
 

 

 

 

 

 

 

Abstract  

 
Simple Branch prediction analysis attack, a type of a 

side-channel attack, allows an unauthorized spy 

process to collect information from the victim 

process.   Side-channel attacks are based on leakage 

in the physical implementation of a system. 

Branching conditions can provide information on 

sensitive data handled by the processor, and since the 

Branch Prediction Unit (BPU) is shared by all the 

processes running on a processor it is possible for the 

spy process to collect useful information of another 

process.  

 

In this paper, it is shown that a spy process running 

simultaneously with an RSA process is able to extract 

all the secret key bits during one single RSA 

decryption execution. This attack was performed on 

the OpenSSL (version 0.9.8g) implementation of 

RSA. In order for this attack to work, first it is 

necessary to be able to run the spy process on the 

same processor of the victim processes. Then make 

sure the processor has an interface to monitor, in 

details, all branches made within a range of addresses 

and lastly to be able to compile and execute a newly 

written program.    

 

The leakage of such crucial branching information 

directly depending on the private key has been 

stopped in later versions of OpenSSL.  

 

 

Keywords: Side Channel Attacks, Simple Branch 

Prediction Analysis, OpenSSL, RSA, Square and 

Multiply Algorithm.  

 

 

1.  Introduction 
 

Side channel attacks are techniques in which an 

attacker can extract secret information leaked from 

the implementation of a cryptosystem. The most 

common types of this attack that are measurable from 

the execution of the RSA algorithm are the timing 

attacks, power consumption and Simple Branch 

Prediction Analysis (SBPA) attack. The SBPA attack 

takes advantage of side channel information leaked  

 

 

 

 

 

 

 

 

 

by the branch prediction unit (BPU). The 

implementation of RSA on OpenSSL that is attacked 

uses the square and multiply algorithm, with no 

optimizations, in order to carry out the modular 

exponentiation. The attack exploits the conditional 

branch in the algorithm that depends on the bits of 

the secret key. So, by using a spy process that runs 

simultaneously with the victim process which runs an 

RSA decryption, the bits of the private key can be 

retrieved. 

 

The report is divided into five main sections. The 

first section gives a theoretical overview about RSA 

cryptosystem and branch prediction. The second 

section describes the SBPA attack method and the 

tools used for the attack. The third section illustrates 

and analyses the results obtained from performing the 

attack. The fourth section shows some 

countermeasures that can be used to prevent the 

attack, and the last section gives a brief conclusion 

about the report. 

 

 

2. Background Information 
 

The goal of this section is to illustrate the theoretical 

aspects of the project. It explains the RSA 

cryptosystem and how it works. Furthermore, it gives 

explanation about branch prediction. 

 
2.1 RSA Cryptosystem 

 

RSA cryptosystem is one of the most well-known 

public key cryptosystems in the world. It was 

invented by Rivest, Shamir, and Adleman in 1977 

[1].It can be used both for public key encryption and 

digital signatures. The main advantage of public key 

cryptography is that it solves the problem of all prior 

cryptography in which a secure channel is established 

for exchanging the key. On the other hand, the major 

disadvantage of the algorithm is that it requires a key 

size of at least 1024 bits for good security. Thus, it 

makes the algorithm quite slow. The security of the 

algorithm is based on the difficulty of factoring large 

integers.  
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2.1.1 Key Generation 

 

The RSA algorithm starts first by generating two 

keys namely the public key and the private key. It 

uses computations in Zn, where n is the product of 

two different prime integers p and q. The totient of 

the integer n is computed by applying Euler’s totient 

function φ(n) = (p-1) (q-1). 

 

The Euler’s totient function determines the number of 

positive integers less than or equal to n that are 

coprime to n. The encryption exponent is generated 

by selecting an integer e such that gcd(e, φ(n))=1. 

The decryption exponent d is computed such that d = 

e
-1

 mod φ(n). Consequently, the public key is (n, e) 

and the private key is (n, d). The values of d, p, q and 

φ(n) are kept secret. 

