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ABSTRACT 

This paper presents dictionary based attacks in addition to their 
corresponding MD5 and SHA1 implementation on GPU and 
CPU. All computational time testing was programmed in CUDA-
C language. Kaapi Adaptive Standard Template Library (KASTL) 
was utilized to aid in performing parallel CPU operations 
complimenting today’s widely spread systems with multi-
processors or multi-core processors. Comprehensive analysis of 
performed dictionary attacks are detailed throughout this paper 
with performance results highlighted towards the conclusion. 
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1. INTRODUCTION 
In computer security, a dictionary attack is a technique used by 
cryptanalysts to break the security of the system by attempting to 
retrieve its decryption passphrase by searching all likely 
possibilities. Operating systems store passwords in their message 
digest form, computed from one way functions. In cryptography, 
one-way functions are procedures that are easy to compute for a 
given input, yet complex to inverse in polynomial time. A hash 
function takes an input and produces a string of fixed size, often 
called message digest. Operating systems store hash values of 
passwords and compare them with message digests of user-
entered keys.  
Cryptographic hash functions and their respective implementation 
in dictionary-based attacks on graphic processors are receiving 
considerable attention worldwide. Realtime modeling of 
parallelized cryptographic hash functions has expedite 
performance expectations detected on theoretical modeling. It was 
found that cryptographic hash functions perform much faster and 
more efficiently on GPUs than they do on CPUs. Because GPUs 
allow for parallel thread execution, parallelized hash functions are 
the natural choice for fastest dictionary attack results; especially 
when dealing with extremely long messages. 
This paper takes a deeper look at dictionary based attack on MD5 
and SHA1 based passwords, and discusses their implementation 
on CPU and GPU, analyzing executions and comparing results. 
Objectives: 

• Detect any factors that influence the performance of 
dictionary based attacks on cryptographic hash 
functions on multicore processors and multi-processor 
systems. 

• Determine the feasibility of performing dictionary based 
attacks on hash values on GPU compared to CPU. 

• Explore the acceptability of the new role that GPUs take 
in today’s computerized systems 

2. DICTIONARY ATTACKS BASED ON 
MD5 AND SHA1 
2.1 DICTIONARY ATTACKS 
Dictionary based attacked are basically using brute force 
technique to systematically go through a list of words from a 
specific wordlist of choice. These words list can be based on 
words from the dictionary or commonly known used password list 
that are available all over the internet. The success in a dictionary 
based attacks depends on the wordlist used; that is the amount of 
possibilities to go through. Today, most webpages and software’s 
store the user passwords hashed using one of the many available 
one-way hash functions. 
In our report we focused on MD5 and SHA1 hashed passwords, as 
they are from the top commonly used hashed functions. We 
tackled this project by using a wordlist that was available online 
with the most commonly used words. The idea is to hash each 
word in the wordlist and then to compare to the hash of the word 
that e want to crack.  

2.2 Parallelization of Dictionary Attacks 
Recovery of hash digests of passwords using dictionary words is 
ideal for parallel computing. In essence the dictionary based 
attacked are parallel in nature due to ability to perform each 
operation independently without any dependencies between them., 
and the fact that modern iterated hash algorithms require 
sufficiently long time to compute on single core processor 
especially for long messages, extension of dictionary based attack 
using hash algorithms to support parallel computing will 
significantly increase performance of a cracking the hashed 
password.  
The parallelization on the CPU is a bit more complex then 
parallelization on GPU.  CPU are made more suited for parallel 
task situations where processes run parallel but require 
communication and possibly have dependencies between them, 
where as GPU are developed to handle parallel data processing, 
due to the nature of it usage, that is handle graphics, where units 
of graphics operations are done in parallel with hardly any 
dependencies.   
2.3 MD5 
Based on the earlier hash function MD4, MD5 was designed by 
Ron Rivest; last in succession of cryptographic hash functions. It 
became an internet standard and has been integrated in a variety 
of security applications such as SSL/TLS and IPSec.  
MD5 uses Merkle-Damgard paradigm such that the security of the 
hash function reduces to the security of its relevant compression 
function.  
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Throughout this paper wherever required we would refer to the 
systems illustrated in Table 1 as System 1, System 2 and idkoiff. 

