

Abstract

Simple Branch prediction analysis attack, a type of a

side-channel attack, allows an unauthorized spy

process to collect information from the victim

process. Side-channel attacks are based on leakage

in the physical implementation of a system.

Branching conditions can provide information on

sensitive data handled by the processor, and since the

Branch Prediction Unit (BPU) is shared by all the

processes running on a processor it is possible for the

spy process to collect useful information of another

process.

In this paper, it is shown that a spy process running

simultaneously with an RSA process is able to extract

all the secret key bits during one single RSA

decryption execution. This attack was performed on

the OpenSSL (version 0.9.8g) implementation of

RSA. In order for this attack to work, first it is

necessary to be able to run the spy process on the

same processor of the victim processes. Then make

sure the processor has an interface to monitor, in

details, all branches made within a range of addresses

and lastly to be able to compile and execute a newly

written program.

The leakage of such crucial branching information

directly depending on the private key has been

stopped in later versions of OpenSSL.

Keywords: Side Channel Attacks, Simple Branch

Prediction Analysis, OpenSSL, RSA, Square and

Multiply Algorithm.

1. Introduction

Side channel attacks are techniques in which an

attacker can extract secret information leaked from

the implementation of a cryptosystem. The most

common types of this attack that are measurable from

the execution of the RSA algorithm are the timing

attacks, power consumption and Simple Branch

Prediction Analysis (SBPA) attack. The SBPA attack

takes advantage of side channel information leaked

by the branch prediction unit (BPU). The

implementation of RSA on OpenSSL that is attacked

uses the square and multiply algorithm, with no

optimizations, in order to carry out the modular

exponentiation. The attack exploits the conditional

branch in the algorithm that depends on the bits of

the secret key. So, by using a spy process that runs

simultaneously with the victim process which runs an

RSA decryption, the bits of the private key can be

retrieved.

The report is divided into five main sections. The

first section gives a theoretical overview about RSA

cryptosystem and branch prediction. The second

section describes the SBPA attack method and the

tools used for the attack. The third section illustrates

and analyses the results obtained from performing the

attack. The fourth section shows some

countermeasures that can be used to prevent the

attack, and the last section gives a brief conclusion

about the report.

2. Background Information

The goal of this section is to illustrate the theoretical

aspects of the project. It explains the RSA

cryptosystem and how it works. Furthermore, it gives

explanation about branch prediction.

2.1 RSA Cryptosystem

RSA cryptosystem is one of the most well-known

public key cryptosystems in the world. It was

invented by Rivest, Shamir, and Adleman in 1977

[1].It can be used both for public key encryption and

digital signatures. The main advantage of public key

cryptography is that it solves the problem of all prior

cryptography in which a secure channel is established

for exchanging the key. On the other hand, the major

disadvantage of the algorithm is that it requires a key

size of at least 1024 bits for good security. Thus, it

makes the algorithm quite slow. The security of the

algorithm is based on the difficulty of factoring large

integers.

ATTACK ON RSA BY BRANCH PREDICTION
INPG-UJF / CSCI Master-1

Intensive Project in Security

 Hamad Raeisi Sultan AlTamimi

hamad.raeisi@ensimag.imag.fr sultan.altamimi@ensimag.imag.fr

mailto:hamad.raeisi@ensimag.imag.fr
mailto:sultan.altamimi@ensimag.imag.fr

2.1.1 Key Generation

The RSA algorithm starts first by generating two

keys namely the public key and the private key. It

uses computations in Zn, where n is the product of

two different prime integers p and q. The totient of

the integer n is computed by applying Euler’s totient

function φ(n) = (p-1) (q-1).

The Euler’s totient function determines the number of

positive integers less than or equal to n that are

coprime to n. The encryption exponent is generated

by selecting an integer e such that gcd(e, φ(n))=1.

The decryption exponent d is computed such that d =

e
-1

 mod φ(n). Consequently, the public key is (n, e)

and the private key is (n, d). The values of d, p, q and

φ(n) are kept secret.

