
1

Protection on Audio CDs

Romain Ayala Laura Medji

Ensimag, Grenoble(France) Ensimag, Grenoble(France)

Romain.Ayala@ensimag.imag.fr Laura.Medji@ensimag.imag.fr

Terence Momo

Ensimag, Grenoble (France)

Terence.Momo@ensimag.imag.fr

ABSTRACT
During this project we tried to find an

effective way to protect audio CDs. To do this,

we have experienced and compared several

methods from the technology known as

SCRATCH or insertion of wrong data. It

consists, either by a manual way or by a

program, in making the copy impossible

(difficult) by inserting erroneous bytes on the

CD. Among all the possibilities we have chosen

two of them. The first one is a manual way

that consists in scratching the CDs. In the

other method, we modify the matrix

representing the encoded audio data (the

physical 32 bytes-frames encoded by the EFM

modulation on the CD). Both methods are

based on the two different ways to read audio

CD’s: the analogical way (in a classic audio

player) with the temporal interpolation and

the numerical way (in a CD-Rom driver that

also has the analogical mode).

KEYWORDS
Interpolation, CIRC coding, Table of Content

(TOC), Digital Rights Management (DRM),

Frame, Sector, Scratch.

1. INTRODUCTION

 At the age of Mp3s and pirated copies, the

protection of CDs is, more than ever, a

challenge for many retailers. That is why we

have seen, for some years, the apparition of

many effective protection technologies for

CDs. These protections can be classified into

three categories. The first one is the

“SCRATCH” or data codeword modifications

where we insert a certain number of

erroneous bits. The second is the modification

of the TOC which manipulates the tracks

length and the information format. The latest,

largest, is called DRM. It aims at controlling all

the possible user utilizations of the product.

To do this it uses the principles described

above but also other software means.

2. CONTEXT
CDs encoding is a long and complex process.

We try to explain it on the following schema:

2

As we can see, the audio CDs encoding is

made through five stages:

• During the quantification, bits

representing audio data are transformed

into symbols. Each symbol is made up of 8

bits. A sample is made up of 16 bits and

there are two channels in the signal

(stereo).

• Then, during the second step, symbols are

transformed into frames. Each frame is

composed of 24 symbols (6 samples on

the left channel and 6 samples on the

right one).

The two first steps are used for creating words

of 24 symbols (=bytes) which are necessary to

be processed by the CIRC coding. We are now

going to focus on that specific step where our

algorithms intervene.

• The CIRC coding is based on several

stages: first, a shortened Reed-Solomon

coding; then, an interlacing with a delay of

4 and finally, another shortened Reed-

Solomon coding. After the CIRC coding,

the frames are made up of 32 bytes and

data are represented by a matrix of 32

lines and (number of frames + 4*(28-1))

columns (due to the interlacing-4).

The next two stages are explained in the

schema: first, one symbol of synchronization is

added to each frame and then, frames are

encoded with the EFM modulation that allows

the lossless burning and reading of these

frames on an optical support.

3. THEORETICAL ANALYSIS

 3.1 Insertion of wrong data (scratch)

This method consists in making a physical

scratch on the CD in order to corrupt the data

and prevent the user from copying the CD

without any error. It can be seen as a type of

protection since the true data are not

recovered.

Theoretically, the CIRC coding enables a

correction of 15 successive frames, which

correspond to a length of 8820 bits on the

track (2.5 mm) or 15*32 = 480 bytes of signal.

Another interlacing is also used to make the

temporal interpolation easier because the

audio signal is much correlated. With this

technique, we can recover 48 successive

frames, which correspond to a length of 8.5

mm.

On the contrary of analogical players that use

the interpolation, numerical players are more

sensitive to errors in data because they

process to a bit-per-bit reading. It is this

characteristic that we want to make the most

of by simulating these two reading modes.

