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ABSTRACT  
During this project we tried to find an 

effective way to protect audio CDs. To do this, 

we have experienced and compared several 

methods from the technology known as 

SCRATCH or insertion of wrong data. It 

consists, either by a manual way or by a 

program, in making the copy impossible 

(difficult) by inserting erroneous bytes on the 

CD. Among all the possibilities we have chosen 

two of them. The first one is a manual way 

that consists in scratching the CDs.  In the 

other method, we modify the matrix 

representing the encoded audio data (the 

physical 32 bytes-frames encoded by the EFM 

modulation on the CD). Both methods are 

based on the two different ways to read audio 

CD’s: the analogical way (in a classic audio 

player) with the temporal interpolation and 

the numerical way (in a CD-Rom driver that 

also has the analogical mode).  
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1. INTRODUCTION 

 
 At the age of Mp3s and pirated copies, the 

protection of CDs is, more than ever, a 

challenge for many retailers. That is why we 

have seen, for some years, the apparition of 

many effective protection technologies for 

CDs. These protections can be classified into 

three categories. The first one is the 

“SCRATCH” or data codeword modifications 

where we insert a certain number of 

erroneous bits. The second is the modification 

of the TOC which manipulates the tracks 

length and the information format. The latest, 

largest, is called DRM. It aims at controlling all 

the possible user utilizations of the product. 

To do this it uses the principles described 

above but also other software means. 

 

2. CONTEXT 
CDs encoding is a long and complex process. 

We try to explain it on the following schema: 
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As we can see, the audio CDs encoding is 

made through five stages:  

• During the quantification, bits 

representing audio data are transformed 

into symbols.  Each symbol is made up of 8 

bits. A sample is made up of 16 bits and 

there are two channels in the signal 

(stereo).  

 

• Then, during the second step, symbols are 

transformed into frames. Each frame is 

composed of 24 symbols (6 samples on 

the left channel and 6 samples on the 

right one).  

 

The two first steps are used for creating words 

of 24 symbols (=bytes) which are necessary to 

be processed by the CIRC coding. We are now 

going to focus on that specific step where our 

algorithms intervene.  

 

• The CIRC coding is based on several 

stages: first, a shortened Reed-Solomon 

coding; then, an interlacing with a delay of 

4 and finally, another shortened Reed-

Solomon coding. After the CIRC coding, 

the frames are made up of 32 bytes and 

data are represented by a matrix of 32 

lines and (number of frames + 4*(28-1)) 

columns (due to the interlacing-4). 

 

The next two stages are explained in the 

schema: first, one symbol of synchronization is 

added to each frame and then, frames are 

encoded with the EFM modulation that allows 

the lossless burning and reading of these 

frames on an optical support. 

 

3. THEORETICAL ANALYSIS 
 

  3.1 Insertion of wrong data (scratch) 

 

This method consists in making a physical 

scratch on the CD in order to corrupt the data 

and prevent the user from copying the CD 

without any error. It can be seen as a type of 

protection since the true data are not 

recovered.  

Theoretically, the CIRC coding enables a 

correction of 15 successive frames, which 

correspond to a length of 8820 bits on the 

track (2.5 mm) or 15*32 = 480 bytes of signal. 

Another interlacing is also used to make the 

temporal interpolation easier because the 

audio signal is much correlated. With this 

technique, we can recover 48 successive 

frames, which correspond to a length of 8.5 

mm. 

 

On the contrary of analogical players that use 

the interpolation, numerical players are more 

sensitive to errors in data because they 

process to a bit-per-bit reading. It is this 

characteristic that we want to make the most 

of by simulating these two reading modes.   

     

3.2 Invalid table of contents (TOC) 

 

The TOC is the central index of every CD. It 

contains the start positions of the individual 

tracks on the CD. An audio CD player reads the 

TOC when the CD is inserted and then knows 

where each track starts and how long the CD 

is. The TOC is saved in the lead-in area of the 

CD. On a multisession CD in every lead-in of 

every session there is a new one. 