2.1.2 Encryption

In order to send an encrypted message, the sender A

does the following:

a. Obtain the recipient B's public key (n, e).

b. Represent the plaintext message as a

positive integer m.

c. Compute the ciphertext c = m
e
 mod n.

d. Send the ciphertext c to B.

2.1.3 Decryption

The recipient B does the following to recover the

plaintext:

a. Uses his private key (n, d) to compute m =

c
d
 mod n.

b. Extracts the plaintext from the message

representative m.

2.1.4 Square and Multiply Algorithm

Both the encryption and the decryption operations in

the RSA cryptosystem are modular exponentiation

operations. This operation takes the form of x
y
 mod n

and the computation can be done using y-1 modular

multiplications; nevertheless it is inefficient in case

of large y. Accordingly, square and multiply

algorithm reduces the number of modular

multiplications required to calculate x
y
 mod n to at

most 2l, where l represents the number of bits in the

binary representation of y.

The square and multiply algorithm assumes that the

exponent y in represented in binary notation such that

[1]:

𝑦 = 𝑦𝑖2
𝑖

𝑙−1

𝑖=0

where yi = 0 or 1, 0 ≤ i ≤ l-1. The algorithm to

compute z = x
y
 mod n is shown in Figure 1.

Figure 1: Square and Multiply Algorithm

2.2 Branch Prediction

A branch instruction is a point in the instruction

stream of a program where the next instruction is not

necessarily the next sequential one. There are two

types of branch instructions, unconditional

instructions such as procedure calls and goto, and

conditional instructions like if-then-else and for

loops. In modern processors, branch predictor is used

to determine whether a conditional branch in the

instruction flow of a program is likely to be taken or

not. This operation is called branch prediction.

Branch predictors are used to keep the pipeline full of

instructions. Thus, it enhances the performance and

allows useful work to be completed while waiting for

the branch to resolve [2].

In case of conditional branches, the decision to take

the branch or not to take it depends indeed on the

condition in which it must be evaluated. During this

evaluation period, the processor executes instructions

from one of the possible execution paths in which it

saves time. Therefore, a branch prediction algorithm

is used in order to predict the most likely execution

path in a branch. If the predictor makes correct

prediction, the program will continue normally

without any delay. On the other hand, if the

prediction fails (misprediction), the instructions on

the pipeline must be flushed and discarded. In this

case, the execution starts over from the mispredicted

path and there will be a delay.

The processor requires mainly two kinds of

information in order to execute the branches, which

are the outcome of the branch and the target address

of the branch. Branch Prediction Unit (BPU) of the

z ←1

for i ← l -1 downto 0

 do
𝑧 ← 𝑧2 mod 𝑛

𝐢𝐟 𝑦𝑖 = 1

 𝐭𝐡𝐞𝐧 𝑧 ← 𝑧 × 𝑥 mod 𝑛

return (z)

z ← z
2
 mod n

if yi = 1

then z ←

(z × x) mod n

processor handles the prediction process. As shown

in Figure 2, it consists of two main parts, the

predictor and the Branch Target Buffer (BTB).

The predictor is used to predict the outcome of the

branch in which it can be either taken or not taken.

This prediction is based on the history of the same

branch as well as the history of other branches

executed just before the current branch. On the other

hand, the BTB is used to store the target address of

previously executed branches. That is each time a

conditional branch is evaluated, the target address is

recorded in the BTB for future use. Accordingly,

when the prediction turns out to be taken, the

instructions in the target address have to be fetched

and issued [3].

Figure 2: Branch Prediction Unit Architecture

3. Description of the Attack

This section is divided into two subsections. The first

section describes the Simple Branch Prediction

Analysis (SBPA) attack and how such a technique

can help to retrieve crucial private information. The

second section describes the victim and spy process

used. OpenSSL is the victim process while Pfmon is

the spy process which will help retrieve the private

key.

3.1 Simple Branch Prediction Analysis (SBPA)

Attack

SBPA is a type of a side channel attack. Side channel

attacks are attacks that exist due to the poor

implementation of a system. However, the model

system can be proved to be very secure but the

implementations of such system will make it

vulnerable to some attacks. Those types of attacks

require a lot of technical knowledge about the

systems internal operations [4].

