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1 IntrodutionIn [Dif76℄, Whit�eld Di�e and Martin E. Hellman desribed the idea of publi key ryptography and theonept of trap door one way funtion. This paper was a landmark as it o�ered an alternative to symmetriryptography (when the same key is used for enryption as well as deryption) and the problem of key-exhange. In asymmetri ryptography the key needed to enrypt a plaintext is di�erent from the key usedto derypt it. This allows someone, let's all her Alie, to publish her enryption key. If Bob wants to send aseret message to Alie, he will enrypt the message using Alie's publi enryption key and send it to her.Alie an then derypt and read the message. Assuming she didn't dislose her seret key, she's the only onewho an do so. The proess is summarized in �gure 1. Another upside of asymmetri ryptography is that it

Fig. 1. Enryption-deryption mehanismallows to build protools for purposes others than only sending serets suh as digital signing (see [Riv78℄),authentiation or Zero-Knowledge (see [QQQ+90℄).The main underlying priniple of publi-key ryptography is the notion of trapdoor one-way funtion: Aone-way funtion is a funtion that is �easy� to ompute but �hard� to invert. More formally:De�nition 1. f is a one-way funtion if it is omputationally feasible (in polynomial time) to get f(x) from
x, but for whih it is omputationally infeasible to get x from f(x)One an see that if x is the message Bob wants to send to Alie, omputing f(x) and sending it to Alie isquite useless: Alie (just like anyone else) does not have the omputational power to get x from f(x). Thisis when the notion of trapdoor omes in handy:De�nition 2. A trapdoor one-way funtion is a one-way funtion with the speial property that with apartiular piee of information (the trapdoor) it beomes omputationaly feasible to get x from f(x)Alie keeping this �trapdoor� seret,is ensured to be the only way one that an get x from f(x) in reasonabletime. 3



Following the publiation of [Dif76℄ researhers onentrated their e�orts in �nding andidate trapdoorone-way funtion. Several of these andidates relied on number theoriti problems, higher residuosity (see[Na98℄), disrete logarithm (see [Gam85℄) and , integer fatorisation (see [Riv78℄) among others. Anotherway for building asymmetri ryptographi shemes is to hoose a omputationally hard problem, use aneasy instane as the private key, a hard instane as the publi key, the trapdoor one-way being the inversibletransformation used to transform the easy instane into the hard instane (see [MH78℄).2 Knapsak ryptosystems2.1 The knapsak problemThere are two kinds of knapsak problems:� Additive: Given a �nite sequene of integers: (ai)i=1..n and S ∈ N, is it possible to �nd (ǫi)i=1..n ∈ {0, 1}nsuh that S =
n∑

i=1

ǫiai ?� Multipliative: Given a �nite sequene of integers: (ai)i=1..n and P ∈ N, is it possible to �nd (ǫi)i=1..n ∈

{0, 1}n suh that P =

n∏

i=1

aǫi

i ?Theorem 1. The knapsak problem is NP-hardEven tough the knapsak problem is said to be very hard, there are instanes very easy to solve. Beforedesribing suh instanes, we need to introdue the following de�nition:De�nition 3. (aj)j∈J is a super inreasing sequene when
∀k ∈ J,


 ∑

j∈J, j<k

aj


 < akProposition 1. Solving an additive knapsak problem when the oe�ients form a super inreasing sequeneis feasible in linear omplexity.Proof. Let (ai)i=1..n be a super inreasing sequene and S =

n∑

i=1

ǫiai be an instane of an additive knapsak.We need to determine the value of (ǫi).Consider ǫn: an < S ⇒ ǫn = 1 indeed by hypothesis, an >

n−1∑

i=1

ai.Then, we an onsider the following knapsak instane
(ai)i=1..n−1 with S′ = S − an if ǫn = 1 or S′ = S if ǫn = 0.This gives us a linear algorithm to solve this kind of problems.Proposition 2. Solving a multipliative knapsak problem when the oe�ients are all oprime is feasiblein linear omplexity.Proof. Let (ai)i=1..n be a sequene suh that ∀(i, j), i 6= j, gcd(ai, aj) = 1 and P =

n∏

i=1

aǫi

i be an instaneof a multipliative knapsak.
∀k ∈ {1, .., n}, de�ne pk = P mod [ak].If ǫk = 1, ∃K ∈ ZP = ak × K this implies pk = 0.This gives an easy and fast way for reovering the ǫi.Reiproally if pk = 0 it implies that that P mod [ak] = 0 and by de�nition ak|P . So we an dedue that ǫk4