 
2.1.2 Encryption 

 

In order to send an encrypted message, the sender A 

does the following: 

a. Obtain the recipient B's public key (n, e). 

b. Represent the plaintext message as a 

positive integer m. 

c. Compute the ciphertext c = m
e
 mod n. 

d. Send the ciphertext c to B.  

 
2.1.3 Decryption 

 

The recipient B does the following to recover the 

plaintext:  

a. Uses his private key (n, d) to compute m = 

c
d
 mod n.  

b. Extracts the plaintext from the message 

representative m. 

 
2.1.4 Square and Multiply Algorithm 

 

Both the encryption and the decryption operations in 

the RSA cryptosystem are modular exponentiation 

operations. This operation takes the form of x
y
 mod n 

and the computation can be done using y-1 modular 

multiplications; nevertheless it is inefficient in case 

of large y.  Accordingly, square and multiply 

algorithm reduces the number of modular 

multiplications required to calculate x
y
 mod n to at 

most 2l, where l represents the number of bits in the 

binary representation of y.  

 

The square and multiply algorithm assumes that the 

exponent y in represented in binary notation such that 

[1]: 

𝑦 =  𝑦𝑖2
𝑖

𝑙−1

𝑖=0

 

 

where yi = 0 or 1, 0 ≤ i ≤ l-1. The algorithm to 

compute z = x
y
 mod n is shown in Figure 1. 

 

 

  

 

 

 

 

 

 

 

 
Figure 1: Square and Multiply Algorithm 

 
2.2 Branch Prediction 

 

A branch instruction is a point in the instruction 

stream of a program where the next instruction is not 

necessarily the next sequential one. There are two 

types of branch instructions, unconditional 

instructions such as procedure calls and goto, and 

conditional instructions like if-then-else and for 

loops. In modern processors, branch predictor is used 

to determine whether a conditional branch in the 

instruction flow of a program is likely to be taken or 

not. This operation is called branch prediction. 

Branch predictors are used to keep the pipeline full of 

instructions. Thus, it enhances the performance and 

allows useful work to be completed while waiting for 

the branch to resolve [2].  

 

In case of conditional branches, the decision to take 

the branch or not to take it depends indeed on the 

condition in which it must be evaluated. During this 

evaluation period, the processor executes instructions 

from one of the possible execution paths in which it 

saves time. Therefore, a branch prediction algorithm 

is used in order to predict the most likely execution 

path in a branch. If the predictor makes correct 

prediction, the program will continue normally 

without any delay. On the other hand, if the 

prediction fails (misprediction), the instructions on 

the pipeline must be flushed and discarded. In this 

case, the execution starts over from the mispredicted 

path and there will be a delay. 

 

The processor requires mainly two kinds of 

information in order to execute the branches, which 

are the outcome of the branch and the target address 

of the branch. Branch Prediction Unit (BPU) of the 

z ←1 

for i ← l -1 downto 0 

   do  
𝑧 ←  𝑧2 mod 𝑛 

𝐢𝐟 𝑦𝑖 = 1

   𝐭𝐡𝐞𝐧 𝑧 ←  𝑧 × 𝑥  mod 𝑛

  

return (z) 

z ← z
2
 mod n 

if yi = 1 

then  z ←
 
(z × x) mod n 

  



processor handles the prediction process. As shown 

in Figure 2, it consists of two main parts, the 

predictor and the Branch Target Buffer (BTB).  

 

The predictor is used to predict the outcome of the 

branch in which it can be either taken or not taken. 

This prediction is based on the history of the same 

branch as well as the history of other branches 

executed just before the current branch. On the other 

hand, the BTB is used to store the target address of 

previously executed branches. That is each time a 

conditional branch is evaluated, the target address is 

recorded in the BTB for future use. Accordingly, 

when the prediction turns out to be taken, the 

instructions in the target address have to be fetched 

and issued [3].  

 

 

 

 

 

 

 

 

 
Figure 2: Branch Prediction Unit Architecture 

 

 

3. Description of the Attack  
 

This section is divided into two subsections. The first 

section describes the Simple Branch Prediction 

Analysis (SBPA) attack and how such a technique 

can help to retrieve crucial private information. The 

second section describes the victim and spy process 

used. OpenSSL is the victim process while Pfmon is 

the spy process which will help retrieve the private 

key. 