Branch prediction is a feature that can be found on

almost all the latest processors. It makes the

processer runs at high speed by keeping the pipeline

full. A special Branch Prediction unit (BPU) in the

processor uses a highly optimized branch prediction

algorithm to predict the direction and outcome of the

instructions being executed through multiple levels of

branches, calls and returns. The prediction of the

instruction helps the instruction to be executed with

no waiting.

The attack to be used here is based on branch

prediction analysis and also referred to as “Trace-

driven Attack against the BTB”. The victim process

usually will execute the RSA processes by using one

of the exponentiation algorithms (usually it is the

square and multiply exponentiation algorithm) which

will contain a branching event on the number of bits

in the private key d. On the other hand, the spy

process which is running simultaneously will be

monitoring the number of branches and the decision

taken at each branch. This data gathered will help in

extracting the private key [5].

The spy process should be started with the victim

process. The spy processes will fill the BTB with it

conditional branches and measures the overall

execution time of all its branches. All those branches

will be mapped to the same BTB set which also

stores the specific conditional branches for the

private key bits. Therefore to find all the bits of the

private key it will be needed to execute only spy

branches and measure their overall execution time.

Therefore, the spy process will see the complete

Taken/Not Taken trace of the target branch and is

able to retrieve the private key.

3.2 Tools used for the attack

Two different tools are used in the process of

attacking RSA by branch prediction. The first tool

which is OpenSSL is a tool which implements the

RSA process which is to be attacked. The other tool

which is Pfmon, is a tool used to monitor the

branches made spy process in order to retrieve the

private key.

3.2.1 OpenSSL

The OpenSSL is a certificate management tool with

shared libraries that provide various encryption and

f

Branch Address

Target Address

Next Seq. Addr.

Address

BTB

BHR

BPT

decryption algorithms and protocols, including DES,

RC4, RSA and SSL. This product includes software

developed by the OpenSSL Project for use in the

OpenSSL Toolkit. The OpenSSL version used in this

project is 0.9.8g which is vulnerable to the attack

performed [6].

The RSA library of OpenSSL is the library used in

this project. This library uses another library to

manage large integers which is called BIGNUM.

Standard libraries in C allow the use of limited size

integers. RSA requires to use very large integers in

order to make the process secure.

A lot of functions are implemented for the encryption

and decryption process of RSA. The function of our

interest will be the function which performs the

modular exponentiation. These kinds of operations

are performed by very efficient algorithms to help

achieve better performance.

In OpenSSL, the function that performs the modular

exponentiation is called BN_mod_exp_mont. This

function performs modular exponentiation for

BIGNUM Montgomery. Montgomery reduction is an

algorithm introduced in 1985 by Peter Montgomery

that allows modular arithmetic to be performed

efficiently when the modulus is large. Montgomery is

a method that reduces multiplication, but it has no

influence on the attack operation [7].

OpenSSL’s RSA also uses the sliding windows

technique which is an optimization on the algorithm

by storing values in a table. This technique increases

the size of the window based on the number of bits.

Initially the window size is set to one, then if the

exponent of d is larger than 23 bits it will set it to 3, if

d is more than 79 bits it will set it to 4, if d is greater

than 239 bits it will set it to 5 and if it was more than

671 bits it will set it to 6.

In the case where the window size is 1, it is clear that

there is special treatment in case there is a bit set to 1

in the exponent d, which is a conditional branching to

avoid an additional multiplication. The condition of a

test connection is made directly on a bit of the private

key. If we can recover following the evaluation of

this algorithm conditions, then we can reconstruct the

private key d.

3.2.2 Pfmon

Pfmon is tool used to monitor the performance of

selected events on the processor. It can be used to

count simple events or samples from bounded

address ranges or an entire system. It makes full use

of the libpfm library to help in programming the

PMU. The processor that is best to be monitored with

this tool is the Itanium 2 processor, which is the

processor used in this project. This architecture has

16 PMU configuration registers (PMC), 18 data

registers (PMD) and 4 other counters. In this

architecture, the BTB cannot contain more than 4

pairs of addresses. To analyze the content, 9 registers

are needed, from those 9 registers 8 to contain the

addresses and 1 extra to keep a pointer to the last

entry in the BTB [8].

