
1

Block Ciphers on GPU: Integration and Evaluation of the

improvement
Eisa AL SHAMSI

ENSIMAG, Grenoble (France)

eisa.alshamsi@ensimag.imag.fr

 Mohamed AL ALI
ENSIMAG, Grenoble (France)

mohamed.al-
ali@ensimag.imag.fr

ABSTRACT

 In this report we implement three symmetric block ciphers (AES,

Serpent and Twofish) on CUDA, then measure and analyze the

improvement in performance achieved. The idea is to run the

encryption/decryption function in parallel on a high number of

input blocks using CUDA threads. Then measure the speed up

gained from this implementation and compare between the three

block ciphers.

Keywords

GPU, CUDA, block-ciphers, AES, SERPENT, TWOFISH.

1. INTRODUCTION
Data Security is a very important concept in today’s life.

Governments, corporations and even individuals share the need to

protect sensitive data by using the available algorithms used in

encrypting data. As the size of data increases, rises the need for

more efficient algorithms to encrypt and decrypt data. Block-

ciphers are the most common ciphers used today, especially the

AES. These ciphers have the advantage of being highly

parallelizable if certain operation modes are used.

Recently there have much progress in the field of Graphics

Processing Units (GPUs), and since these units have a highly

parallel structure, many complex algorithms were redesigned to be

more efficient and make use of the parallel structure of the GPU.

A GPU has many microprocessors that can be utilized in solving

complex algorithms with higher performance than a single core

processor. This approach also helps in offloading the calculations

off the general purpose CPU leaving it free to do other tasks.

Programming on GPUs is becoming easier as recently NVidia

have been releasing cards that support the CUDA API that

extends the C language to give it access to the GPU, allowing C

functions to run on the GPU stream processors.

 From combining the need for more efficient cryptographic

approaches and the improvement in the GPU field, rises the idea

of adapting block cipher algorithms to run on GPUs to improve

their performance. In this report we chose three block ciphers

(Rijndael, Serpent and Twofish) and implemented them on the

GPU to monitor the improvement in performance we get in those

algorithms and compare between them.

1.1 Organization of this report
This report is divided into seven sections. The first section is a

brief introduction that gives the motivation behind our work to

implement block ciphers on GPU. Section two introduces the

concept of block ciphers and briefly explains some details about

the ciphers used in the project. The third section describes GPUs

and their programming model. Section four describes the

implementation done during this project. The fifth section shows

the results obtained and the comments on these results. Section

six concludes the work done on the project, and the last section

proposes future work that could be done to improve this project.

2. Block Ciphers Background
Block ciphers are symmetric key ciphers that take a block

consisting of a fixed number of bits (a block) of plain text as an

input, and produce a block of the same number of bits of ciphered

text as output. A secret key is also taken as input to make the

transformation on the input plain text. This is done in the

encryption step. Decryption is the opposite of this process. In

2001 the National Institute of Standards and Technology (NIST)

announced the AES contest of choosing a standard algorithm for

block chippers. The Rijndael algorithm was chosen, and the two

runners up are the Serpent algorithm and the Twofish algorithm.

2.1 AES
AES was adapted from the Rijndael algorithm submitted by the

two Belgian cryptographers Joan Daemen and Vincent Rijmen.

The AES uses a block size of 128 bits, a key of sizes 128, 192 and

256 bits respectively. The number of rounds done on the plain

text to produce the cipher text depends on the key size. There are

four stages done in every round which are: AddRoundKey,

SubBytes, ShiftRows and MixColumns.

The AES starts by expanding the key using the Rijndael key

schedule. Then an initial round of AddRoundKey is done on the

output. Then a number of rounds are done on the plaintext

depending on the key size. The last round is done without the

MixColumns stage [1].

2.2 Serpent
Serpent is a symmetric key block cipher which was designed by

Ross Anderson, Eli Biham and Lars Knudsen. It was ranked the

second after Rijndael. Serpent cipher has input/output block with

size of 128 bits. The idea of the Serpent cipher algorithm it to

process the input plain text through 32 rounds. Each rounds will

adds the 128 bits key, then pass the text into 32 S-boxes, which

has a width of 4 bits. After that, a linear transformation will be

applied so that it will make each output of one round as the inputs

of a number of S-boxes in the next round.

Therefore, any change in the input (plain text) will extremely

change the result (cipher text) of encryption. This is an advantage

of using Serpent cipher which makes not only linear but also

differential attacks much harder [2].