 
3.1 Simple Branch Prediction Analysis (SBPA) 

Attack 

 

SBPA is a type of a side channel attack. Side channel 

attacks are attacks that exist due to the poor 

implementation of a system. However, the model 

system can be proved to be very secure but the 

implementations of such system will make it 

vulnerable to some attacks. Those types of attacks 

require a lot of technical knowledge about the 

systems internal operations [4]. 

 

Branch prediction is a feature that can be found on 

almost all the latest processors. It makes the 

processer runs at high speed by keeping the pipeline 

full. A special Branch Prediction unit (BPU) in the 

processor uses a highly optimized branch prediction 

algorithm to predict the direction and outcome of the 

instructions being executed through multiple levels of 

branches, calls and returns. The prediction of the 

instruction helps the instruction to be executed with 

no waiting.  

 

The attack to be used here is based on branch 

prediction analysis and also referred to as “Trace-

driven Attack against the BTB”. The victim process 

usually will execute the RSA processes by using one 

of the exponentiation algorithms (usually it is the 

square and multiply exponentiation algorithm) which 

will contain a branching event on the number of bits 

in the private key d.  On the other hand, the spy 

process which is running simultaneously will be 

monitoring the number of branches and the decision 

taken at each branch. This data gathered will help in 

extracting the private key [5].   

 

The spy process should be started with the victim 

process. The spy processes will fill the BTB with it 

conditional branches and measures the overall 

execution time of all its branches. All those branches 

will be mapped to the same BTB set which also 

stores the specific conditional branches for the 

private key bits. Therefore to find all the bits of the 

private key it will be needed to execute only spy 

branches and measure their overall execution time. 

Therefore, the spy process will see the complete 

Taken/Not Taken trace of the target branch and is 

able to retrieve the private key. 

 
3.2 Tools used for the attack 

 

Two different tools are used in the process of 

attacking RSA by branch prediction. The first tool 

which is OpenSSL is a tool which implements the 

RSA process which is to be attacked. The other tool 

which is Pfmon, is a tool used to monitor the 

branches made spy process in order to retrieve the 

private key.  

 
3.2.1 OpenSSL  

 

The OpenSSL is a certificate management tool with 

shared libraries that provide various encryption and 
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decryption algorithms and protocols, including DES, 

RC4, RSA and SSL. This product includes software 

developed by the OpenSSL Project for use in the 

OpenSSL Toolkit.  The OpenSSL version used in this 

project is 0.9.8g which is vulnerable to the attack 

performed [6].  

 

The RSA library of OpenSSL is the library used in 

this project. This library uses another library to 

manage large integers which is called BIGNUM. 

Standard libraries in C allow the use of limited size 

integers. RSA requires to use very large integers in 

order to make the process secure.  

 

A lot of functions are implemented for the encryption 

and decryption process of RSA. The function of our 

interest will be the function which performs the 

modular exponentiation. These kinds of operations 

are performed by very efficient algorithms to help 

achieve better performance. 

 

In OpenSSL, the function that performs the modular 

exponentiation is called BN_mod_exp_mont. This 

function performs modular exponentiation for 

BIGNUM Montgomery. Montgomery reduction is an 

algorithm introduced in 1985 by Peter Montgomery 

that allows modular arithmetic to be performed 

efficiently when the modulus is large. Montgomery is 

a method that reduces multiplication, but it has no 

influence on the attack operation [7].   

 

OpenSSL’s RSA also uses the sliding windows 

technique which is an optimization on the algorithm 

by storing values in a table. This technique increases 

the size of the window based on the number of bits. 

Initially the window size is set to one, then if the 

exponent of d is larger than 23 bits it will set it to 3, if 

d is more than 79 bits it will set it to 4, if d is greater 

than 239 bits it will set it to 5 and if it was more than 

671 bits it will set it to 6. 

 

In the case where the window size is 1, it is clear that 

there is special treatment in case there is a bit set to 1 

in the exponent d, which is a conditional branching to 

avoid an additional multiplication. The condition of a 

test connection is made directly on a bit of the private 

key. If we can recover following the evaluation of 

this algorithm conditions, then we can reconstruct the 

private key d.  

