
Weaknesses in WEP and WPA

Martin Guest - Antoine Lefebvre

June 17, 2009

1 Introduction

Over the past ten years, the 802.11 standard, better known as Wifi, has become more and more popular.
Therefore, Wi-fi needs a good safety protocol. At the beginning, the WEP was designed to provide a
Wired Equivalent Privacy. Wi-fi had to be as secure as the Ethernet. But flaws of the WEP appeared
quickly. Nowadays, the WEP is sometimes called the Weak Encryption Protocol.

In 2001, Scott R. Fluhrer, Itsik Mantin and Adi Shamir published the first attack against WEP. After
sniffing about 300000 packets in a WEP encrypted network, this attack enables to recover the entire key
used by the acces point (AP). Moreover, only a few computations are required. However, only packets
using a particular set of Initialisation Vectors (a random datum used to cipher each packet) called weak
IVs can be used. And after the attack was published the flaw had been fixed by using ”non-weak” IVs.

During the next years, new classes of IVs were discovered and in 2007 a new attack, PTW, was prat-
icable on every IV. Other weaknesses were also exploited like fake authentification or packets injections.

An urgent need to find a new protocol came. WPA, Wi-fi Protected Access, appeared in 2004. It
was designed to fill all flaws of WEP. Indeed, it resists all attacks known against the WEP: weak keys
exploitation, injection and replay attacks. Moreover, WPA can be implemented on the acual hardware.
Indeed, WPA is a transition between WEP and WPA2. It was designed to bring more security with
the existing equipment. WPA2 is a protocol based on the stream cipher AES. The efficiency of AES is
famous.

In 2004, a person under the pseudonym of KoreK published an attack, called Chopchop, against WEP
capable of deciphering any intercepted packet using a low number of packet injections (proportionnal to
number of decrypted bytes). Moreover, this attack has a low complexity. Therefore the duration of the
attack only depends on the response time of the AP. Another advantage of this attack is that it is working
both on WEP and WPA.

The structure of this paper is as follows: in Section 2, we describe technical details on the WEP
protocol and on Chopchop. We also give some results to show the efficiency of the attack. In Section 3,
we give an overwiew of WPA and known weaknesses - especially concerning Chopchop.

2 Chopchop attack against WEP

2.1 Theory

In order to understand Chopchop attack, we first need to know how WEP works. It is composed of two
parts: on the one hand, CRC-32, a function used to detect errors during transmission, adds 4 bytes to
the cleartext message. On the other hand , the RC4 algorithm generates a keystream used to cipher the
message.

Figure 1: Wep Encryption steps

Each message can be seen as a polynomial P of F2[X]. The CRC checksum represents the remainder
of the division of P by a chosen polynomial (defined by CRC32). That can be computed byte after byte
using a table stocking all remainder of each possible byte (see Fig. 2). Consequently, if we add a byte to
the message we can deduce the value of the new CRC just from the value of the previous CRC and the
value of the additionnal byte. Reciprocally, we can deduce the CRC of a 1-byte troncated message from

1

the value of the previous CRC and the value of the troncated byte. KoreK showed that by guessing one
byte depending on the CRC and the last byte of the cleartext message, we can obtain a 1-Byte troncated
ciphered valid message. That valid message will be accepted by the AP during the error detection. Since
there are 256 possibilities for 1 single byte, we can deduce the last byte of the message by trying all these
256 values and observe the AP’s responses.

crc=0;
for(int i=0; i<N; i++)
{

crc=crc_tab[(crc & 0xff) xor m[i]] xor (crc >> 8);
}
return crc;

Figure 2: CRC algorithm for a message of N bytes 1

2.2 Algorithm of the attack

Imagine we have intercepted the following encrypted message:
M0 M1 ... MN J3 J2 J1 J0

⊕ K0 K1 ... KN KN+1 KN+2 KN+3 KN+4

= R0 R1 ... RN RN+1 RN+2 RN+3 RN+4

where [J0||J1||J2||J3] = CRC(M0||...||MN)