2

2.3 Twofish
The Twofish cipher is a block cipher which uses the same Feistel

Network structure of the DES. The process uses 16 rounds to

transform the plain text into ciphered text. The Twofish cipher

uses pre-computed key-dependant S-boxes and a complex key

schedule. It was designed by Bruce Schneier, John Kelsey, Doug

Whiting, David Wagner, Chris Hall, and Niels Ferguson. It

ranked third in the AES competition [3].

3. GPU Background
In the few past years, the field of Graphical Processing Units has

seen great improvements in term of the processing power,

especially parallel processing. Some GPUs even have more

transistors than a new quad-core CPU would have. Moreover,

GPUs are even progressing much faster. This is due to the fact

that they are designed around intensive computing and highly

parallel computations, which is the case in graphics rendering.

The concept of using the computational power of such GPUs in

applications other than image processing has been an interesting

subject that many engineers around the world are exploring with

promising results in terms of performance. The two major GPU

manufacturers NVidia and AMD have both released development

platforms that allow access to the GPU hardware, CUDA and

CTM respectively. This have opened the doors for many

algorithms to be ported to run on GPUs in search of better

performance than on a CPU, but a major drawback is that each

platform is only compatible with the hardware of its manufacturer.

In this project we are implementing the three block ciphers on

CUDA, which is an extension to the C programming language

that allows C programs to run on the GPU instead of using the

processor. When programming with CUDA, the programmer is

able to launch a very high number of small programs at the same

time, or as we did in this project launch a very high number of

threads in parallel. This allows the programmer to launch the

same kernel of code over different blocks of data in parallel. This

requires sets of data that are independent of each other. Figure 1

below shows the CUDA programming model in terms of the Grid,

Block and Thread hierarchy.

Figure 1. CUDA Grid of Thread Blocks [4]

CUDA imposes some limitations, these include the fact that no

recursive calls are allowed in a CUDA function. In addition, the

bandwidth of the bus and the latency between the CPU and the

GPU could impose a bottleneck in applications.

4. Implementation on GPU
One of the objectives in this project is to implement the three

ciphers (AES, Serpent and TwoFish) on GPU. The languages that

are used to write the encryption algorithm are C and C++ and the

starting source codes were available on the internet. The cipher’s

designers provided their code on their own websites. However,

the codes that are used in this project were taken from a different

source. The AES cipher code was originally written to be run on

CUDA and some modifications was done on it [5]. The Serpent

and Twofish cipher codes were standard C versions of those

ciphers and the conversion was done by us to make them run on

CUDA [6][7]. The reason for using a source code that was created

by other than the cipher designers is the simplicity of the code,

which makes converting from C code into CUDA code much

easier.

There are several steps needed to convert the C code into CUDA

code. The CUDA code is somehow similar to the C code with

considering that the code might be run several times at the same

moment.

4.1 Converting from C code to CUDA code
The two codes used were C codes that implement the Serpent

cipher and the Twofish cipher. They do encryption and decryption

on an input file. The implementation depends on a block size of

128 bits. The size of the input key used was 128 bits. The

decryption functions were not considered as they are similar to the

encryption functions.

First, variables must be declared and allocated a memory space for

them on the graphics card’s global memory. These variables

represent the input plain text, the output cipher text and the

required data for the encryption function which includes the key

schedules expanded from the secret key and any other tables

needed in the encryption. These variables are declared as device

shared variable so they could be shared among threads from the

same block to improve the memory access. The computation of

key schedule does not require heavy computation and is only done

once so it is left to be done on the CPU side. Specifying the size

of the data is very important in order to avoid any unhandled

exceptions.

Then, we need to add an offset variable in the encryption function

that manages the index of the input and output arrays in order to

let every thread to process a block of data that is dependent on the

thread position in the block and the position of the block in the

grid. Moreover, the code needs to be modified to remove any

recursive calls or any calls to functions outside the device domain.

After that, the required data must be copied from the Host

memory to the graphics card memory. Copying data from the CPU

memory to the GPU memory may present a bottleneck. When we

run a bandwidth test that is provided with the CUDA SDK we

notice that the host-to-device bandwidth is 1.3 GB/s and the

device-to-host bandwidth is 0.8 GB/s when compared to the

internal memory bandwidth of the GPU whish is almost 15.5

GB/s.

