
Report of the project

Generation of strong primes for ssh keys

Julien Caron Jeremie Stordeur

ABSTRACT

This paper review the interest of using strong prime numbers
to generate RSA Keys.
To generate efficiently prime numbers we need an efficient
primality test. This is why the first part of our work is
a study on Miller-rabin’s primality test and the Agrawal-
Kayal-Saxena test. We compare those tests to determine if
a determistic test like AKS can be used to generate large
prime numbers.
In the second part we implement an algorithm to generate
prime numbers with a minimum of calls to the oracle (a
primality test, Miller-Rabin for our implementation) [5].
In the final part we describe how it is possible to use this
generator of prime numbers to create valid SSH-RSA Keys
using the open source libraries : openssh openssl.

Keywords

strong primes, AKS, SSH

1. INTRODUCTION
In cryptology every efficient codes is based on a hard oper-

ation, ”hard” meaning it takes a very long time to complete
it. The factorisation of large prime numbers is the key of
the RSA system where n=p.q with p and q two large prime
numbers.
A prime number is said to be strong when :
 q-1 has a large prime divisor u,

q+1 has a large prime divior s,
u-1 has a large prime divisor t.

Strong primes have certain properties that make the prod-
uct n hard to factor by specific factoring methods : the Pol-
lard p-1 and p+1 methods are especially suited to primes
p such that p-1 or p+1 has only small factors [8]. For this
reason, strong primes are required by the ANSI X9.31 stan-
dard for use in generating RSA keys for digital signatures.
However, strong primes do not protect against modulus fac-
torisation using newer algorithms such as Lenstra elliptic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

curve factorization [7] and Number Field Sieve algorithm
[6].
However, there is no danger in using strong, large primes,
though it may take slightly longer to generate a strong prime
than an arbitrary prime. The C++ cryptographic library
Givaro is currently using the Gordon’s algorithm to pro-
duce strong primes [4]. We implemented another algorithm
theoricaly better than Gordon’s [5] to compare their speed.

2. PRIMALITY TEST
The algorithm used in the next section to generate strong

primes requires several calls to a primality test. In order to
improve the efficiency of our generation algorithm we com-
pared two primality tests. The first one is the probabilistic
test of Miller-Rabin which is currently used in the Givaro li-
brary and the second one is the Agrawal-Kayal-Saxena test.

2.1 Miller-Rabin
This test is based on a property :

Let n be a prime number : n = 2s ∗ d with d odd.
Then ∀a ∈ (Z/nZ),
ad ≡ 1 mod(n)
or
∃r, 0 ≤ r ≤ s− 1/a2

r
∗d ≡ −1 mod(n)

Figure 1: property (1)

So if we can find an a such that
ad �= 1 mod(n) and ∀r, 0 ≤ r ≤ s − 1/a2

r
∗d �= −1 mod(n)

then a is called a witness for the compositeness of n, which
means that a has proven that n wasn’t prime.Otherwise n is
a strong probable prime to base a. Unfortunatly for a given
n composite it is possible to find some a that will satisfy the
property (1).
Such an a is called a strong liar and make the test answering
”n is prime” whereas n is actually composite.
It can be shown that for any odd composite n, at least 3

4
of

the bases a are witnesses for the compositeness of n [9]. It
means that if we run the test with only one value for a there
is a probability p = 1

4
to be wrong. This is why the test is

only probabilistic and the more bases a we test, the better
the accuracy of the test is.

However if we admit the Generalized Riemann Hypothesis
it is possible to build a deterministic test by testing every a
∈ [2, min (2(logn)2, n-1)] [2].
Our implementation of the test gives the users the choice

of the percentage of bases tested. For example for 50% the
programm will run the test log(n)2 times with a randomly
choosen in [2, min (2(logn)2, n-1)].

2.2 AKS
This algorithm was first presented in the paper Primes is

in P [1].

INPUT : integer n>1.