We want to send a ciphered message S such as:
M0 M1 ... MN − 1 I3 I2 I1 I0

⊕ K0 K1 ... KN−1 KN KN+1 KN+2 KN+3

= S0 S1 ... SN−1 SN SN+1 SN+2 SN+3

where [I0||I1||I2||I3] = CRC(M0||...||MN−1)

During the computation of the CRC, at the (N+1)-th step of the loop, we have the following rela-
tions:

CRC(M0...MN) = CRC Tab[(CRC(M0...MN−1) & 0xff) ⊕ MN] ⊕ (CRC(M0...MN−1) >> 8)

J0||J1||J2||J3 = CRC Tab[I3 ⊕ MN] ⊕ 0||I0||I1||I2

Let X be I3 ⊕ MN and CX = CRC Tab[X]. We can deduce all the truncated ciphered message
depending on X:

∀ i = 0...N − 1, Si = Ri

SN = I3 ⊕ KN = I3 ⊕ MN ⊕ MN ⊕ KN = X ⊕ RN

SN+1 = I2 ⊕ KN+1 = I2 ⊕ J3 ⊕ RN+1 = CX3 ⊕ RN+1

SN+2 = CX2 ⊕ RN+2

SN+3 = CX1 ⊕ RN+3

Guessing X, we can deduce S. The principle of the attack is as follows: we send S(X = 0) to the
AP. If the AP detects an error, we try another value of X. We go on until there is no detected error.

X = 0
do {

send S(X) to the AP ;
X += 1 ;

}

1CRC32 is sometimes implemented initialising crc = 0xffffffff and returning crc ⊕ 0xffffffff but it changes only
a little our following equations.

2

while (there is an error)

At the end, we have guessed the value of X. Thanks to the previous equations, we also have KN+1.

KN+1 = J0 ⊕ RN+1 = CX0 ⊕ RN+1

We can do N-3 truncations on the same packet to deduce N-3 bytes of the key. It is more than we need.
On a wireless network, mainly ARP and IP packets circulate. The first 8 bytes of these packets are
known.

0xAAAA030000000800 for IP
0xAAAA030000000806 for ARP

2.3 Results

We have simulated the attack to check the number of packets we need to find X and to check the
complexity. In average, we need 128*m packets to find the last m bytes of one packet.

For each byte to guess, X is uniformly distributed in [0, 255]. According to the Central Limit Theorem,
the number of packet to send to guess 64 bytes X follows a normal distribution and its average is 64∗128.
We have obtained a gaussian distribution centered in 64 ∗ 128 which is coherent (see Figure 3).

To decrypt one N bytes-packet, the AP deciphers N − 4 packets, of size S = 4 ... N − 1. Deciphering
takes a linear time functions of S. Therefore, plotting the time functions of the length N of a message,
we obtained a parabola (see Figure 4).

Figure 3: Distribution of the number of packets
sended for one 64 bytes message attacked by Chop-
chop

Figure 4: Chopchop time (s) vs length of one message
(byte)

2.4 Application of the attack on a real network

This attack is useful because all known attacks against WEP need to see a lot of ARP packets. Thanks
to this attack, it is not necessary to have an important traffic with a lot ARP requests. We just need to
do a fake authentification which only requires to know the MAC address of a client. Then, we use a keep
alive packet 2 to launch Chopchop and discover the keystream. We inject several ARP requests to have
enough ARP responses. It generates a lot of traffic (see Figure 5). Finally, we use known attacks such as
PTW to break RC4 and find the key.

We have launched the Chopchop attack with aircrak (see Appendix 1). We found one byte every 3
seconds in average. Then, we discovered a WEP key with PTW (see Appendix 2).

In addition to recovering the key, the attack enables to decrypt any packet at any time without the
key.