To protect CDs thanks to the use of the TOC 

we need to create a multisession CD with a 

valid TOC on its first session and a wrong one 

on another one. Indeed, audio CD players only 

read the first TOC created on the CD whereas 

CD-Rom drivers use the latest. So, the user of 

CD-Rom drivers will listen to his audio data 

but will not be able to copy them. 

To corrupt the TOC, two main techniques have 

been found. Both are based on the adding of a 

dummy track. On the one hand, as a CD 

cannot contain a track whose length is less 

than four seconds, we can make that track 

start two seconds before the end of the CD 

(lead-out start time). On the other hand, we 

can manipulate only the track modes. Indeed, 

a track has two possible modes: mode 1 and 

mode 2 and tracks from different modes 

cannot be copied on the same CD. 

 

  3.3 DRM 

 

DRM regroups several different types of 

methods. Two of them have just been 

explained (scratch and the use of invalid table 



3 

 

of contents) so we will no longer focus on 

them. The one we are going to explain now is 

the technology that had been used by SONY 

BMG.  

The following schema explains how CD DRM 

works:  

 

 
The first time the protected CD is used, the 

autorun executes installer from the CD. The 

active protection driver is automatically 

installed between CD driver and application. 

So, even when the CD is no more inserted, the 

driver remains on the system. 

Then when the user try to copy or rip a CD, 

the protection driver search for a watermark 

and, when it founds one, block the access to 

audio. 

 

The SONY BMG technology consists in two 

things. It installs first a rootkit to conceal the 

software and then an aggressive protection 

software without the consumer consent. 

These methods jeopardized user security. 

Indeed the XCP rootkit and MediaMax 

aggressive installer used by SONY hide 

computer system files to the user and let him 

vulnerable to malicious attacks. 

 

4. IMPLEMENTATION OF OUR 

PROTECTION: Insertion of 

errors during the coding 

process of the audio data 

 
4.1 Presentation 

 
After an intensive analysis, we have chosen to 

work on the method that seems the most 

efficient to us: the insertion of errors. 

• First, we tried the manual way. We made 

a straight scratch of 5mm on a CD, which 

prevents the CD from being copied but 

does not make the reading impossible. 

Indeed, until 2.5mm scratched data can be 

recovered thanks to the CIRC coding. The 

interpolation allows a maximal scratch 

length of 8.5mm. So we had to choose a 

scratch between 2.5 and 8.5mm.  

Yet, this is an approximate method that 

may damage the data on the CD. 

 
Thus, we decided to reproduce the scratching 

process through a C++ program with the 

objective of determining the number of 

successive frames that have to be corrupted in 

order to make the copy impossible without 

losing any audio data. Besides, the program 

contains other modification functions that 

enable a finer errors insertion. It can modify 

certain bytes of Reed-Solomon codeword to 

generate errors after the CIRC decoding.  

 

• Our program operates on wave files. To 

begin, it extracts the data from the file 

and puts them byte per byte in a matrix 

that corresponds to the data after 

quantification. Each line of that matrix 

stands for a frame (24 bytes). Then, we 

make an interlacing which consists in 

mixing the 6 audio samples of every 

channel for each frame. After that, we do 

the CIRC coding of our matrix. After the 

encoding step, we select which 

modification we want to make to protect 

our data: on the one hand, we can 

simulate a single scratch in a specific 

sector of data; on the other hand, several 

scratches can be made. Moreover, we can 

modify some parts of the Reed-Solomon 

codeword in a finer way: arbitrarily, we 

modify the four bytes which stand for the 

redundancy of the RS codes C1 and C2 (we 

could modify the other bytes but these 
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ones were easy to localize in the 

interlaced matrix). Finally, we are 

searching the best compromise between 

the noise added in the numerical reading 

and the quality of the data recovered after 

the interpolation in the analogical reading.  

 

     4.2 Detailed Explanations of our 

program 

 

• Extraction of the data:  

 

We have chosen to operate on wave 

files because it is a simple format in 

which the audio data can be directly 

used. Indeed, the 44 first bytes of a 

wave file constitute the header and 

the data are found in the rest of the 

file. So, we put the header in a table 

to use it when we reconstruct the 

wave file at the end of the operation. 