3.2 Invalid table of contents (TOC)

The TOC is the central index of every CD. It

contains the start positions of the individual

tracks on the CD. An audio CD player reads the

TOC when the CD is inserted and then knows

where each track starts and how long the CD

is. The TOC is saved in the lead-in area of the

CD. On a multisession CD in every lead-in of

every session there is a new one.

To protect CDs thanks to the use of the TOC

we need to create a multisession CD with a

valid TOC on its first session and a wrong one

on another one. Indeed, audio CD players only

read the first TOC created on the CD whereas

CD-Rom drivers use the latest. So, the user of

CD-Rom drivers will listen to his audio data

but will not be able to copy them.

To corrupt the TOC, two main techniques have

been found. Both are based on the adding of a

dummy track. On the one hand, as a CD

cannot contain a track whose length is less

than four seconds, we can make that track

start two seconds before the end of the CD

(lead-out start time). On the other hand, we

can manipulate only the track modes. Indeed,

a track has two possible modes: mode 1 and

mode 2 and tracks from different modes

cannot be copied on the same CD.

 3.3 DRM

DRM regroups several different types of

methods. Two of them have just been

explained (scratch and the use of invalid table

3

of contents) so we will no longer focus on

them. The one we are going to explain now is

the technology that had been used by SONY

BMG.

The following schema explains how CD DRM

works:

The first time the protected CD is used, the

autorun executes installer from the CD. The

active protection driver is automatically

installed between CD driver and application.

So, even when the CD is no more inserted, the

driver remains on the system.

Then when the user try to copy or rip a CD,

the protection driver search for a watermark

and, when it founds one, block the access to

audio.

The SONY BMG technology consists in two

things. It installs first a rootkit to conceal the

software and then an aggressive protection

software without the consumer consent.

These methods jeopardized user security.

Indeed the XCP rootkit and MediaMax

aggressive installer used by SONY hide

computer system files to the user and let him

vulnerable to malicious attacks.

4. IMPLEMENTATION OF OUR

PROTECTION: Insertion of

errors during the coding

process of the audio data

4.1 Presentation

After an intensive analysis, we have chosen to

work on the method that seems the most

efficient to us: the insertion of errors.

• First, we tried the manual way. We made

a straight scratch of 5mm on a CD, which

prevents the CD from being copied but

does not make the reading impossible.

Indeed, until 2.5mm scratched data can be

recovered thanks to the CIRC coding. The

interpolation allows a maximal scratch

length of 8.5mm. So we had to choose a

scratch between 2.5 and 8.5mm.

Yet, this is an approximate method that

may damage the data on the CD.

Thus, we decided to reproduce the scratching

process through a C++ program with the

objective of determining the number of

successive frames that have to be corrupted in

order to make the copy impossible without

losing any audio data. Besides, the program

contains other modification functions that

enable a finer errors insertion. It can modify

certain bytes of Reed-Solomon codeword to

generate errors after the CIRC decoding.

• Our program operates on wave files. To

begin, it extracts the data from the file

and puts them byte per byte in a matrix

that corresponds to the data after

quantification. Each line of that matrix

stands for a frame (24 bytes). Then, we

make an interlacing which consists in

mixing the 6 audio samples of every

channel for each frame. After that, we do

the CIRC coding of our matrix. After the

encoding step, we select which

modification we want to make to protect

our data: on the one hand, we can

simulate a single scratch in a specific

sector of data; on the other hand, several

scratches can be made. Moreover, we can

modify some parts of the Reed-Solomon

codeword in a finer way: arbitrarily, we

modify the four bytes which stand for the

redundancy of the RS codes C1 and C2 (we

could modify the other bytes but these

4

ones were easy to localize in the

interlaced matrix). Finally, we are

searching the best compromise between

the noise added in the numerical reading

and the quality of the data recovered after

the interpolation in the analogical reading.

 4.2 Detailed Explanations of our

program

• Extraction of the data:

We have chosen to operate on wave

files because it is a simple format in

which the audio data can be directly

used. Indeed, the 44 first bytes of a

wave file constitute the header and

the data are found in the rest of the

file. So, we put the header in a table

to use it when we reconstruct the

wave file at the end of the operation.