2Any packet can be used but the fake authentification creates these packets at least

3

0

5000

10000

15000

20000

25000

30000

35000

IVs/min

Low(Google…) High(Download at 300ko/s)
Generated by injection

Figure 5: IVs obtained per minutes in different conditions

3 WPA, a more secure protocol?

3.1 Introduction to WPA

WPA was introduced in 2004 with several countermeasures. Because every device could not handle
every point of the norm, different modes were created to match with existing hardware. Concerning
authentification, there is two possibilites: the standard one with a RADIUS authentification server (quite
expensive and difficult to set up) often called Enterprise Mode and a simple mode with a Pre-Shared Key
(PSK). Concerning the data encryption there is also two possibilities: TKIP (Temporal Key Integrity
Protocol) that uses key mixing and RC4 ciphering, or CCMP that is a encryption based on AES. We will
describe the PSK-TKIP mode. It is used in personal and small firms networks.

Figure 6: Different Modes of WPA

Authentification In opposition to WEP, there is an authentification to open one WPA session.
At the end of the authentification, the client received keys, the PTK and the TMK which will be used
during one session. It improves the security of a Wi-Fi. Indeed, every attack based on a Wi-fi sniffing or
on a packet forgery only works during one session.

4

Figure 7: WPA Encryption

Key Mixing The key mixing builds the Per-Paquet-Key (PPK). It is composed of two phases. In
the input of both phases, there is the packet IV, which includes the TSC, TKIP Sequence Counter. This
TSC is incremented when a packet is received and valid. A packet with a too low TSC will be discarded
by the AP or the client. Thus, the PPK will be different for every packet. As a result, all known attacks
against RC4 cannot be used. They all require several packets with the same key.

MIC and CRC CRC32 is used as in the WEP. To improve the security, the Message Integrity Code,
called Michael, was added. It enables to check if the sender and the receiver have been authentificated.
It also check the priority channel. Indeed there are 8 Quality of Service channels which enables to route
differently different kind of packets.

In opposition to the CRC, the MIC algorithm is not linear: it uses a Feistel function, B (see algo-
rithm2), with a bits swap function, XSWAP (see algorithm3).

Although it is composed of 64 bits, it was designed to have 220 possible values. In order to prevent a
brute-force attack, a countermeasure was set up. If the AP or the client detects two corrupted MIC in
one minute, a new authentification happens. A brute force attack in this way takes 220 minutes.

However, MIC was designed to be computed by Wi-fi cards and APs3. Therefore, it requires few
computations. Thus, defense against packets forgery is weakened. Indeed, MIC is not a one-way function
and the computation of his inverse is as fast as the MIC (see Appendix 3).

Algorithm1: Michael(K, (m0, ..., mn−1))

Input: key K and message m

Output: MIC value (L,R)

(L, R) = (Klow, Khigh)

for i = 0 .. n− 1

do {
L = L ⊕ mi

(L, R) = B(L, R)

}
return (L, R)

Algorithm2: B(L, R)

Input: (L,R)

Output: (L,R)

R = R ⊕ (L << 17)

L = L + R mod 232

R = R ⊕ XSWAP (L)

L = L + R mod 232

R = R ⊕ (L << 3)

L = L + R mod 232

R = R ⊕ (L >> 2)

L = L + R mod 232

return(L, R)

Algorithm3:

XSWAP (ABCD)

Input: 4 bytes A,B,C,D

Output: 4 swapped bytes

return BADC

3The algorithm uses few cycles per bytes

5

3.2 Chopchop attack against WPA

In spite of all countermeasures, a chopchop-like attack can be set up against WPA.

While we send a packet with a false
CRC, the AP consider the message has
not been transmitted successfully. The
MIC verification is not executed. Thus,
we can run chopchop. We receive a ci-
phered message. When we guess the
byte X and send a CRC valid message,
the MIC verification fails and the AP
sends a MIC failure report frame. We
have to wait 60 seconds to guess the
second byte of the ciphered message to
avoid a new authentification. We can
guess one byte of the keystream per minute.

However, when we send a packet, if
the TSC is too low, the packet will be
discarded by the AP. To avoid this, we
have to run the attack on another Qual-
ity of Service channel. Indeed, every
channel has his own TSC. A great part
of the traffic is circulating on one channel. Therefore, the TSC of the ciphered message we have inter-
cepted will be high enough. The QoS control field is in the MAC header which is not ciphered.