In order to monitor the processor and trace the

branches that were executed the event that is to be

monitored is BRANCH_EVENT. This event alone is not

sufficient. Some other options are to be used with this

event. Another option that should be specified is --
long-smpl-periods which will set long sampling

periods for each event to display more info about

each event. This will show details if the branch is

taken or not. Having those two options indicated will

give information on a large number of branches

performed. Therefore another option to be used is the

--irange option. This option will allow specifying the

range of addresses to be monitored. The range of

addresses to be monitored us found by debugging the

program to be monitored.

4. Analysis and Results

The aim of this section is to discuss and analyze the

results obtained from the experiments done during

the project. There are two experiments, where the

first one is exploited to demonstrate the attack using a

simple program, and the other one is used to illustrate

the attack on RSA implementation of OpenSSL. The

attack is mainly attempted using Itanium 2 processor.

But, it is also tried on the Intel Core-based processor.

4.1 Emphasizing the attack using a simple

program

A small function called doloop as shown in Figure 3

is implemented in order to emphasize the attack using

pfmon tool. Pfmon works as a spy process in which it

starts before the victim process (doloop) and fills the

BTB with its conditional branches addresses. In

addition, it continuously executes its branches and

measures their overall execution time. On the other

hand, when the victim process starts and if it has a

conditional branch to be executed, the BTB will be

modified. The spy process will measure the overall

http://en.wikipedia.org/wiki/Peter_Montgomery
http://en.wikipedia.org/wiki/Modular_arithmetic

execution time of the branches and it will observe the

changes in the BTB. Therefore, it can detect that the

victim conditional branch is taken.

Figure 3: Simple Program

Pfmon is used to trace the branch and observe

whether it is taken (1) or not taken (0). A debugger

(GDB) is used to obtain the assembly code of the

conditional branch instruction as shown in Figure 4

by disassembling the doloop function.

Figure 4: Address Range of Conditional Branch Instruction

As can be seen from the previous figure, the target

branch has the address 0x40000000000009b0.
Therefore, when the condition (if (j%L==0)) is false,

this target branch is taken and vice versa.

By using the pfmon option (--irange) which specifies

an instruction address range constraint and start the

simple program with N=10, pfmon is run as follows:

$ pfmon --long-smpl-periods=1 --smpl-entries=100 -e
BRANCH_EVENT --irange=0x4000000000000980-
0x4000000000000990 -- ./loop 10

The output stream of pfmon is analyzed according to

the value associated to “taken”. Thus, if taken=y,

then the bit of the reconstructed sequence equals to 1

and vice versa. A sample of the pfmon output

sequence is provided in the appendix A. A small

program called analyze is used to recover the

sequence directly from the output stream of pfmon. It

looks for the values associated with the string

“taken”. For instance, if taken=y, it produces 1. As a

result, the reconstructed sequence when N=10 is

1111011110.

It can be noticed from the reconstructed sequence

that there are two zero bits. This means that the

condition (if (j%L==0)) is satisfied and the branch is

not taken at those two iterations. Thus, this trick can

be used to determine the value of L.

Consequently, it is possible to recover the bits of the

private exponent d of RSA by tracing the execution

of the conditional branch instruction in square and

multiply algorithm while decrypting the ciphertext.

4.2 Attacking RSA Implementation of OpenSSL

This section will elaborate on how the attack is

performed on the RSA implementation of OpenSSL.

First of all, a program should be written to decrypt an

encrypted RSA message, this program is the victim

program and pfmon has to monitor it while running.

This program should be complied with a modified

version of OpenSSL where the window size is always

set to 1 and BN_FLG_CONSTTIME to 0 and compile

OpenSSL with no optimization (-O0).

BN_FLG_CONSTTIME is a flag and setting it causes

BN_mod_exp_mont() to use the alternative

implementation in BN_mod_exp_mont_consttime().
Therefore, the message will be decrypted without

exposing the private key which will not allow the spy

process to recover the private key.