Besides, the data are stocked in a 

matrix that will be the entry for the 

interlacing before C1 coding. 

 

• Interlacing before C1 coding: 

 

This step aims at optimizing time 

Interpolation of audio data. In each 

frame, we mix the 6 audio samples of 

every channel. We sum up our process 

in the following schema: 

 

A frame before the interlacing 
G1 D1 G2 D2 G3 D3 G4 D4 G5 D5 G6 D6 

 

The same frame after the interlacing 
G1 G3 G5 D1 D3 D5 G2 G4 G6 D2 D4 D6 

 

In this scheme, �Gi;  Di � (with 

i ∈ 	1; 6�� represents an audio sample 

for a channel and a frame. Gi refers to 

the left byte of the sample and Di to 

the right one. The first and second 6 

boxes of the table represent a 

channel. 

 

•  CIRC Coding:  

 

The CIRC coding is made up of three 

stages: the C1 coding, the interlacing 

phase and the C2 coding. 

The C1 code is a shortened (28, 24) 

Reed-Solomon code. As we work with 

a (255, 251) Reed-Solomon code, we 

have to extend every frame to 251 

bytes by filling the new bytes with 

zeros. Then, we apply a (255, 251) 

Reed-Solomon coding to each frame 

and we add the four calculated codes 

to the initial data frames. At the end 

of the C1 coding, we have a matrix 

whose lines are frames of 28 bytes 

and the four last bytes correspond to 

C1 codes as you can see on the next 

schema: 

 

                             28 Bytes 
B1 B2 B3 …….. B23 B24 C1.1 C1.2 C1.3 C1.4 

  C1 Coding 

 

The latter matrix can now be 

interlaced in order to improve the 

capacity of recovering data in case of 

errors. The interlacing used in the CIRC 

coding has a delay of 4 and its 

principle is: we built a matrix where 

the j
th  

line is made up of the j
th

 byte of 

each frame in the order of the indexes 

and the j
th

 line is shifted to the right 

from j-4 bytes. The blanks of the 

interlacing matrix are filled with zeros. 

The following schema explains the 

principle: 

   Frames number + 4*(28-1)   columns 

 
For the C2 coding, we operate on the 

interlacing matrix. The C2 code is a 

shortened (32, 28) Reed-Solomon code. 

The C2 coding principle is the same as the 

C1 coding one but it completes the 
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columns of the interlacing matrix: the 

frames are made up of 32 bytes after the 

C2 coding as you can see on the following 

schema: 

 Frames number + 4*(28-1) columns 

 
• Insertion of wrong bytes:  

 

Errors are inserted in the data by 

three ways: the modification of 

columns of data (scratch method), the 

modification of C1 codes and the 

modification of C2 codes. We chose to 

change to zero the value of the bytes 

that undergo the modification. 

We introduce a few parameters to all 

those modifications such as the 

number of columns to modify per 

sector, the frequencies modification 

of columns and sectors.  

 

• CIRC Decoding: 

 

Like the CIRC coding, the CIRC 

decoding is also made up of three 

stages: the C2 decoding, the reverse 

interlacing and the C1 decoding. 

The modified interlacing matrix is the 

entry of the C2 decoding that reduces 

the frames number of bytes from 32 

to 28 bytes by eventually modifying 

those bytes in accordance with the C2 

codes values. 

Then, we apply the reverse interlacing 

to the matrix obtained so as to 

remove the delay between the frames 

and to organize the frames in lines. 

Finally, each frame undergoes the C1 

decoding and, at the end, we find back 

the data with eventual modifications. 

The C1 and C2 decoding are based on 

the (251, 254) shortened Reed-

Solomon decoding. So, frames have to 

be extended before each decoding. 

The Reed-Solomon decoding consists 

in the arithmetic of syndromes and 

the Berlekamp algorithm that helps to 

find the error location polynomial. 

