towards more processing power between all different hardware manufacturers has in recent years faced deep changes. We see nowadays a huge development in the use of parallel machines with more and more cores and increasingly complex architectures. It seems now clear that we will witness in a near future the development of cheap Network On Chip computers.

Executing parallel applications on such machines raises several problems. Amongst them we take in this work interest in the problem of scheduling a set of tasks on a set of computing resources. Between all existing methods we can generally distinguish on-line or off-line algorithms. On-line algorithms like work-stealing present the advantage to work without informations on hardware or tasks durations but do not generally achieve an efficient control of communications. In this book we take interest in on-line tasks scheduling on complex platforms where networking can impact (through congestion) performance. More precisely, we propose several new scheduling algorithms based on work-stealing targeting two different configurations.

In a first study, we consider applications whose dependency graph is known in advance. By taking advantage of this information we manage to limit the amount of data transfered and thus to achieve high performance and even outperform the best known off-line algorithms. Concurrently to that, we also study possible optimisations in the case where knowledge of platform topology is available. We show again that it is possible to use this information to enhance performance.

Our work allows therefore to extend the application field of scheduling algorithms towards more complex architectures and we hope will allow a better use of tomorrow’s machine.

Keywords: parallel algorithms, work-stealing, scheduling, platform topology, communications.

Main Outputs

  • Publications

  • Slides

  • Slides

  • Thesis in French

  • French thesis