4. DICTIONARY ATTACKS ON CPUs 
4.1 KASTL 
KASTL (Kaapi Adaptive Standard Template Library) is a tool 
that was developed by the INRIA lab that runs on top of KAAPI. 
It allows for the parallelization of STL algorithms based on work 
stealing implementation of KAAPI. In general it allows 
parallelizing certain tasks, especially loops that are processed on 
CPU with multi-cores. There are other tools in the market that 
allow us to parallelize tasks such as Cilk++ and Intel Thread 
Building Blocks (TBB). We had several issues trying to get 
Cilk++ to work on our systems, and due to time restrictions, we 
decided to perform our parallelization with KASTL as we are also 
been able to get in touch with the developer if any issues were 
raised .  

4.2 Implementation 
4.2.1 MD5 
To enable us to parallelize the MD5 implementation we had to 
first modify the code we found on the web that was developed by 
Mario Juric[4]. The code has two mode of operations a search and 
just a general overall hashing function. We were interested in the 
search, but it was only implemented for GPU. Our first task was 
to create a function that would allow us to do the search using the 
CPU processing in one run of the program, and also keeping in 
mind that we would like to be able to parallelize it too with 
KASTL. The implementation of MD5 CPU processing was 
straightforward but we had to a lot of issues with getting KASTL 
implementation done properly. We took the assistance of MR. 
Traore whose PHD thesis is based on KASTL. 
The STL algorithm that we were trying to parallelize was 
std::transform, and so the loop for the hash was modified to 
make use of the transform function. Once that was achieved, we 
converted the std::transform function to the 
kastl::transform which takes in the same concept but with 
slight modification. We’re basically giving it extra parameters 
indicating where the output result should be stored. 

4.2.2 SHA1 
For the SHA1 hash implementation we used the code that was 
developed by Mr. Vilkeliskis[5]. The code had the SHA1 
implementation for the CPU straightforward, so, we plugged it in 
the program we used for MD5, where for each loop through the 
wordlist, instead of hashing it with the MD5, we hashed it with 
SHA1, and the same we did for the word that we wanted to crack. 
The kastl::transform function stayed the same as for MD5, so that 
helped speed up the implementation for SHA1.  

4.3 Experiments 
The experiments were done on the three systems mentioned in 
table1 as per the experimentation procedures mentioned in section 
3 of this report. Each systems total core was exhausted in each test 
performed, to make sure that we parallelize the operation as much 
as possible. Figure 3 and Figure 4 show the performance of the 
systems upon executing MD5 and SHA1 algorithms on each. 

 
Figure 3 MD5 Systems Performance 
 

 
Figure 4 SHA1 System Performance 
We can clearly see that performance on idkoiff was much higher 
then the performance of the other two systems, as idkoiff has a 
total of 16 cores available for usage. We also noticed as was 
expected from reports read that dictionary attacks on SHA1 was 
slower than MD5.  We can definitely say that the increase in core 
of the process almost cut the processing time by half. 

5. PARALLEL DICTIONARY ATTACKS 
ON GPU 
5.1 CUDA 
Graphic Processors are difficult to program for general-purpose 
uses. Programmers can either learn graphics APIs or convert their 
applications to use graphics pipeline operations, or they can use 
stream programming abstractions on GPUs. NVIDIA released a 
software development kit named Compute Unified Device 
Architecture (CUDA) for its graphics hardware in February 2007. 
CUDA allows programmers to access the computing power of 
GPU directly. Programmers use C for CUDA to develop programs 
for execution on GPUs. CUDA’s most utilized benefits is its use 
of shared memory, a fast region that can be shared amongst 
threads.  