2.2 The ryptosystemThe exhanged messages will be omposed by bits. Let b = b0...bn be a message.In order to enrypt a message, the sender needs to get the publi key of the reeiver: (pubrec
i )i=1..n. Thenhe enrypts the message i.e. he omputes

C =

n∑

i=1

bipubrec
i (or

n∏

i=1

(pubrec
i )bi).After that, he sends the message to the reeiver.The reeiver gets C and he omputes C0 = f−1(C) where f is the one-to-one funtion suh that ∀i, pubrec

i =
f(privrec

i ). He is now able to derypt C0 and reover the message b.We have implemented two di�erent knapsak ryptosystems:The �rst one has been proposed by Ralph Merkle and Martin Hellman [MH78℄ in 1978. The keys aregenerated as follows:Compute a super inreasing sequene (privi)i=1..n whih will be the private key.Let M be suh that M >

n∑

i=1

privi.Let W ∈ N be suh that gcd(W, M) = 1.The publi key will be (pubi)i=1..n where ∀i, pubi = fW (privi) and fW : Z/MZ −→ Z/MZ suh that
∀x ∈ Z/MZ f(x) = Wx mod [M ]. (see 9.2 for details)The seond one has been proposed by Masakatu Morii and Masao Kasahara in 1988. The private key is amultipliative knapsak (privi)i=1..n where ∀i, gd(privi, privj 6=i) = 1.Let p ∈ N suh that ∀i, gd(privi, p) = 1 and p >

n∏

i=1

privi.Let e be suh that gd(e, p − 1) = 1 and ompute d = e−1mod[p − 1].The publi key is the multipliative knapsak (pubi)i=1..n where ∀i, pubi = prive
i [p] and p.(See 9.3 for more details)3 The RSA ryptosystem3.1 The RSA Cryptosystem [Riv78℄1. We onsider n, p, q ∈ N suh that p and q are prime numbers and n = pq2. We also onsider e, d ∈ N suh that ed ≡ (φ(n))3. The publi key pk is (e,n) and the private key sk is (d,n)4. ∀x ∈ Z/nZ, enryptpk(x) = xe mod[n]5. ∀y ∈ Z/nZ, deryptsk(y) = xd mod[n] Fig. 2. The RSA ryptosystemTo benhmark the knapsak ryptosystem we had to hoose another ryptosystem to at as referene. Thehoie was fairly obvious: RSA (for ryptographers Rivest, Shamir and Adleman) is a well studied protool5



and probably the most widely used one sine the publiation of [Riv78℄. Rivest et al. paper was writtenfollowing the publiation of the forementioned[Dif76℄. The idea behind the RSA sheme is that given ansu�iently well hoosen integer n, it is omputationally infeasible to fator it into the produt of its primefators and that �nding φ(n) is as hard as fatoring n. In �gure 2 are shown the method for enryption andderyption for the RSA ryptosystem.4 The L
3 algorithm [Len82℄ and attak on the knapsak ryposystem4.1 The algorithmThroughout this setion, when we onsider some vetors (bi)i=1..n, (b∗i )i=1..n will always denote the result ofthe orthogonalization via the Gram-Shmidt proess of (bi)i=1..n. And ‖.‖ will always denotes the eulidiannorme.De�nition 4. A lattie L is a disrete sub group of R

n.More preisely, L is a lattie of dimension m if L 6= ∅ and there exists m vetors b1, ... , bn linearyindependant over R suh that L = ⊕m
i=1ZbiDe�nition 5. Let (bi)i=1..n be the basis of a lattie. (bi)i=1..n is said to be weakly-redued when