This program will take as inputs n, d and e. a test

program was run with the following keys:

n=
e02137497237346fbf66c1c92005adf442fa23026e4c
717da5950fce2af67433a7126fcd6738b5a8a7983c22
1a1161f6c65067e1296a08f81d3c93e2651c91ad
e=10001
d=
491e0cef44f7857fbf2d42a2de737be067c93a8a9c79
0bbd35bb7f407efb8fc47d7e73900292eac6d8d72dfe
277e73fe4340189ad153062bbbd8f4703d531f81

The key used in this program is of size 512 bits. The

key was created by OpenSSL and will be used in the

victim program to decrypt a chosen message from

which the spy process will analyze and retrieve the

private key without having any information about any

data used in the program.

0x4000000000000980 <doloop+272>:

[MFB] nop.m 0x0

0x4000000000000981 <doloop+273>:

nop.f 0x0

0x4000000000000982 <doloop+274>:

(p06) br.cond.dptk.few

0x40000000000009b0 <doloop+320>

0x4000000000000990 <doloop+288>:

[MFI] adds r15=-12,r2

#define L 5

void doloop(int N) {

 int a , j;

 for (j=1; j<=N; j++)

 if (j%L==0)

 a=1;

 }

The target process is a program which calls the

RSA_private_decrypt function of the OpenSSL

library this function does the decryption. This

function undergoes several different steps for

decryption and the most crucial step is the modular

exponentiation step. This step will allow recovering

the key. So, by debugging the program it is noticed

that modular exponentiation is done in a function

called BN_mod_exp_mont (in the file bn_exp.c

available with the OpenSSL library, see appendix B).
The critical if condition (branch event) is the if

condition with the following condition if
(BN_is_bit_set(p, wstart) == 0). Only the branches of

this “if condition” should be monitored. Therefore,

the spy process should monitor only the addresses of

this “if condition” which can be achieved by running

the program in debugging mode. If the jump is taken,

the multiplication is not done; therefore it detects a 0,

and if the jump is not taken 1 is detected. The figure
below shows the assembly code where the branching

occurs. The branching occurs in the address which

contains br.cond.dptk.few. This instruction means

that there is a branching condition if the prediction is

taken.

Figure 5: Branching Assembly Code

The following is the command which is executed to

run the spy process:

$ pfmon --long-smpl-periods=1 --smpl-entries=10 -e
BRANCH_EVENT --irange=0x400000000007d4f0-
0x400000000007d500 -- ./attack > attack_output

This function will give us details for each entry if it

was taken or not, therefore a small program was

implemented to analyze those results and display

results in binary and hex, the following is the

command used:

$./analyze attack_output | ./bin_hex

The analysis will analyze the data and produce a

binary output as follows:

100100100011110000011001110111101000100111
101111000010101111111101111110010110101000
010101000101101111001110011011110111110000
001100111110010010011101010001010100111000
111100100001011101111010011010110111011011
111110100000001111110111110111000111111000
100011111010111111001110011100100000000001
010010010111010101100011011011000110101110
010110111111110001001110111111001110011111
111100100001101000000000110001001101011010
001010100110000011000101011101110111101100
011110100011100000011110101010011000111111
0000001

This binary represents the private key which is then

converted to hex by running the program bin_hex and

the output in hex is as the following:

491e0cef44f7857fbf2d42a2de737be067c93a8a9c79
0bbd35bb7f407efb8fc47d7e73900292eac6d8d72dfe
277e73fe4340189ad153062bbbd8f4703d531f81

As we can see that the output is identical to the

private key d shown earlier which indeed shows the

effectiveness of this attack.

4.3 Analyzing the attack on Intel core-based

processor

The attack is attempted on a processor other than the

Itanium 2. In this case also, the simple program is

used to emphasize the attack and the private key of

the RSA implementation is tried to be retrieved.