Moreover, to run this attack, we would have to increment the TSC counter to send each message.
However, the TSC is checked only when a packet has been received with a correct CRC and a correct
MIC. Therefore, we can do all the attack on one channel.

We now have one keystream. This keystream has been built with one TSC and the AP adress as the
sender address. We inverse the Michael algorithm to obtain the MIC key. We will be able to build as
many correct MIC values as we want to. We can send one packet on every QoS channel, that is to say 7
packets, to the client and only to it.

3.3 Results

We have implemented a simulation to run Chopchop against WPA given an ideal connection. We have
checked the speed of one byte guessed by minute. Indeed, all operations are negliglible compared to
the 60-seconds timeout. Even though sending and receiving packets can be slower in a real situation, it
remains negligible. Indeed, in our previous results with aircrack on WEP, we decrypted one byte in 3
seconds in average (see Appendix 1). At the end, we also invert the Michael algorithm whose time is also
small compared to one minute (see Appendix 3).

This countermeasure makes the efficiency of chopchop decreases. Indeed, in our previous results with
WEP, we decrypted 15000 bytes in 250 seconds (see Figure 4). With WPA, we have deciphered only 4
bytes in this time.

3.4 Other weaknesses

The key mixing also has its weaknesses (see Figure 8). Given two Per-Packet-Keys with IVs with the
same four last bytes, the key mixing can be inverted to have the PTK which will be used during one
session. To find two corrects PPKs (104 bits) with good IVs, it takes 2105 operations. The inversion only
takes 238 operations.

With the PSK-TKIP mode, the initial key is a passphrase that is to say an ASCII chain. Therefore,
generally, people use the most frequent caracter and even existing words. Consequently, WPA-passphrase
are prone to dictionnary attacks. This kind of attack has already been implemented in aircrack software.

6

Figure 8: From PPK to the Keystream

4 Conclusion

We knew that WEP is totally broken. We can find the key easily and Chopchop enables to do it even
when there is little traffic. Moreover, with Chopchop, we can decipher any packets without the key.

WPA is much more stronger. But the Chopchop attack is still possible. We can guess any keystreams
and decipher any packets. However, it takes more time than with WEP. The attack has two additional
drawbacks. On the one hand, the guessed keystream can be used only in the client direction. On the
other hand, the keystream corresponds to one TSC, that is to say one Per-Paquet-Key which is not
enough to break RC4. Thus, the main strength of TKIP is using different keys for each packet. It makes
disappear all known attacks against RC4. Indeed, these attacks needs a lot of keystreams corresponding
to the same key. Therefore, no attack on RC4 to find PPKs exists yet. Thus, the existing attack to go
from the PPK to the PTK cannot be used.

However, sending 7 custom packets can be very dangerous: corrupted ARP packets can be send to
do traffic hijacking.

Therefore, using the CCMP-AES mode instead of the PSK-TKIP mode enables to counter the chop-
chop attack. The CCMP-AES mode is imposed in WPA2. This protocol uses an AES encryption which
is not prone to attacks.

References

[1] http://sid.rstack.org/blog/index.php/304-tkip-comment-ca-marche, Cedric Blancher, 7 November
2008

[2] M. Beck & E. Tews, Practical attacks against WEP and WPA, 8 November 2008

[3] http://sid.rstack.org/blog/index.php/305-des-fameuses-faiblesses-de-tkip, Cedric Blancher, 9 Novem-
ber 2008

[4] http://sid.rstack.org/blog/index.php/330-wpa-psktkip, Cedric Blancher, April 2009

[5] Paper IV: Weaknesses In The Temporal Key Hash of WPA, V. Moen & H, Raddum & K. J. Hole,
2006

[6] Security Analysis of Michael: The IEEE 802.11i Message Integrity Code & J. Huang & J. Seberry &
W. Susilo & M. Bunder

[7] Analysis of Wi-fi Security Protocols and Authentification Delay, D. MKubulo, 2007

[8] IEEE Std 802.11-2007, 2007

[9] Sécurité Wi-fi, G. Pujolle, 2004

7

5 Appendices

5.1 Results with aircrack and Chopchop against WEP

aireplay-ng -4 -a 00:14:69:04:ED:C1 -h 00:21:5C:2D:ED:41 mon0
For information, no action required: Using gettimeofday() instead of /dev/rtc
The interface MAC (00:C0:CA:1A:07:25) doesn’t match the specified MAC (-h).

ifconfig mon0 hw ether 00:21:5C:2D:ED:41
Read 37 packets...