 
3.2.2 Pfmon 

 

Pfmon is tool used to monitor the performance of 

selected events on the processor. It can be used to 

count simple events or samples from bounded 

address ranges or an entire system. It makes full use 

of the libpfm library to help in programming the 

PMU. The processor that is best to be monitored with 

this tool is the Itanium 2 processor, which is the 

processor used in this project. This architecture has 

16 PMU configuration registers (PMC), 18 data 

registers (PMD) and 4 other counters. In this 

architecture, the BTB cannot contain more than 4 

pairs of addresses. To analyze the content, 9 registers 

are needed, from those 9 registers 8 to contain the 

addresses and 1 extra to keep a pointer to the last 

entry in the BTB [8]. 

 

In order to monitor the processor and trace the 

branches that were executed the event that is to be 

monitored is BRANCH_EVENT. This event alone is not 

sufficient. Some other options are to be used with this 

event. Another option that should be specified is --
long-smpl-periods which will set long sampling 

periods for each event to display more info about 

each event. This will show details if the branch is 

taken or not. Having those two options indicated will 

give information on a large number of branches 

performed. Therefore another option to be used is the 

--irange option. This option will allow specifying the 

range of addresses to be monitored. The range of 

addresses to be monitored us found by debugging the 

program to be monitored. 

 
4. Analysis and Results 

 

The aim of this section is to discuss and analyze the 

results obtained from the experiments done during 

the project. There are two experiments, where the 

first one is exploited to demonstrate the attack using a 

simple program, and the other one is used to illustrate 

the attack on RSA implementation of OpenSSL. The 

attack is mainly attempted using Itanium 2 processor. 

But, it is also tried on the Intel Core-based processor.    

 
4.1 Emphasizing the attack using a simple 

program 

 

A small function called doloop as shown in Figure 3 

is implemented in order to emphasize the attack using 

pfmon tool. Pfmon works as a spy process in which it 

starts before the victim process (doloop) and fills the 

BTB with its conditional branches addresses. In 

addition, it continuously executes its branches and 

measures their overall execution time. On the other 

hand, when the victim process starts and if it has a 

conditional branch to be executed, the BTB will be 

modified. The spy process will measure the overall 

http://en.wikipedia.org/wiki/Peter_Montgomery
http://en.wikipedia.org/wiki/Modular_arithmetic


execution time of the branches and it will observe the 

changes in the BTB. Therefore, it can detect that the 

victim conditional branch is taken. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Simple Program 

 

Pfmon is used to trace the branch and observe 

whether it is taken (1) or not taken (0). A debugger 

(GDB) is used to obtain the assembly code of the 

conditional branch instruction as shown in Figure 4 

by disassembling the doloop function.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Address Range of Conditional Branch Instruction   

 

As can be seen from the previous figure, the target 

branch has the address 0x40000000000009b0. 
Therefore, when the condition (if (j%L==0)) is false, 

this target branch is taken and vice versa.   

 

By using the pfmon option (--irange) which specifies 

an instruction address range constraint and start the 

simple program with N=10, pfmon is run as follows: 

 

$ pfmon --long-smpl-periods=1 --smpl-entries=100 -e 
BRANCH_EVENT --irange=0x4000000000000980-
0x4000000000000990 -- ./loop 10 
 

The output stream of pfmon is analyzed according to 

the value associated to “taken”. Thus, if taken=y, 

then the bit of the reconstructed sequence equals to 1 

and vice versa. A sample of the pfmon output 

sequence is provided in the appendix A. A small 

program called analyze is used to recover the 

sequence directly from the output stream of pfmon. It 

looks for the values associated with the string 

“taken”. For instance, if taken=y, it produces 1. As a 

result, the reconstructed sequence when N=10 is 

1111011110.  

 

It can be noticed from the reconstructed sequence 

that there are two zero bits. This means that the 

condition (if (j%L==0)) is satisfied and the branch is 

not taken at those two iterations. Thus, this trick can 

be used to determine the value of L.      

 

Consequently, it is possible to recover the bits of the 

private exponent d of RSA by tracing the execution 

of the conditional branch instruction in square and 

multiply algorithm while decrypting the ciphertext. 