 

• Reverse Interlacing after decoding C1: 

 

After the decoding of C1, we make the 

inverse process of interlacing before 

coding C1. We treat 6 audio samples 

of every channel in each frame just 

like before. We implement the 

algorithm inverse and find again our 

frame like shown in the following 

scheme: 

 

   A frame before the reverse interlacing 
G1 G3 G5 D1 D3 D5 G2 G4 G6 D2 D4 D6 

 

  The same frame after the reverse interlacing 
G1 D1 G2 D2 G3 D3 G4 D4 G5 D5 G6 D6 

 
This interlacing enables not to damage 

successive samples in case of a big 

scratch. If an error on a sample is 

detected, we can solve it by making 

the average with the previous sample 

and the next one: this is the temporal 

interpolation. 

 

• Reconstruction of the wave files: 

At the end, we have the matrix whose 

elements are the audio data of the 

new corrupted wave file. We just have 

to create a wave file in which we put 

the header of the original wave file 

followed by the new audio data. 

 

5. RESULTS 

All the following tests have been made with 

audio.wav.  

5.1 Single scratch on our data 

  

Our first experimentation consists in 

simulating a single scratch on a CD. To do this, 

we erase a block (successive columns) of data 

and the number of erased columns stands for 
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the length of the scratch. The operation is 

made by the function “Rayure1” that erased a 

certain number of columns in a specific sector. 

We observe the rates of residual errors and of 

errors corrected by interpolation on the 

following graphic: 

 
Rates evolutions of residual errors (in blue) and of errors 

treated by interpolation (in red) according to the number of 

columns erased by a single scratch 

 

 

This graphic shows that the interpolation can 

recover until 42 successive erased columns. 

Yet, theoretically, the interpolation is 

supposed to treat 48 successive columns. Our 

algorithm of interpolation is clearly not 

optimal but it has an efficiency of 87, 5%.  

Moreover, our CIRC decoding can correct 8 

successive wrong frames, which corresponds 

to an efficiency of 53%. We can explain that 

because we do not implement the most 

optimal CIRC decoding. 

5.2 Quality of interpolation after several 

scratches 

 

In this test, we make scratches of C columns in 

one sector out of two for 70 sectors. The first 

modified sector is the 1000
th

 one. So, we 

observe the phenomenon (we hear strong 

clicks that can be harmful to the headphones) 

during one second at the 13
th

 second of the 

audio file. 

 

 

 

 
Evolution of the errors rate according to the number of columns 

erased by a scratch on one sector out of two and for 70 sectors 

The data read with interpolation are not 

satisfying: we still hear an unpleasant sound. 

So, our implementation of interpolation is 

limited in this particular case. We cannot plan 

to protect our data this way. 
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5.3 Quality of interpolation after inserting 

errors on Reed-Solomon codes  

 

  

In this last experimentation, we make a series 

of tests with an insertion of errors in Reed-

Solomon codes in order to modify the 

decoded data. We set the number of modified 

columns to 3 and the frequency of columns 

modification to ¼ and we try to obtain the 

best analogical reading with a disturbing 

quality of sound (too many non periodic clicks) 

during the numerical reading. 

Evolution of the errors rate according to the frequency of sector 

modification with a number of erased columns (per sector) of 3 

and a frequency of columns modification of 1/4 

 

We fix the optimal parameters of our method 

to a number of modified bytes in the C1 and 

C2 codeword of 3, a frequency of sector 

modification of 1/100 and a frequency of 

columns modification of ¼. The interpolation 

obtained with these parameters is optimal: all 

the errors are treated and the sound is as 

clean as the original audio file. So, the audio 

protection is sure. 

 

6. CONCLUSION 

 

Our goal has been reached because we have 

implemented a working solution that uses the 

technique of errors insertion. However, we 

would like to have more time to try to 

implement the other methods mentioned in 

the present report (the modification of the 

TOC particularly) so as to mix them and to 

realize a complete CD protection. Besides, we 

could also improve the method we 

implemented (CIRC decoding, temporal 

interpolation) in order to have better results. 

This project was interesting because the 

theme was a current subject with concrete 

hardships like those we will have to face in an 

incoming future. 
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