Besides, the data are stocked in a

matrix that will be the entry for the

interlacing before C1 coding.

• Interlacing before C1 coding:

This step aims at optimizing time

Interpolation of audio data. In each

frame, we mix the 6 audio samples of

every channel. We sum up our process

in the following schema:

A frame before the interlacing
G1 D1 G2 D2 G3 D3 G4 D4 G5 D5 G6 D6

The same frame after the interlacing
G1 G3 G5 D1 D3 D5 G2 G4 G6 D2 D4 D6

In this scheme, �Gi; Di � (with

i ∈ 	1; 6�� represents an audio sample

for a channel and a frame. Gi refers to

the left byte of the sample and Di to

the right one. The first and second 6

boxes of the table represent a

channel.

• CIRC Coding:

The CIRC coding is made up of three

stages: the C1 coding, the interlacing

phase and the C2 coding.

The C1 code is a shortened (28, 24)

Reed-Solomon code. As we work with

a (255, 251) Reed-Solomon code, we

have to extend every frame to 251

bytes by filling the new bytes with

zeros. Then, we apply a (255, 251)

Reed-Solomon coding to each frame

and we add the four calculated codes

to the initial data frames. At the end

of the C1 coding, we have a matrix

whose lines are frames of 28 bytes

and the four last bytes correspond to

C1 codes as you can see on the next

schema:

 28 Bytes
B1 B2 B3 …….. B23 B24 C1.1 C1.2 C1.3 C1.4

 C1 Coding

The latter matrix can now be

interlaced in order to improve the

capacity of recovering data in case of

errors. The interlacing used in the CIRC

coding has a delay of 4 and its

principle is: we built a matrix where

the j
th

line is made up of the j
th

 byte of

each frame in the order of the indexes

and the j
th

 line is shifted to the right

from j-4 bytes. The blanks of the

interlacing matrix are filled with zeros.

The following schema explains the

principle:

 Frames number + 4*(28-1) columns

For the C2 coding, we operate on the

interlacing matrix. The C2 code is a

shortened (32, 28) Reed-Solomon code.

The C2 coding principle is the same as the

C1 coding one but it completes the

5

columns of the interlacing matrix: the

frames are made up of 32 bytes after the

C2 coding as you can see on the following

schema:

 Frames number + 4*(28-1) columns

• Insertion of wrong bytes:

Errors are inserted in the data by

three ways: the modification of

columns of data (scratch method), the

modification of C1 codes and the

modification of C2 codes. We chose to

change to zero the value of the bytes

that undergo the modification.

We introduce a few parameters to all

those modifications such as the

number of columns to modify per

sector, the frequencies modification

of columns and sectors.

• CIRC Decoding:

Like the CIRC coding, the CIRC

decoding is also made up of three

stages: the C2 decoding, the reverse

interlacing and the C1 decoding.

The modified interlacing matrix is the

entry of the C2 decoding that reduces

the frames number of bytes from 32

to 28 bytes by eventually modifying

those bytes in accordance with the C2

codes values.

Then, we apply the reverse interlacing

to the matrix obtained so as to

remove the delay between the frames

and to organize the frames in lines.

Finally, each frame undergoes the C1

decoding and, at the end, we find back

the data with eventual modifications.

The C1 and C2 decoding are based on

the (251, 254) shortened Reed-

Solomon decoding. So, frames have to

be extended before each decoding.

The Reed-Solomon decoding consists

in the arithmetic of syndromes and

the Berlekamp algorithm that helps to

find the error location polynomial.

• Reverse Interlacing after decoding C1:

After the decoding of C1, we make the

inverse process of interlacing before

coding C1. We treat 6 audio samples

of every channel in each frame just

like before. We implement the

algorithm inverse and find again our

frame like shown in the following

scheme:

 A frame before the reverse interlacing
G1 G3 G5 D1 D3 D5 G2 G4 G6 D2 D4 D6

 The same frame after the reverse interlacing
G1 D1 G2 D2 G3 D3 G4 D4 G5 D5 G6 D6

This interlacing enables not to damage

successive samples in case of a big

scratch. If an error on a sample is

detected, we can solve it by making

the average with the previous sample

and the next one: this is the temporal

interpolation.