 
4.2 Attacking RSA Implementation of OpenSSL 

 

This section will elaborate on how the attack is 

performed on the RSA implementation of OpenSSL. 

First of all, a program should be written to decrypt an 

encrypted RSA message, this program is the victim 

program and pfmon has to monitor it while running. 

This program should be complied with a modified 

version of OpenSSL where the window size is always 

set to 1 and BN_FLG_CONSTTIME to 0 and compile 

OpenSSL with no optimization (-O0). 

BN_FLG_CONSTTIME is a flag and setting it causes 

BN_mod_exp_mont() to use the alternative 

implementation in BN_mod_exp_mont_consttime(). 
Therefore, the message will be decrypted without 

exposing the private key which will not allow the spy 

process to recover the private key. 

 

This program will take as inputs n, d and e. a test 

program was run with the following keys: 

 

n= 
e02137497237346fbf66c1c92005adf442fa23026e4c
717da5950fce2af67433a7126fcd6738b5a8a7983c22
1a1161f6c65067e1296a08f81d3c93e2651c91ad 
e=10001 
d= 
491e0cef44f7857fbf2d42a2de737be067c93a8a9c79
0bbd35bb7f407efb8fc47d7e73900292eac6d8d72dfe
277e73fe4340189ad153062bbbd8f4703d531f81  
 

The key used in this program is of size 512 bits. The 

key was created by OpenSSL and will be used in the 

victim program to decrypt a chosen message from 

which the spy process will analyze and retrieve the 

private key without having any information about any 

data used in the program. 

0x4000000000000980 <doloop+272>: 

[MFB] nop.m 0x0 

0x4000000000000981 <doloop+273>: 

nop.f 0x0 

0x4000000000000982 <doloop+274>: 

(p06) br.cond.dptk.few 

0x40000000000009b0  <doloop+320> 

0x4000000000000990 <doloop+288>: 

[MFI] adds r15=-12,r2 

 

#define L 5 

void doloop(int N) { 

     int a , j; 

     for ( j=1; j<=N; j++) 

         if (j%L==0) 

               a=1; 

   } 

 



The target process is a program which calls the 

RSA_private_decrypt function of the OpenSSL 

library this function does the decryption. This 

function undergoes several different steps for 

decryption and the most crucial step is the modular 

exponentiation step. This step will allow recovering 

the key. So, by debugging the program it is noticed 

that modular exponentiation is done in a function 

called BN_mod_exp_mont (in the file bn_exp.c 

available with the OpenSSL library, see appendix B). 
The critical if condition (branch event) is the if 

condition with the following condition if 
(BN_is_bit_set(p, wstart) == 0). Only the branches of 

this “if condition” should be monitored. Therefore, 

the spy process should monitor only the addresses of 

this “if condition” which can be achieved by running 

the program in debugging mode. If the jump is taken, 

the multiplication is not done; therefore it detects a 0, 

and if the jump is not taken 1 is detected. The figure 
below shows the assembly code where the branching 

occurs. The branching occurs in the address which 

contains br.cond.dptk.few. This instruction means 

that there is a branching condition if the prediction is 

taken. 

 

 

 
 

Figure 5: Branching Assembly Code 

 
The following is the command which is executed to 

run the spy process:  

 

$ pfmon --long-smpl-periods=1 --smpl-entries=10 -e 
BRANCH_EVENT --irange=0x400000000007d4f0-
0x400000000007d500 -- ./attack > attack_output 
 

This function will give us details for each entry if it 

was taken or not, therefore a small program was 

implemented to analyze those results and display 

results in binary and hex, the following is the 

command used: 

 

$ ./analyze attack_output | ./bin_hex 

 
The analysis will analyze the data and produce a 

binary output as follows: 

 

100100100011110000011001110111101000100111
101111000010101111111101111110010110101000
010101000101101111001110011011110111110000
001100111110010010011101010001010100111000
111100100001011101111010011010110111011011
111110100000001111110111110111000111111000
100011111010111111001110011100100000000001
010010010111010101100011011011000110101110
010110111111110001001110111111001110011111
111100100001101000000000110001001101011010
001010100110000011000101011101110111101100
011110100011100000011110101010011000111111
0000001 
 

This binary represents the private key which is then 

converted to hex by running the program bin_hex and 

the output in hex is as the following:  

 
491e0cef44f7857fbf2d42a2de737be067c93a8a9c79
0bbd35bb7f407efb8fc47d7e73900292eac6d8d72dfe
277e73fe4340189ad153062bbbd8f4703d531f81 
 

As we can see that the output is identical to the 

private key d shown earlier which indeed shows the 

effectiveness of this attack. 