3

The next step is to specify the Grid and the Blocks size. The Grid

consists of Blocks (it can represented as a matrix of blocks), where

each block can be identified via block ID. Each block consists of

number of threads. The performance of the code can vary by

changing the specification of the Grid the Blocks. In this project,

the CUDA code retrieves the maximum number of threads that

can be invoked in the graphics card. If the input size is less than

the maximum number of threads, then we take them to be half that

size, but if it was greater we give it the maximum value. Then, the

number of blocks can be calculated by dividing the plain text size

(input) by four and then divide the result by the number of

threads. This operation gives a ratio between the input size and

both the number of threads and blocks. Without the ratio some

errors rises and the encryption process fails.

The next step is to call the encryption function with the

parameters that were specified earlier. The idea is that the same

function runs on different blocks with different parts of the input

text in parallel. This is how we get the improvement in

performance. The block size that is sent to every thread is 16 bytes

which is the size of one encryption block.

After the encryption is done, the result of the encryption (cipher-

text) should be copied from the graphics card memory to the CPU

(Host) memory.

It is important to mention that the global variables that declared to

be used inside the C code cannot be used inside the CUDA code.

In addition, it is not possible to call a C functions inside the

CUDA.

4.2 Modes of Operation
Block-ciphers can operate using different modes of operation, but

not all operation modes are parallelizable. The ECB mode and the

counter mode as well as the decryption of the CBC mode could be

parallelized. In this project we are using the ECB mode which is

very highly parallel as each block of data is independent of the

previous or next block.

5. Performance Analysis

5.1 Testing Environment Specifications
The project has been tested under the following specifications:

- Operating System: Microsoft Windows Vista Business

(64-bit).

- CPU Type: Dual Core Intel Wolfdale, 2400 MHz (12 x

200).

o L1 Code/Data Cache: 32 KB per core

o L2 Cache: 3 MB (On-Die, ASC, Full-Speed)

- System Memory: 4 GB (DDR2-667 DDR2 SDRAM)

- Disk Drive: TOSHIBA MK3252GSX ATA Device

(298 GB, IDE)

- Video Adapter: nVIDIA Quadro NVS 320M (HP)

o Memory size: 256 MB

o Bus width: 128-bit

o GPU Clock (Geometric Domain): 169 MHz

o GPU Clock (Shader Domain): 338 MHz

o Bandwidth: 3200 MB/s

5.2 Testing results
After running the three ciphers on the CPU and GPU we can

notice that we always get an increase in the throughput in the

three ciphers for all input sizes. Table 1, table 2 and table 3

represent the performance results we got from testing AES,

Serpent and Twofish respectively. We have included the timings

for the internal computation in the GPU as well as the total time

including the time taken to copy data to and back from the GPU

memory. The timings of all three ciphers on both CPU and GPU

are represented in figure 2, while figure 3 represents the

throughput.

We can notice that the AES cipher on GPU achieved a maximum

speed up of 1.32 when using a file size of 1 MB. At a file size of

32 MB the CPU version is even faster by fragments. The AES

cipher is a fast cipher to begin with.

Table 1. AES 128 encryption performance results

Input

(MB)

Timings (msec) Throughput (Mb/s)

Speed

Up

GPU

CPU

GPU

CPU *Total

time

GPU

time

*Total

time

1 31 26 42 251 190 1.32

4 116 107 135 274 237 1.16

16 466 425 465 274 275 1.00

32 936 858 913 273 280 0.98

64 1883 1728 2319 271 220 1.23

*Total time donates the GPU encryption time with the data

transfer to and from the GPU

The Serpent encryption achieves a maximum speed up of 3.91

which is the highest speed up between the three ciphers. This is

because the Serpent cipher is the slowest when running on CPU

and running it in parallel have given better results than the other

two ciphers which are already fast.

Table 2. Serpent encryption performance results

Input

(MB)

Timings (msec) Throughput (Mb/s)

Speed

Up

GPU

CPU

GPU

CPU *Total

time

GPU

time

*Total

time

1 33 30 107 240.38 74 3.22

4 117 110 460 271.76 69 3.91

16 456 431 1633 280.47 78 3.58

32 939 892 3268 272.51 78 3.48

64 1889 1784 6691 271.01 76 3.54

*Total time donates the GPU encryption time with the data

transfer to and from the GPU

The Twofish cipher achieves better results than the AES, but less

than the improvement of Serpent. The maximum is achieved with

a file size of 16 MB with a speed up of 2.11.