5.2 Implementation 
5.2.1 MD5 
The code used for the GPU was mainly taken also from the same 
developer who we used the MD5 CPU implementation from Mr.  
Juric[7]. The GPU implementation he had at a first glance seem to 
be working just as we wanted. There was slight modification done 
on the code, mainly separating the CPU and GPU operations so 
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that they can be run independently, and also simplify the running 
procedure without the extra parameters that the developer 
included for benchmarking and extra search feature. In the initial 
stages, a lot of work was done trying to tweak the shared memory, 
and the numbers of threads per blocks that is assigned for each 
process to see if it would increase the performance of the GPU 
operation.  

5.2.2 SHA1 
The code used for the GPU implementation of SHA1 was 
developed by Mr. Vilkeliskis. The implementation was done for 
single hashing through GPU, without taking full effect of GPU 
capabilities. He did have a benchmarking technique where he goes 
through a list of arbitrary values to check the performance. These 
values are not passed from __global__ function but rather, are 
looped from within the device.  This technique wouldn’t have 
been useful for our implementation as it would mean for each 
word we have to copy it individually to the device and then run it, 
and also doesn’t take full effect GPU parallelism capabilities.   
Our implementation for SHA1 on GPU was then consistent of two 
main tasks, trying to use the MD5 implementation of GPU that is 
copying the words as a batch to the device, and to try and use the 
shared memory that was used in the MD5 implementation. This 
was basically a straightforward implementation from the GPU 
MD5 function with a slight tweaking to enable us to produce 
SHA1 hashes rather than MD5 hashes. The SHA1 implementation 
interface was also adopted to use the same interface as the MD5 
implementation. 

5.3 Experiments 
The experiments in this section were also done on the 3 systems 
mentioned in table1 as per the experimentation procedures 
mentioned in section 3 of this report. We have provided figure for 
both the SHA1 and MD5 dictionary attack times, with and 
without memory consideration. We found out that memory 
operation takes a lot of overhead of the overall GPU processing 
time. It was unexpected to find that even though the idkoiff 
processing time was extremely fast compared to the other 
systems, the memory operation threw off the results once we 
considered the memory operation of copying from and to the 
device. 

 
Figure 5 MD5 GPU without memory operation consideration 

 
Figure 6 MD5 GPU with memory operation consideration 

 
Figure 7 SHA1 GPU without  memory consideration 

 
Figure 8 SHA1 GPU with memory consideration 

6. COMPARATIVE ANALYSIS 
We noticed overall the performance on the GPU were much 
higher than that of CPU. In exception is the idkoiff system where 
even the processing time of each thread was processed extremely 
fast almost 5x faster than the CPU, but with the memory 
consideration it drops it down to around 1.5x faster. Though there 
was a problem with the copy to the GPU memory, as it is very 
slow and time consuming which dropped the GPU performance 
on that system much slower than that of the CPU 16-multicore 
performance. To sum up we added two extra figure showing the 
GPU and CPU multi-core performance on the idkoiff server with 
and without the memory consideration.  
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Figure 9 Idkoiff system CPU and GPU performance without 
GPU memory consideration 
  

 
Figure 10 Idkoiff system CPU and GPU performance with 
GPU memory consideration 

7. CONCLUSION AND PERSPECTIVE 
Finally, we were able to see the difference in performing 
dictionary based attacks on one-way cryptographic hashing 
functions in particular MD5 and SHA1. Overall in both GPU and 
CPU tests cracking MD5 hashed passwords are faster than that of 
SHA1. Also using GPU to crack the hashed password did give a 
kick to the speed, except maybe in Idkoiff system where the 
overhead in memory exchange was a lot. 

It would have been more interesting to been able to include a 
wider range of one-way hashing functions such as SHA256 and 
SHA512 or any of the new hashing functions  that have been 
submitted to the NIST hash function competition such as MD6 or 
Skein in the test that were performed.  
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