1. If (n = ab for a ∈ N and b>1) output COM-
POSITE

2. Find the smallest r such that order of n mod-
ulo r > log2n

3. If 1< (a,n) <n for some a ≤ r output COM-
POSITE

4. If n ≤ r output PRIME

5. for a=1 to
p
φ(r)logn do

if (X + a)n �= Xn + a(modXr − 1, n) output
COMPOSITE

6. output PRIME

r is the smallest number k such that ak = 1 (mod r).
The theorical asymptotic time complexity of the algorithm
is O(log21/2n). However this complexity can be seriously
reduced to O (log6n) with some optimisations [3].
Our implementation of the algorithm offers the user the
choice of the percentage of bases a tested in [1,

p
φ(r)logn].

2.3 Comparison of the two algorithms
We first compare the two algorithms in their deterministic

versions (percentage=100), results are stored in the Fig. 2.
Miller is clearly faster than AKS but in fact both algorithms
are very deceptive, Miller-Rabin can’t produce a fast answer
for a size of n beyond 300 bits.

To have a better idea of the capacity of those algorithms
we compared their speed in a probabilist version with two
differents value for the percentage of bases a tested : 5% and
1%
Results are on the Fig. 3 and Fig. 4.
Miller-Rabin is clearly faster than AKS but this is essentially
because our implementation doesn’t have all the optimisa-
tions for AKS (there is a way to speed up the squaring in
(Z/n)[x]/(xr − 1)).

3. EFFICIENTGENERATIONOF STRONG

PRIME NUMBERS
In this section, we study the generation of strong prime

numbers. We implemented the algorithm, described in Ef-
ficient Generation of Strong Prime Numbers [5]. We give
here the different algorithms that we used in order to gen-
erate strong prime numbers.

3.1 Theory
We first need a generator g of invertible numbers modulo

Π. Let Π =
Qk

i=1
pδi

i be a n-bit product of the first k primes
with some small exponents. Moreover we have a generator
of t-bit numbers, random(t) with t = 2 maxi(p

δi
i)

The algorithm (Fig. 5) generates invertible numbers
modulo Π. We did not implement the algorithm as it was
done [5], we remove the θi and replace it with the chinese
reminder theorem.

1. c = 0

2. for i =1 to k

(a) α = random(t)

(b) if (αδi mod pδi
i = 0) goto (a)

(c) n̂i = Π

p
δi
i

, find ui and vi such as uiΠ +

vin̂i = 1
ei = vin̂i

c = c+ αei

3. output c

Figure 5: generator g of invertible numbers mod Π

Generated primes are expected to lie in some target win-
dow [wmin, wmax]. Now let η be the product of the first
prime numbers so that η×pi+1 ≥ wmin. We define �min and
�max such as : �min = �wmin

η
� + 1 and �max = �wmax−wmin

η
�.

We then set Π = �maxη and ρ = �minη.
In the next algorithms, T denotes the primality oracle. In
order to have a fast transition step, we multiply c by 2 and
so we need to exclude 2 from Π’s factorization.

The algorithm (Fig. 6) generates n-bit prime number.

1. c = g()

2. q = c+ ρ

3. if q is even, q = q + η

4. if T (q) = false then c = 2c mod Π and goto
(2)

Figure 6: GPrime(n) - A prime number generator

We now focus on the problem of generating an uniformly
distributed random n-bit prime p = 1 + qr for a given nq-
bit prime q. Trial divisions are intended to check that the
candidate p has no prime factor pi for i = 1, .., k. We can
advantageously generate r so that p automatically fulfills
this condition. It suffices that
p �= 0 mod pi ⇔ r �= −q−1 mod pi for i = 1, .., k
We choose r = −q−1 + c mod Π

size of n (bit) 30 40 50 100 200 300
Miller (s) 0.03 0.07 0.1 0.63 9.73 43.6
AKS (s) 40.5 342 361 - - -

Figure 2: comparison between Miller-Rabin and AKS with the deterministic versions

size of n (bit) 50 75 100 150 512 700
Miller (s) 0.02 0.03 0.05 0.14 24.3 100
AKS (s) 25 111 384 - - -