4

Table 3. Twofish encryption performance results

Input

(MB)

Timings (msec) Throughput (Mb/s)

Speed

Up

GPU

CPU

GPU

CPU *Total

time

GPU

time

*Total

time

1 28 23 50 285 160 1.79

4 104 90 201 307 159 1.93

16 390 355 821 328 155 2.11

32 788 707 1655 324 154 2.10

64 1574 1445 3130 325 163 1.99

*Total time donates the GPU encryption time with the data

transfer to and from the GPU

Figure 2. Timing results of AES, Serpent and Twofish on CPU

and GPU

Figure 3. Throughput results of AES, Serpent and Twofish on

CPU and GPU

However, the results obtained do not rise to the expectations we

had. We believe this is due to several issues. First of all, the

graphic card used is an average graphics card (designed for

laptops) with comparison to the processor used and many more

powerful models could give better results, but this was the only

card available to us to test on. The code used is optimized for

CPU which means it contains many memory lookups instead of

calculations. This could speed up performance on a CPU but

could introduce latency on the GPU, as the GPU takes less time in

computations than in memory access [8]. It might give better

performance to reduce the memory accesses as possible. Another

issue is that the shared data between the running threads (key

schedule and other look up tables) so if two threads try to access

the same index in the array the access will turn into serial access.

This does not affect the performance largely.

5.3 OpenSSL test
The OpenSSL toolkit provides a command to test the throughput

of some optimized block ciphers. Unfortunately it only contains

the test for the AES CBC mode and the Blowfish cipher which

was the base cipher for the Twofish. So we run the OpenSSL

speed command for AES-CBC-128 bits and for Blowfish then

show the results in table 4. However, since the mode of operation

used is different, it is irrelevant to compare it with our results

which are based on the ECB mode of operation. The test was run

on Linux Ubuntu v8.04 (32-bits) running on the same PC used for

the previous tests, with OpenSSL v0.9.8g.

 AES-CBC-128 bits

(block size)

Blowfish-CBC

(block size)

 16B 64B 16B 64B

Throughput

MB/s 91.2 119 91.6 98.4

Table 4. AES and Blowfish OpenSSL speed test results

6. Conclusions
The work done proves that GPU programming could be used to

get speed ups in the encryption and decryption of the three block

ciphers chosen. We were able to get performance improvements

by implementing the block ciphers on the GPU. During this work

we have noticed that different ciphers give different speed ups

depending on the nature of the cipher. However, more

optimizations could be proposed to further achieve higher speed

ups, and similar implementations could be done on different types

of ciphers such as asymmetric ciphers and hash functions.

7. Future Work
There are some proposed ideas to further improve the work done

in this project. A new better graphics card which is more powerful

than the one used in this project would give better speed ups in

terms of results, so trying this would be interesting. Testing more

configurations such as trying to reduce the memory look ups in

the encryption function and relying more on calculations might

increase the performance. Moreover, the implementation could be

extended to cover more operating modes such as the counter

mode, or the decryption of the CBC mode. It may even be

extended to explore the possibility of implementing asymmetric

key algorithms, hashing or even files compression.

8. REFERENCES
[1] D. Robert Stinson. Cryptography: theory and practice, 3rd

Edition. CRC Press, 2006. p. 102-112.

5

[2] Ross Anderson, Eli Biham and Lars Knudsen. Serpent home

page. [Online] June 07, 2009. [Cited: June 17, 2009].

http://www.cl.cam.ac.uk/~rja14/serpent.html

[3] Bruce Schneier. Twofish. [Online] June 8, 2009. [Cited: June

07, 2009] http://www.schneier.com/twofish.html

[4] NVIDIA_CUDA_Programming_Guide_2.2. CUDA Toolkit.

Version 2.2. [Cited: June 07, 2009].

[5] cbguder. cbguder’s aes-on-cuda master –Github. [Online]

February 02, 2009. [Cited: June 17, 2009].

http://github.com/cbguder/aes-on-cuda/tree/master

[6] Dr Brian Gladman. Index of

/pub/crypt/cryptography/symmetric/serpent. [Online] 14th

January 1999. [Cited: June 17, 2009].

http://www.nic.funet.fi/pub/crypt/cryptography/symmetric/se

rpent

[7] Dr Brian Gladman. Index of

/pub/crypt/cryptography/symmetric/twofish. [Online] 14th

January 1999. [Cited: June 17, 2009].

http://www.nic.funet.fi/pub/crypt/cryptography/symmetric/tw

ofish

[8] Svetlin A. Manavski, "Cuda compatible GPU as an efficient

hardware accelerator for AES cryptography", In Proc. IEEE

International Conference on Signal Processing and

Communication, ICSPC 2007, (Dubai, United Arab

Emirates), pp.65-68, November 2007. [Online] May 28,

2009. [Cited: June 17, 2009].

http://www.manavski.com/downloads/PID505889.pdf