 
4.3 Analyzing the attack on Intel core-based  

processor 

 

The attack is attempted on a processor other than the 

Itanium 2. In this case also, the simple program is 

used to emphasize the attack and the private key of 

the RSA implementation is tried to be retrieved. 

 

The pfmon tool in this case can be used to give the 

number of the taken branches. Nevertheless, it does 

not give such detailed information about the branches 

as in the case of Itanium 2 processor.  So, by using a 

small trick in which the simple program is run N+1 

times in order to observe at each iteration that the 

conditional branch is taken or not. For example when 

N=10, the program is run 11 times starting with N=0 

and ending with N=10. At each two consecutive 

executions, if the number of branches is incremented 

by 2, this means that the branch is not taken; 

0x400000000007d4e0 <BN_mod_exp_mont+2464>:

 [MII]       mov r1=r42 

0x400000000007d4e1 <BN_mod_exp_mont+2465>:                  

mov r14=r8;; 

0x400000000007d4e2 <BN_mod_exp_mont+2466>:              

cmp4.eq p7,p6=0,r14 

0x400000000007d4f0 <BN_mod_exp_mont+2480>:

 [MFB]       nop.m 0x0 

0x400000000007d4f1 <BN_mod_exp_mont+2481>:              

nop.f 0x0 

0x400000000007d4f2 <BN_mod_exp_mont+2482>:        

(p06) br.cond.dptk.few  

0x400000000007d5d0 

<BN_mod_exp_mont+2704> 

0x400000000007d500 <BN_mod_exp_mont+2496>:

 [MMI]       adds r14=-352,r41;; 



however, if it is incremented by 1, then the branch is 

taken. pfmon is executed as the following:  

 

for i in $(seq 0 10) ; do pfmon  -trigger-code-
start=0x080483a4 --trigger-code-stop=0x080483a4 –
e BR_INST_RETIRED:taken  - ./loop $i | 
./save_output ; done 
./analyze_simple 
 

In this case, the two options of pfmon (-trigger-code-
start and --trigger-code-stop) are used to specify the 

address range of the conditional branch instruction to 

be monitored.   

 

A small program called analyze_simple is used to 

analyze the output of pfmon. It computes the 

difference between two consecutive results and 

checks if it is 2 or 1. Accordingly, when the 

difference equals 2, it outputs 1. On the other hand, 

when the difference equals 1, it produces 0. So, the 

sequence 1111011110 is retrieved in this case.   

 
Attempts have been made on an Intel-Core based 

processer to try and get as much information about 

the key. The case on recovering the private key with 

such limited information is very tough since there is 

no information given about every branch done. A 

more general solution was proposed which is to 

detect the number of 1’s in the private key by 

knowing the number of taken branches. An 

experiment with 100 different keys was made and it 

showed that the number of taken branches got each 

time is not much of a help since it is almost the same. 

That resulted that the number of taken branches will 

most lie between the ranges 366-368 taken branches. 

This range was achieved from the experiment 

regardless if the key had a high or low number of 

ones.  

 

Finally, it has been analyzed that it is very unlikely to 

be able to retrieve the private key on such a 

processor. The same attack was possible on an 

Itanium 2 based processor which gave more 

information about the branches made. 

 
 

5. Countermeasures 

 

There are many countermeasures that can be used to 

protect RSA implementation of OpenSSL from 

SBPA attack. The simplest and most effective one 

involves sensitive processes to disable the access to 

the BTB unit. Nevertheless, this technique requires a 

new generation of processors. Another proposed 

technique is to remove all conditional branches from 

the sensitive code, and replace them with indirect 

branches that read the target address from the 

registers. Indeed, an indirect branch always causes a 

jump to the address read from the register. As a 

result, there is no prediction and thus the BTB will 

not be modified. Indirect branches are available in 

most architectures, including x86, IA64, MIPS and 

ARM, making the technique widely applicable [9].  