Size: 116, FromDS: 1, ToDS: 0 (WEP)

BSSID = 00:14:69:04:ED:C1
Dest. MAC = 01:00:5E:00:00:05
Source MAC = 00:0E:39:AF:54:80

0x0000: 0842 0000 0100 5e00 0005 0014 6904 edc1 .B....^.....i...
0x0010: 000e 39af 5480 e0b6 7876 3800 6aed c7df ..9.T...xv8.j...
0x0020: 33f0 0a6c cd82 def7 f75f e00a 8b7e 88b3 3..l....._...~..
0x0030: 67a2 98c9 46f9 4e12 a5ac 3a6a 2611 9d31 g...F.N...:j&..1
0x0040: 7d13 8f60 a5f9 d56e 7b6f a3a1 d44d 0a19 }..‘...n{o...M..
0x0050: 2d04 f5d7 f4b2 2cb7 f8e3 a16c 71de 3e3f -.....,....lq.>?
0x0060: d66e bfd0 9e0e 418e f5cf bbbf 2df6 75d1 .n....A.....-.u.
0x0070: ed9e 2ac5 ..*.

Use this packet ? y

Saving chosen packet in replay_src-0617-070148.cap

Offset 115 (0% done) | xor = EC | pt = 29 | 86 frames written in 1857ms
Offset 114 (1% done) | xor = 8C | pt = A6 | 45 frames written in 958ms
Offset 113 (2% done) | xor = 51 | pt = CF | 64 frames written in 1372ms
Offset 112 (3% done) | xor = 1A | pt = F7 | 133 frames written in 2866ms
Offset 111 (4% done) | xor = D0 | pt = 01 | 68 frames written in 1449ms
Offset 110 (6% done) | xor = 75 | pt = 00 | 239 frames written in 5124ms
Offset 109 (7% done) | xor = F6 | pt = 00 | 178 frames written in 3853ms
Offset 108 (8% done) | xor = 2D | pt = 00 | 98 frames written in 2006ms
Offset 107 (9% done) | xor = BB | pt = 04 | 28 frames written in 569ms
Offset 106 (10% done) | xor = BB | pt = 00 | 14 frames written in 274ms
Offset 105 (12% done) | xor = CE | pt = 01 | 149 frames written in 3197ms
Offset 104 (13% done) | xor = F5 | pt = 00 | 256 frames written in 5510ms
Offset 103 (14% done) | xor = 8D | pt = 03 | 191 frames written in 4057ms
Offset 102 (15% done) | xor = 41 | pt = 00 | 172 frames written in 3647ms
Offset 101 (17% done) | xor = F8 | pt = F6 | 142 frames written in 3066ms
Offset 100 (18% done) | xor = 61 | pt = FF | 126 frames written in 2665ms
Offset 99 (19% done) | xor = D0 | pt = 00 | 37 frames written in 810ms
Offset 98 (20% done) | xor = BF | pt = 00 | 179 frames written in 3894ms
Offset 97 (21% done) | xor = 6E | pt = 00 | 51 frames written in 1137ms
Offset 96 (23% done) | xor = D6 | pt = 00 | 136 frames written in 2788ms
Offset 95 (24% done) | xor = 01 | pt = 3E | 219 frames written in 4715ms
Offset 94 (25% done) | xor = C0 | pt = FE | 185 frames written in 3950ms
Offset 93 (26% done) | xor = 86 | pt = 58 | 93 frames written in 1936ms
Offset 92 (28% done) | xor = F0 | pt = 81 | 480 frames written in 10233ms
Offset 91 (29% done) | xor = 44 | pt = 28 | 30 frames written in 622ms
Offset 90 (30% done) | xor = A1 | pt = 00 | 22 frames written in 450ms
Offset 89 (31% done) | xor = E3 | pt = 00 | 17 frames written in 381ms
Offset 88 (32% done) | xor = F8 | pt = 00 | 236 frames written in 5060ms