∀i, j i 6= j , |
(bj|b

∗
i )

‖b∗i ‖
2
| <

1

2De�nition 6. We de�ne xxq as the losest integer from x:
xxq = sgn(x)⌊|x| + 0.5⌋.where ⌊.⌋ is the �oor funtion.Remark 1. This is the losest integer away from zero.Here is an algorithm produing weakly-redued basis:Input: (bi)i=1..n a basis of a lattieOutput: (bi)i=1..n weakly-reduedfor k = 2 to n dofor j = k − 1 to 1 do

bk = bk − x
(bk|b∗

i
)

‖b∗
i
‖2 qbjend forend for Fig. 3. Weak redution of a basis (bi)i=1..nThere are several other de�nitions of the losest integer suh as:1. xnq = ⌊n + 0.5⌋2. xnq is the losest even integerIn order to implement the weak redution we had to hoose a de�nition to handle the ase of perfethalves. We hoose the one we proposed beause the algorithm on �gure 4 is deterministi (for a given instaneit will always output the same result). But with the following input < 1, 20, 80 >, S = 21, and the de�nition

⌊n+0.5⌋ of the losest integer, the LLL algorithm was not able to �nd the solution and there is no reason inthis ontext to round up to losest even integer. While hoosing the previous we gave we found the solution.We veri�ed with the implementation proposed by Damien Sthele [Ste05℄ and he found the same result asours. 6



De�nition 7. A basis (bi)i=1..n is said to be LLL-redued with a fator δ when1. it is weakly redued2. it veri�es the Lovasz ondition:
∀k, ‖b∗k+1‖

2 ≥ (δ − (
(bk+1|b∗k)

‖b∗k‖
2

)2)‖b∗k‖
2In [Len82℄ A.K Lenstra, H.W Lenstra and L.Lovasz showed that if a basis is LLL-redued with a fator

3
4 , their algorithm (see �gure 4) will produe a "small" basis: a basis omposed by small vetors. In order toimplements the LLL algorithm we use a ourse teahed by Niolas Brisebarre ([Bri03℄).Input: B = (bi)i=1..n a basis of a lattieOutput: (bbi)i=1..n LLL-redued with a fator δ{At step k, we onsider that B = (b1, . . . , bk) is LLL-redued.}

k← 1while k ≤ n do
B ← B

S

bk+1WeakRedution(B)if ‖b∗k+1‖
2 ≥ (δ − (

(bk+1|b
∗

k
)

‖b∗
k
‖2 )2)‖b∗k‖

2 then
k← k + 1elseswap bk and bk+1

k← k − 1end ifend while Fig. 4. The L3 algorithmThe omplexity of this algorithm was �rst given by Lenstra et al. in [Len82℄. We have O(n6 ln3 B) wheren is the size of the basis and B is suh that ∀i, ‖bi‖ < B. But faster implementations using �oating-pointalulus are know to work under O(n5(n + lnB) lnB) (see [Ste05℄).
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4.2 Attak on the Merkle-Hellman ryptosystem [LO85℄Altought the subset sum is NP-hard the litterature shows that the instane used in the Merkle-Hellmanryptosystem an be broken in polynomial time by redution to a lattie and the use of the LLL-baseredution algorithm. This method raises two questions:1. How does one hoose the lattie in question ?2. Why is the output of LLL algorithm the solution to the knapsak problem ?We denote Alie's publi key (a1, a2, . . . , an), Bob plaintext m (mi, i = 1, . . . , n being the i-th bit of m) and
M =

n∑

i=1

aimi. The lattie vetor basis being referred to as b1, . . . , bn+1 (see �gure 5) the output of the LLLalgorithm will be denoted b̂1, . . . , b̂n+1. We also need to de�ne the notion of density:De�nition 8. The density d of a subset sum problem is the quantity n