Figure 3: Comparison between AKS and Miller-Rabin for 5% of witnesses tested

size of n (bit) 50 100 125 150 512 1024
Miller (s) 0.01 0.01 0.03 0.07 4.9 122
AKS (s) 6 69 252 - - -

Figure 4: Comparison between AKS and Miller-Rabin for 1% of witnesses tested

For this algorithm, we set Π ≥ 2n−nq+2 and when r is
calculated, we check that r ≥ 2n−nq so that p = 1 + qr ≥
2n−1

The algorithm (Fig. 7) generates such prime numbers.
In this implementation of the algorithm, we calculate the
inverse of q with the extended Euclidean algorithm, and not
with the Carmichael’s function as it was done in the pa-
per of Marc Joye, Pascal Paillier and Serge Vaudenay [5],
because our tests demonstrate that the extended Euclidean
algorithm is faster.

1. calculate q−1 with the extended Euclidean
algorithm

2. c = g()

3. r = (c− q−1) mod Π

4. if r ≤ 2n−nq goto (3)

5. p = 1 + qr

6. if T (p) = false then c = 2c mod Π and goto
(3)

7. output p

Figure 7: GDSA(n, q) -DSA prime generator

We still have to generate a n-bit prime q such that q − 1
has a large prime divisor u, and q + 1 has a large prime
divisor s.

q = 1 + r1u = −1 + r2s

Hence r1 = −2u−1 mod s and there must be an integer r3
such that

q = 1 + u(−2u−1 mod s+ r3s)

r3 = −(su)−1 − (−2u−1 mod s)s−1 + c mod Π

we denote

κ = 1 + u(−2u−1 mod s)

µ = −κ(su)−1 mod Π

In order to generate strong prime numbers, we first generate
s and t with GPrime(n/3) and then u with GDSA(n/2, t)

We check that r ≥ 2
n
6
−1 so that q = κ+ sur ≥ 2n−1

Eventually, the algorithm (Fig. 8) generates strong prime
numbers.

3.2 Comparison with Gordon’s algorithm
We stress the fact that this technique features a dramatic

performance improvement in terms of the average number
of calls to T executed by GStrong and the classical method,
Gordon’s algorithm. We give in Fig. 9 a comparison of the
heuristic expected number of calls to the primality oracle T.

However, even if the average number of calls to T is di-
vided by around 4.4, in terms of time the gain isn’t so obvi-
ous with our oracle (we used the function is prime from the
library Givaro). We compared in Fig. 10 the time of the
generation of the two algorithms, we see that generation’s
times are quite equivalent and that even for small integers
(under 1000 bits) Gordon’s algorithm is faster, at 2000 bits
we only gain half of a second.

1. generate s and t using GPrime(n
3
)

generate u using GDSA(n
2
, t)

2. κ = 1+u(−2u−1 mod s) and µ = −κ(su)−1

mod Π

3. c = g()

4. r = µ+ c mod Π and q = κ+ sur

5. if T (q) = false then c = 2c mod Π and goto
(4)

6. output q

Figure 8: GStrong(n) - A Strong prime generator

We conclude that the gain in time is not equivalent to
the gain in number of calls, this is in fact due to the time
needed by T , which is higher in the case of GStrong than
Gordon (Fig. 11) (in average four times higher). This
can be explained due to the oracle we used, the function
is prime from the library givaro does not start directly with
the Miller’s algorithm but try to find if the gcd of the num-
ber with the first prime numbers isn’t one. The numbers
that Gordon’s algorithm generates and tries to find whether
or not they are prime often have small prime divisors such
as 3, 5 and 7, whereas GStrong’s numbers often have bigger
prime divisors : this is why the function is prime goes faster
to say whether or not they are prime numbers in the case of
Gordon.

size of n (bit) 128 256 512 800 1024 1500 2000
GStrong(n) 11.32 24.12 48.83 65.52 69.09 99.1 124.22

Gordon 42.6 84.17 206.14 267.93 369.01 477.22 629.26

Figure 9: heuristic expected number of calls to the primality oracle T functions of size of n

size of n (bit) 128 256 512 800 1024 1500 2000
GStrong(n) 0.0031 0.012 0.071 0.2570 0.497 1.946 5.43