• Reconstruction of the wave files:

At the end, we have the matrix whose

elements are the audio data of the

new corrupted wave file. We just have

to create a wave file in which we put

the header of the original wave file

followed by the new audio data.

5. RESULTS

All the following tests have been made with

audio.wav.

5.1 Single scratch on our data

Our first experimentation consists in

simulating a single scratch on a CD. To do this,

we erase a block (successive columns) of data

and the number of erased columns stands for

6

the length of the scratch. The operation is

made by the function “Rayure1” that erased a

certain number of columns in a specific sector.

We observe the rates of residual errors and of

errors corrected by interpolation on the

following graphic:

Rates evolutions of residual errors (in blue) and of errors

treated by interpolation (in red) according to the number of

columns erased by a single scratch

This graphic shows that the interpolation can

recover until 42 successive erased columns.

Yet, theoretically, the interpolation is

supposed to treat 48 successive columns. Our

algorithm of interpolation is clearly not

optimal but it has an efficiency of 87, 5%.

Moreover, our CIRC decoding can correct 8

successive wrong frames, which corresponds

to an efficiency of 53%. We can explain that

because we do not implement the most

optimal CIRC decoding.

5.2 Quality of interpolation after several

scratches

In this test, we make scratches of C columns in

one sector out of two for 70 sectors. The first

modified sector is the 1000
th

 one. So, we

observe the phenomenon (we hear strong

clicks that can be harmful to the headphones)

during one second at the 13
th

 second of the

audio file.

Evolution of the errors rate according to the number of columns

erased by a scratch on one sector out of two and for 70 sectors

The data read with interpolation are not

satisfying: we still hear an unpleasant sound.

So, our implementation of interpolation is

limited in this particular case. We cannot plan

to protect our data this way.

7

5.3 Quality of interpolation after inserting

errors on Reed-Solomon codes

In this last experimentation, we make a series

of tests with an insertion of errors in Reed-

Solomon codes in order to modify the

decoded data. We set the number of modified

columns to 3 and the frequency of columns

modification to ¼ and we try to obtain the

best analogical reading with a disturbing

quality of sound (too many non periodic clicks)

during the numerical reading.

Evolution of the errors rate according to the frequency of sector

modification with a number of erased columns (per sector) of 3

and a frequency of columns modification of 1/4

We fix the optimal parameters of our method

to a number of modified bytes in the C1 and

C2 codeword of 3, a frequency of sector

modification of 1/100 and a frequency of

columns modification of ¼. The interpolation

obtained with these parameters is optimal: all

the errors are treated and the sound is as

clean as the original audio file. So, the audio

protection is sure.

6. CONCLUSION

Our goal has been reached because we have

implemented a working solution that uses the

technique of errors insertion. However, we

would like to have more time to try to

implement the other methods mentioned in

the present report (the modification of the

TOC particularly) so as to mix them and to

realize a complete CD protection. Besides, we

could also improve the method we

implemented (CIRC decoding, temporal

interpolation) in order to have better results.

This project was interesting because the

theme was a current subject with concrete

hardships like those we will have to face in an

incoming future.

REFERENCES

[1] Georges Zénatti, CD-Rom et vidéo sur

CD, Hermès, 1996.

[2] Heitaro Nakajima and Hiroshi Ogawa,

Compact Disc Technology, Ohmsha, 1992.

[3] Joan Feigenbaum , Digital Rights

Management, Springer.

[4] J. Alex Halderman and Edward W.

Felten, Lessons from the Sony CD DRM

Episode, Department of Couputer Science,

Princeton Univeristy, 2006.

[5] Jean-Pierre Zanotti, Codage d’un signal

audio-numérique, 1998.