8

Offset 87 (34% done) | xor = B6 | pt = 01 | 30 frames written in 634ms
Offset 86 (35% done) | xor = 3E | pt = 12 | 74 frames written in 1588ms
Offset 85 (36% done) | xor = B8 | pt = 0A | 98 frames written in 2116ms
Offset 84 (37% done) | xor = F4 | pt = 00 | 39 frames written in 863ms
Offset 83 (39% done) | xor = 17 | pt = C0 | 128 frames written in 2804ms
Offset 82 (40% done) | xor = 0A | pt = FF | 185 frames written in 3998ms
Offset 81 (41% done) | xor = FB | pt = FF | 53 frames written in 1158ms
Offset 80 (42% done) | xor = D2 | pt = FF | 151 frames written in 3295ms
Offset 79 (43% done) | xor = 19 | pt = 00 | 66 frames written in 1449ms
Offset 78 (45% done) | xor = 0A | pt = 00 | 79 frames written in 1730ms
Offset 77 (46% done) | xor = 4D | pt = 00 | 174 frames written in 3698ms
Offset 76 (47% done) | xor = D4 | pt = 00 | 256 frames written in 5613ms
Offset 75 (48% done) | xor = A1 | pt = 00 | 62 frames written in 1330ms
Offset 74 (50% done) | xor = A3 | pt = 00 | 78 frames written in 1625ms
Offset 73 (51% done) | xor = 6F | pt = 00 | 255 frames written in 5539ms
Offset 72 (52% done) | xor = 7B | pt = 00 | 166 frames written in 3590ms
Offset 71 (53% done) | xor = 6E | pt = 00 | 173 frames written in 3705ms
Offset 70 (54% done) | xor = D5 | pt = 00 | 183 frames written in 3988ms
Offset 69 (56% done) | xor = 37 | pt = CE | 45 frames written in 987ms
Offset 68 (57% done) | xor = C2 | pt = 67 | 7 frames written in 147ms
Offset 67 (58% done) | xor = 60 | pt = 00 | 99 frames written in 2035ms
Offset 66 (59% done) | xor = 8F | pt = 00 | 57 frames written in 1224ms
Offset 65 (60% done) | xor = 4B | pt = 58 | 246 frames written in 5392ms
Offset 64 (62% done) | xor = FC | pt = 81 | 94 frames written in 2010ms
Offset 63 (63% done) | xor = F9 | pt = C8 | 240 frames written in 4997ms
Offset 62 (64% done) | xor = 9C | pt = 01 | 150 frames written in 3169ms
Offset 61 (65% done) | xor = 49 | pt = 58 | 214 frames written in 4495ms
Offset 60 (67% done) | xor = A7 | pt = 81 | 163 frames written in 3492ms
Offset 59 (68% done) | xor = 46 | pt = 2C | 212 frames written in 4556ms
Offset 58 (69% done) | xor = 3A | pt = 00 | 178 frames written in 3783ms
Offset 57 (70% done) | xor = AD | pt = 01 | 21 frames written in 434ms
Offset 56 (71% done) | xor = A7 | pt = 02 | 50 frames written in 1085ms
Offset 55 (73% done) | xor = 17 | pt = 05 | 216 frames written in 4700ms
Offset 54 (74% done) | xor = 4E | pt = 00 | 211 frames written in 4512ms
Offset 53 (75% done) | xor = F9 | pt = 00 | 91 frames written in 1973ms
Offset 52 (76% done) | xor = A6 | pt = E0 | 121 frames written in 2653ms
Offset 51 (78% done) | xor = F7 | pt = 3E | 16 frames written in 336ms
Offset 50 (79% done) | xor = 66 | pt = FE | 20 frames written in 422ms
Offset 49 (80% done) | xor = FA | pt = 58 | 74 frames written in 1548ms
Offset 48 (81% done) | xor = E6 | pt = 81 | 63 frames written in 1334ms
Offset 47 (82% done) | xor = 5E | pt = ED | 20 frames written in 438ms
Offset 46 (84% done) | xor = C6 | pt = 4E | 56 frames written in 1183ms
Offset 45 (85% done) | xor = 27 | pt = 59 | 138 frames written in 2903ms
Offset 44 (86% done) | xor = 8A | pt = 01 | 62 frames written in 1355ms
Offset 43 (87% done) | xor = 0A | pt = 00 | 190 frames written in 4090ms
Offset 42 (89% done) | xor = E0 | pt = 00 | 242 frames written in 5273ms
Offset 41 (90% done) | xor = 4F | pt = 10 | 199 frames written in 4295ms
Offset 40 (91% done) | xor = FD | pt = 0A | 21 frames written in 446ms
Offset 39 (92% done) | xor = BB | pt = 4C | 113 frames written in 2448ms
Offset 38 (93% done) | xor = DE | pt = 00 | 229 frames written in 4929ms
Offset 37 (95% done) | xor = 42 | pt = C0 | 233 frames written in 4974ms
Offset 36 (96% done) | xor = 88 | pt = 45 | 18 frames written in 377ms
Offset 35 (97% done) | xor = 6C | pt = 00 | 229 frames written in 4930ms
Offset 34 (98% done) | xor = 02 | pt = 08 | 147 frames written in 3073ms