The pfmon tool in this case can be used to give the

number of the taken branches. Nevertheless, it does

not give such detailed information about the branches

as in the case of Itanium 2 processor. So, by using a

small trick in which the simple program is run N+1

times in order to observe at each iteration that the

conditional branch is taken or not. For example when

N=10, the program is run 11 times starting with N=0

and ending with N=10. At each two consecutive

executions, if the number of branches is incremented

by 2, this means that the branch is not taken;

0x400000000007d4e0 <BN_mod_exp_mont+2464>:

 [MII] mov r1=r42

0x400000000007d4e1 <BN_mod_exp_mont+2465>:

mov r14=r8;;

0x400000000007d4e2 <BN_mod_exp_mont+2466>:

cmp4.eq p7,p6=0,r14

0x400000000007d4f0 <BN_mod_exp_mont+2480>:

 [MFB] nop.m 0x0

0x400000000007d4f1 <BN_mod_exp_mont+2481>:

nop.f 0x0

0x400000000007d4f2 <BN_mod_exp_mont+2482>:

(p06) br.cond.dptk.few

0x400000000007d5d0

<BN_mod_exp_mont+2704>

0x400000000007d500 <BN_mod_exp_mont+2496>:

 [MMI] adds r14=-352,r41;;

however, if it is incremented by 1, then the branch is

taken. pfmon is executed as the following:

for i in $(seq 0 10) ; do pfmon -trigger-code-
start=0x080483a4 --trigger-code-stop=0x080483a4 –
e BR_INST_RETIRED:taken - ./loop $i |
./save_output ; done
./analyze_simple

In this case, the two options of pfmon (-trigger-code-
start and --trigger-code-stop) are used to specify the

address range of the conditional branch instruction to

be monitored.

A small program called analyze_simple is used to

analyze the output of pfmon. It computes the

difference between two consecutive results and

checks if it is 2 or 1. Accordingly, when the

difference equals 2, it outputs 1. On the other hand,

when the difference equals 1, it produces 0. So, the

sequence 1111011110 is retrieved in this case.

Attempts have been made on an Intel-Core based

processer to try and get as much information about

the key. The case on recovering the private key with

such limited information is very tough since there is

no information given about every branch done. A

more general solution was proposed which is to

detect the number of 1’s in the private key by

knowing the number of taken branches. An

experiment with 100 different keys was made and it

showed that the number of taken branches got each

time is not much of a help since it is almost the same.

That resulted that the number of taken branches will

most lie between the ranges 366-368 taken branches.

This range was achieved from the experiment

regardless if the key had a high or low number of

ones.

Finally, it has been analyzed that it is very unlikely to

be able to retrieve the private key on such a

processor. The same attack was possible on an

Itanium 2 based processor which gave more

information about the branches made.

5. Countermeasures

There are many countermeasures that can be used to

protect RSA implementation of OpenSSL from

SBPA attack. The simplest and most effective one

involves sensitive processes to disable the access to

the BTB unit. Nevertheless, this technique requires a

new generation of processors. Another proposed

technique is to remove all conditional branches from

the sensitive code, and replace them with indirect

branches that read the target address from the

registers. Indeed, an indirect branch always causes a

jump to the address read from the register. As a

result, there is no prediction and thus the BTB will

not be modified. Indirect branches are available in

most architectures, including x86, IA64, MIPS and

ARM, making the technique widely applicable [9].

6. Conclusion

Branch prediction is a recent method used to perform

a side channel attack. In this paper a method on how

branch prediction has been used to attack the

OpenSSL implementation of RSA is shown. Branch

prediction task is to predict where the next instruction

is in the instruction stream. It provides two items: the

direction of the branch, if it is taken or not and the

target of the branch.

By analyzing the sequence of instructions that are

executed by the RSA process, all the bits of the

private key were successfully extracted. This attack

was made on the modular exponentiation function of

the RSA implementation which will give crucial

information about the key. This kind of attack is

possible when a spy process is set to monitor a victim

process branching events and from that the

information is extracted.

This attack was performed successfully on Intel

Itanium processer and with certain limitation about

the data that could be extracted on an Intel-Core

based processor. As a conclusion, the later versions

of OpenSSL correct this defect in the modular

exponentiation by different techniques.

References

[1] Stinson, Douglas R. Cryptography: Theory and

Practice. 3
rd

 Ed. Chapman & Hall/CRC, New York,

2006.

[2] Gaddam, B. P., Mahat, P. R., and Namireddy, H.