 

 

6. Conclusion 

 

Branch prediction is a recent method used to perform 

a side channel attack. In this paper a method on how 

branch prediction has been used to attack the 

OpenSSL implementation of RSA is shown. Branch 

prediction task is to predict where the next instruction 

is in the instruction stream. It provides two items: the 

direction of the branch, if it is taken or not and the 

target of the branch. 

 

By analyzing the sequence of instructions that are 

executed by the RSA process, all the bits of the 

private key were successfully extracted. This attack 

was made on the modular exponentiation function of 

the RSA implementation which will give crucial 

information about the key. This kind of attack is 

possible when a spy process is set to monitor a victim 

process branching events and from that the 

information is extracted.  

 

This attack was performed successfully on Intel 

Itanium processer and with certain limitation about 

the data that could be extracted on an Intel-Core 

based processor. As a conclusion, the later versions 

of OpenSSL correct this defect in the modular 

exponentiation by different techniques. 
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Appendix A: Sample of pfmon Output 

 
$ pfmon --long-smpl-periods=1 --smpl-entries=100 -e BRANCH_EVENT --

irange=0x4000000000000980-0x4000000000000990 -- ./loop 10 

 

 

entry 0 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec72853e2 OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 1 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec728747a OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 2 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7287b67 OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 3 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7288259 OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 4 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec72888eb OVFL:4 LAST_VAL:1 

SET:0 IIP:0x4000000000000890 PMD8  : 0x400000000000097f b=1 mp=1 bru=1 b1=1 

valid=y 

        source addr=0x4000000000000980 

        taken=n prediction=FE failure 

entry 5 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7288f6f OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 6 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec72895e7 OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

 



entry 7 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7289c5f OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000008c1 PMD8  : 0x4000000000000979 b=1 mp=0 bru=0 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=success 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 8 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec728a2d0 OVFL:4 LAST_VAL:1 

SET:0 IIP:0x40000000000009f0 PMD8  : 0x400000000000097b b=1 mp=1 bru=1 b1=1 

valid=y 

        source addr=0x4000000000000982 

        taken=y prediction=FE failure 

 PMD9  : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y 

        target addr=0x40000000000009b0 

entry 9 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec728a99f OVFL:4 LAST_VAL:1 

SET:0 IIP:0x4000000000000a10 PMD8  : 0x400000000000097f b=1 mp=1 bru=1 b1=1 

valid=y 

        source addr=0x4000000000000980 

        taken=n prediction=FE failure 

 

 

 

  



Appendix B:  

 
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, 
      const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) 
 { 
 .……. 
 …….. 
 
 start=1; /* This is used to avoid multiplication etc 
    * when there is only the value '1' in the 
    * buffer. */ 
 wvalue=0; /* The 'value' of the window */ 
 wstart=bits-1; /* The top bit of the window */ 
 wend=0;  /* The bottom bit of the window */ 
 
 if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; 
 for (;;) 
  { 
  if (BN_is_bit_set(p,wstart) == 0) 
   { 
   if (!start) 
    { 
    if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) 
    goto err; 
    } 
   if (wstart == 0) break; 
   wstart--; 
   continue; 
   } 

/* We now have wstart on a 'set' bit, we now need to work out how bit a window to do.  To do 
this we need to scan forward until the last set bit before the end of the window */ 

  j=wstart; 
  wvalue=1; 
  wend=0; 
  for (i=1; i<window; i++) 
   { 
   if (wstart-i < 0) break; 
   if (BN_is_bit_set(p,wstart-i)) 
    { 
    wvalue<<=(i-wend); 
    wvalue|=1; 
    wend=i; 
    } 
   } 
 …….  
 …….  
err: 
 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); 
 BN_CTX_end(ctx); 
 bn_check_top(rr); 
 return(ret); 
 } 


