
Parallelizing block Krylov iteration on multicore/manycore

Jérôme Javelle Simon Rousseau

ABSTRACT
Different ways are exposed to parallelize the computation of
the characteristic polynomial of an n×n matrix over a field.
Based on block Krylov iteration algorithm [1], they separate
the Krylov subspace computation into parallel tasks in order
to make good use of multicore architectures.

1. INTRODUCTION
Computing the characteristic polynomial of an n×n matrix
over a field is a classical problem. Research has been done
to make the algorithm as fast as possible, trying to tend to
an asymptotic cost of O(nθ) where θ is an admissible expo-
nent for the complexity of matrix multiplication. C. Pernet
and A. Storojohann [1] succeeded in making a Las Vegas
randomized algorithm in exactly O(nθ) field operations.

Still, these are sequential algorithms which don’t make good
use of the parallel computing architectures we find in mod-
ern computers. We’d like to figure out some ways of iso-
lating tasks that could be executed in parallel, to make the
computation faster in such architectures.

In this paper, we put a further look at [1] in order to identify
the steps that can be efficiently parallelized. Then we study
different schemes of parallelization, making previsions and
testing them with several machines to compare their perfor-
mances.

2. OVERVIEW OF THE ALGORITHM
The aim of the global algorithm is to compute the character-
istic polynomial of a matrix A of size N using iterated blocs
Krylov.

We pick a random matrix of size N.noc where noc = n
c

(c is
the number of iterations). Then we compute the re-ordered
Krylov subspaceˆ

u1, Au1, ..., A
c−1u1, ..., ..., unoc, Aunoc, ..., A

c−1unoc

˜

After some substitutions and permutations, we get a shifted
Hessenberg form for the Krylov matrix :26666666666664

C1 B∗ · · · B∗ B∗ B∗ · · · B∗
B∗ C2 · · · B∗ B∗ B∗ · · · B∗
...

...
. . .

...
...

...
. . .

...
B∗ B∗ · · · Cj B∗ B∗ · · · B∗

Cj+1 B∗ · · · B∗
B∗ Cj+2 · · · B∗

B∗ B∗
. . . B∗

B∗ B∗ · · · Cm

37777777777775
The computation of the characteristic polynomial is immedi-
ate, since the Krylov matrix is block upper triangular, with
blocks of the form : 266664

0 · · · 0 ∗

1
. . .

...
...

. . . 0
...

1 ∗

377775
This characteristic polynomial is the product of the poly-
noms of the companion blocks, whose coefficients are the
opposite of the numbers in the last column.

The part of this algorithm that we implement is the con-
struction of the Krylov subspace for a matrix A and a ran-
dom matrix U. The degrees of freedom for the algorithm are
the number of threads used, the number c of iterations in
the Krylov subspace.

We will try to find the optimal parmeters for each algorithm
used through experimentations on a 16 core system.

3. PARALLELISATION SCHEMES
3.1 Subdivising the iterated submatrix AkU
We have to compute the Krylov matrixˆ

u1, Au1, . . . , A
c−1u1, . . . , . . . , unoc, Aunoc, . . . , A

c−1unoc

˜
using a matrix U of size noc × N and the matrix A. The
first parallelization scheme consists in dividing the matrix U

into several submatrix Ui. Each thread calls a routine that
computes the matrix

ˆ
Ui, AUi, . . . , A

c−1Ui

˜
.

An advantage of such a parallelization is that the synchro-
nization can occur only at the end of the whole computation
of the Krylov matrix.



The asynchronous characteristic of this subdivision provides
a good efficiency as regards the computing time.

The point which can be discussed is the following : divid-
ing the matrix U which is rectangular involves the paral-
lel computations of matrix multiplication of size N × N ×
size submatrix, where size submatrix is the size of the
matrix Ui. The size size submatrix is a lot smaller than
N, therefore the matrix multiplication is unbalanced, which
involves a bigger use of memory (N3 operations for N3 mem-
ory units for N multiplications matrix/vector, against N3 op-
erations for N2 memory units for a multiplication of square
matrix).

We tried to use another parallelization scheme, which con-
sists in the subdivision of the matrix A.

3.2 Subdivising the matrix A
Computing the Krylov matrix described in the previous sub-
section can be done by subdivising the matrix A like this:

26664
A1

A2

...
Anb threads

37775
Indeed, the dimensions of the matrix multiplications are N ∗

N
nb threads

∗ noc, which is less unbalanced, therefore more
efficient as regards memory.

In this algorithm, the matrix AkU is also computed from
the matrix Ak−1U , then we must wait for the computation
of the previous step to be able to go one step further; con-
sequently, it requires a synchronization at each step, which
represents some cost. The lower the number of iterations is,
the less synchronizations there are, and the more efficient
the algorithm is. Thus, lower values of the parameter c will
give an optimal computing time in this case.