Gordon 0.0016 0.0073 0.071 0.254 0.62 2.163 6.09

Figure 10: generation’s time comparison (in sec.) between GStrong and Gordon

n 128 256 512 800 1024 1500 2000
time for the call of T in GStrong(n) 74 µs 213 µs 1025 µs 3.2 ms 6 ms 17 ms 37 ms

time for the call of T in Gordon 24 µs 66 µs 269 µs 1.3 ms 0.62 ms 3.5 ms 7.6 ms

Figure 11: oracle’s time comparison between GStrong and Gordon

4. GENERATION OF SSH-RSA KEYS
We describe here how to generate two files id rsa and

id rsa.pub in order to use the algorithm described in sec-
tion [3] to generate SSH-RSA keys.

Once p and q are calculated with GStrong, of size respec-
tively �n

2
� − 1 and �n

2
�+ 1, then we get n = pq. We remind

here to our readers the RSA algorithm. We fixe e-private
key and calculate d-public key so that e is coprime with
ϕ(n) = (p− 1)(q − 1) and d = e−1 mod ϕ(n).

In order to produce the two files needed for ssh, openssh
also needs d mod [p − 1], d mod [q − 1] and q−1 mod p.
This can be easily done by modifying the class IntRSADom
of the library Givaro, you will also need to convert the in-
tegers from Givaro, this can be done using the function
BN dec2bn.

Then we can create an object of type RSA from openssh, full-
filling those informations. Eventually we can use the func-
tion PEM write RSAPrivateKey(privateKeyFile, key, NULL,
NULL, 0, NULL, NULL) to produce your private key file
(usually named id rsa). In order to write the public key, you
need to create an object Key from openssl of type KEY RSA
and with the key in parameter, to finish use the function
(from openssl) key write(maCle, publicKeyFile) to write the
public key file. You will also need to add ssh-rsa before the
key, and the name of the computer at the end of the file,
if you want to put it in the file authorized keys of the re-
mote computer. You can now use the public/private key
you generated with your own strong prime numbers.

5. CONCLUSION
The conclusion of our work is that the fast generation

of strong primes relies on the generation algorithm AND
on the primality test called by this algorithm. We have
seen in the first part of this paper that a primality test is
nothing more than a compromise between the correctness
of the answer and the speed of the test. The results of
our implementation of this new algorithm to generate strong
primes shows that you can’t compare the efficiency of two
algorithms by comparing their number of calls to the oracle
T. Indeed, the time needed by T may be different in function
of the composition of the numbers n that we submit to it.
This is why we think that to really improves the generation
of strong prime, you first have to build a specific oracle T
depending of the composition of the numbers that you need
to test.

6. REFERENCES
[1] M. Agrawal, N. Kayal, and N. Saxena. Primes is in p.

2002.

[2] E. Bach. Explicit bounds for primality testing and
related problems. Mathematics of Computation,
55:355–380, 1990.

[3] D. J. Bernstein. Proving primality after
agrawal-kayal-saxena. Mathematics Subject
Classification, 2003.

[4] J. Gordon. Strong primes are easy to find. Proceedings
of EUROCRYPT, 84:216–223, 1986.

[5] M. Joye, P. Paillier, and S. Vaudenay. Efficient
generation of prime numbers. Lecture Notes in

Computer Science, 1965:340–354, 2000.

[6] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and
J. M. Pollard. The number field sieve. Proc. 22nd ACM
Symposium on theory of Computing, pages 564–572,
1990.

[7] H. W. Lenstra and Jr. Factoring integers with elliptic
curves. Annals of Mathematics, 126:649–673, 1987.

[8] J. M. Pollard. Theorems on factorization and primality
testing. Proceedings Cambridge Philosophical Society,
76:521–528, 1974.

[9] M. O. Rabin. Probabilistic algorithm for testing
primality. Journal of Number Theory, 12:128–138, 1980.