Saving plaintext in replay_dec-0617-070532.cap
Saving keystream in replay_dec-0617-070532.xor

9

Completed in 218s (0.36 bytes/s)

5.2 Results with PTW after Chopchop

Starting PTW attack with 10284 ivs.

Aircrack-ng 1.0 rc2 r1385

[00:00:56] Tested 793 keys (got 30682 IVs)

KB depth byte(vote)
0 0/ 2 73(47872) 1E(40960) B0(39168) 43(37632) 6D(37632) 8F(37120) 08(36608) EA(36608) 13(36096) EB(35840) FA(35840) 8B(35584)
1 5/ 1 51(36352) 20(35840) FD(35840) 10(35584) AD(35584) 39(35328) 4F(35328) 70(35328) F5(35328) BB(35072) 97(34816) A1(34816)
2 0/ 1 3D(44032) C7(36864) CB(36608) 06(36096) FB(35840) 90(35584) 9B(35584) DB(35584) F6(35584) FD(35328) BF(35072) E5(35072)
3 6/ 18 94(36864) 04(36608) F3(36352) 37(35840) 77(35840) D3(35840) 3D(35584) 63(35584) 7E(35584) 9B(35584) 5C(35328) 84(35072)
4 6/ 4 7A(35840) 94(35584) A4(35584) E4(35584) E5(35584) EB(35584) 1F(35328) 78(35328) 8F(35328) DF(35328) 8A(35072) B1(34816)

KEY FOUND! [73:64:66:67:68:6A:6B:6C:73:64:66:67:68] (ASCII: sdfghjklsdfgh)
Decrypted correctly: 100%

5.3 Inverse of MIC algorithm

Michael−1(V, (m0, ..., mn−1))

Input: mic value V and message m

Output: key (L,R)

(L, R) = (Vlow, Vhigh)

for i = n− 1 .. 0

do {
(L, R) = B(L, R)

L = L ⊕ mi

}
return (L, R)

B−1(L, R)

Input: (L,R)

Output: (L,R)

L = L−R mod 232

R = R ⊕ (L >> 2)

L = L−R mod 232

R = R ⊕ (L << 3)

L = L− mod 232

R = R ⊕ XSWAP (L)

L = L−R mod 232

R = R ⊕ (L << 17)

return(L, R)

10