R. Branch Prediction and Wrong Path Event Early

Detection.

http://puspamahat.com/Documents/SOBP.doc

[3] Aciicmez, O., Seifert, J. P., and Koc, C. K.

Predicting Secret Keys via Branch Prediction.

http://puspamahat.com/Documents/SOBP.doc

Cryptology ePrint Archive, Report 2006/288,2006.

http://eprint.iacr.org

[4] Bidgoli, H. Handbook of Information Security.

Vol. 3. John Wiley and Sons, California State

University, 2006.

[5] Aciicmez, O., Koc, C. K., and Seifert, J. P. On the

Power of Simple Branch Prediction. Cryptology

ePrint Archive, Report 2006/351, 2006.

http://eprint.iacr.org/.

[6] http://www.openssl.org/docs/

[7] Van Tilborg, H. Encyclopedia of cryptography

and security. Springer, 2005.

[8] http://perfmon2.sourceforge.net/

[9] Schmidt, N., and Sliwowski, M. Survey of

Attempts at Cracking RSA Encryption. Department

ofComputer Science.The College of William &

Mary. {fnjschm, marcing}@cs.wm.edu

http://eprint.iacr.org/
http://www.openssl.org/docs/
http://perfmon2.sourceforge.net/
mailto:marcing%7d@cs.wm.edu

Appendix A: Sample of pfmon Output

$ pfmon --long-smpl-periods=1 --smpl-entries=100 -e BRANCH_EVENT --

irange=0x4000000000000980-0x4000000000000990 -- ./loop 10

entry 0 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec72853e2 OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 1 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec728747a OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 2 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7287b67 OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 3 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7288259 OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 4 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec72888eb OVFL:4 LAST_VAL:1

SET:0 IIP:0x4000000000000890 PMD8 : 0x400000000000097f b=1 mp=1 bru=1 b1=1

valid=y

 source addr=0x4000000000000980

 taken=n prediction=FE failure

entry 5 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7288f6f OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 6 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec72895e7 OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 7 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec7289c5f OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000008c1 PMD8 : 0x4000000000000979 b=1 mp=0 bru=0 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=success

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 8 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec728a2d0 OVFL:4 LAST_VAL:1

SET:0 IIP:0x40000000000009f0 PMD8 : 0x400000000000097b b=1 mp=1 bru=1 b1=1

valid=y

 source addr=0x4000000000000982

 taken=y prediction=FE failure

 PMD9 : 0x40000000000009b2 b=0 mp=1 bru=0 b1=0 valid=y

 target addr=0x40000000000009b0

entry 9 PID:32006 TID:32006 CPU:2 STAMP:0x114d55ec728a99f OVFL:4 LAST_VAL:1

SET:0 IIP:0x4000000000000a10 PMD8 : 0x400000000000097f b=1 mp=1 bru=1 b1=1

valid=y

 source addr=0x4000000000000980

 taken=n prediction=FE failure

Appendix B:

int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
 const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
 {
 .…….
 ……..

 start=1; /* This is used to avoid multiplication etc
 * when there is only the value '1' in the
 * buffer. */
 wvalue=0; /* The 'value' of the window */
 wstart=bits-1; /* The top bit of the window */
 wend=0; /* The bottom bit of the window */

 if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err;
 for (;;)
 {
 if (BN_is_bit_set(p,wstart) == 0)
 {
 if (!start)
 {
 if (!BN_mod_mul_montgomery(r,r,r,mont,ctx))
 goto err;
 }
 if (wstart == 0) break;
 wstart--;
 continue;
 }

/* We now have wstart on a 'set' bit, we now need to work out how bit a window to do. To do
this we need to scan forward until the last set bit before the end of the window */

 j=wstart;
 wvalue=1;
 wend=0;
 for (i=1; i<window; i++)
 {
 if (wstart-i < 0) break;
 if (BN_is_bit_set(p,wstart-i))
 {
 wvalue<<=(i-wend);
 wvalue|=1;
 wend=i;
 }
 }
 …….
 …….
err:
 if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont);
 BN_CTX_end(ctx);
 bn_check_top(rr);
 return(ret);
 }