3.3 Hybrid Method
The combination of both methods can be imagined in order
to have take advantage of all positive aspects.
Then, it will be more difficult to get results from experimen-
tation since there are new parameters : the repartition of
the threads between the first and the second version of the
algorithm.

4. RESULTS
4.1 Subdivising the iterated submatrix AkU
The tests are run on ensibm.imag.fr, a 16 core system.
This explains the lack of efficiency obtained for a number of
threads close to 16.

On these graphics, we can see a good evolution of the com-
puting time with a growing number of threads, and our pro-
gramm is close to the ideal line, except for a number of
threads close to 16. This shows that for a large enough
matrix A(size 2000 here), the establishement of the multi-
threading doesn’t take a significant time. [Fig. 1] [Fig. 2]

180 2 4 6 8 10 12 14 16

900

0

100

200

300

400

500

600

700

800

nb_threads

t

c=55

c=55

sequential algorithm

Figure 1: Variation of duration with the number of
threads

180 2 4 6 8 10 12 14 16

1600

0

200

400

600

800

1000

1200

1400

nb_threads

nb
_t

hr
ea

ds
×

t

c=55

sequential algorithm

Figure 2: Variation of duration with the number of
threads

2000 20 40 60 80 100 120 140 160 180

220

0

20

40

60

80

100

120

140

160

180

200

c

t

8 threads

Figure 3: 8 threads

This kind of experiment is made to find an optimal param-
eter c for a fixed number of thread. Indeed, if we want to
use 8 threads (for example), we must know the value of c

which gives us the shortest computating time.

For the case of 8 threads [Fig. 3], the optimal parameter
c is around 125. Before that, the computating time is not
regular because of the subdivisions of the matrix AkU .

After the optimal value, the computing time is linearly in-



creasing, like in the sequential case.

1600 20 40 60 80 100 120 140

130

0

10

20

30

40

50

60

70

80

90

100

110

120

c

t

12 threads

Figure 4: 12 threads

Fig. 4 shows the optimal value of c for 12 threads seems to
be around 90. We observe the same phenomenon than in
the previous case before and after this value.

4.2 Subdivising the matrix A
Experiments on matrix of different sizes shows that, for a
fixed number of threads, the optimal value of c is rather
high. This shows that having a good balance of dimensions
in the matrix multiplication brings more efficiency than wor-
rying about synchronization of the threads.

Even if this programm is not totally asynchronous, the sub-
division of the matrix A is regular enough to reduce the
consequences of the synchronization.

5. ONGOING WORKS
5.1 Parallelizing with CILK
CILK is a programming language for multithreaded parallel
computing, based on C. It’s especially effective for exploiting
dynamic, highly asynchronous parallelism, so it would be
particularly interesting to implement our parallel algorithm
using CILK.

There is a C++ version of CILK called CILK++, under
commercial license. It’s not possible to integrate a CILK /
CILK++ source code into a C++ program, so we needed to
start from scratch. However, as we just had time to reuse
the source code that came from the original sequential pro-
gram, we couldn’t make a whole new program in CILK or
CILK++.

5.2 Parallelizing with KAAPI
The KAAPI library offers a parallel programming interface
for distributed computing. The interface is called Atha-
pascan, it’s a high-level language, C++ compatible, based
on the separation of the algorithm into tasks. Athapascan
works with a global memory space, the idea is to define
tasks, shared variables and the dependencies between tasks.

KAAPI is particularly well designed for distributed com-
puting, so it would have been interesting to implement a

KAAPI version of the algorithm and to test it with a net-
work of several computers. We tested some basic KAAPI
programs and the library appeared to be very effective for
parallel computing. Unfortunately we didn’t have enough
time to adapt our algorithm to this environment.

6. CONCLUSION
This programm and the experiments made on the different
ways to divide the problem showed that the computation of
a characteristic polynomial is likely to be adapted to multi-
core/manycore architectures.

Continuing this projet with other methods to divide the
computations might offer a new way for the factorization
of great numbers.

7. REFERENCES
[1] C. Pernet and A. Storjohann. Faster Algorithms for the

Characteristic Polynomial. In Proc. ISSAC ’07, pages
307-314. ACM Press, New York, 2007.

[2] D. Augot and P. Camion. Forme de Frobenius et vecteurs
cycliques. Comptes-rendus de l’Académie des Sciences,
Paris, t. 318, Série I, pages 183-188, 1994.

[3] S. Guelton, Athapascan Overview. KAAPI Library web-
site http://kaapi.gforge.inria.fr/doc/atha.html.

[4] M. Frigo, The CILK Project. CILK Library website
http://supertech.csail.mit.edu/cilk/.