log2( max
i=1,...,n

ai)
.Let's onsider L the lattie spanned by the vetors in �gure 5: L = {

n∑

i=1

zibi + bn+1, zi ∈ Z}. Notie that thevetor solution expanded m̂ = (m1, . . . , mn, 0) is in L beause of the integer linear relation m̂ =

n+1∑

i=1

mibi.We an also notie that m̂ is a fairly short vetor of L, this statement an be justi�ed by the fat that inryptographi settings we have ai >> n ≥ ‖m̂‖2. Intuitively, if one wants to �nd a short vetor in L, onebetter try to nullify the last oordinate beause its ontribution to the norm is likely to be far bigger thanthe rest of the vetor.
b1 = (1, 0, 0, . . . , 0,−KpubAlice

1 )

b2 = (0, 1, 0, . . . , 0,−KpubAlice
2 )...

bn = (0, 0, 0, . . . , 1,−KpubAlice
n )

bn+1 = (0, 0, 0, . . . , 0, KS)Fig. 5. The subset sum lattie
In fat [LO85℄ Lagarias and Odlyzko stated that for all problems of density d < 0.645 the vetor m̂ solutionhas a very high probability of being the shortest non-zero vetor of the lattie spanned by the vetors in5 (see [CJL+91℄ for a formal proof). This way we manage to redue the subset sum problem to the one of�nding the shortest vetor of L. However the LLL algorithm doesn't atually �nd the shortest vetor of agiven lattie but we know that the length of the shortest (and �rst) vetor of its output is bounded by therelation:

‖b̂1‖
2 < 2n−1λ2 (1)where λ is the norm of the atual shortest vetor of the lattie. (see [Len82℄, [JS94℄). The onstant K is atrik to �fool� the LLL into giving us the shortest vetor: we know that the shortest vetor of the lattie is thesolution to the knapsak problem. Being a binary vetor, we have the following relation about the shortest8



vetor λ2 < n. Suppose K > n2n−1 and x ∈ L suh that the last oordinate of x isn't zero we an thenderive that ‖x‖2 > K > n2n−1 and x annot be the shortest vetor of the output LLL without ontraditing1. We are now sure that the output of LLL is in fat the shortest vetor of L whih is m̂, the vetor solutionto the subset sum problem. Note that the bound given by the equation 1 is a worst-ase bound, in average, the vetors found by LLL are muh better. This is why we allowed ourselves to set K to 1.The last point we need to make to show the e�ieny of attaks on the Merkle-Hellman protool usingLLL is about density. We know that by onstrution (see [MH78℄) ai's are greater than 22n and therefore
d < n

ln2 22n = 1
2 < 0.645After breaking the Merkle Hellman ryptosystem, ryptographers went on to build knew knapsak-basedryptosystems of higher density, however Coster et al. showed in [CJL+91℄ that the bound ould be inreasedup to 0.9408 simply by using a di�erent matrix.

9



5 Comparaison between RSA and knapsakRemark 2. In order to measure the time spent by our programs, we use the getrusage POSIX tool.5.1 EnryptionIn our implementation of the RSA ryptosystem, the value of e is the onstant 216+1. The enipher funtionomputes iphered message = (clear message)e mod [n]. The omplexity of this operation is O(log2(e))t(n)where t(n) is the omplexity of a modular multipliation of size n. That is why the enryption time for theRSA protool is linear with respet to the size of the key.For the Merkle-Hellman ryptosystem, the enryption is essentially the summation of size 2n whih is alinear operation. That is why we observe a linear dependeny between the time and the size of the key usedfor enryption.

Fig. 6. Enryption time5.2 DeryptionThe deryption in the Merkle-Hellman onsists of1. a modular multipliation2. some substrationsThe time needed for the modular multipliation is small regarding the number of substration that is whywe observe a straight line on �gure 7. 10



For RSA, we ompute a modular exponentiation. The order of the exponent's size is approximately n. Indeedas the parameter e is onstant, the size of the parameter d will grow with n. That is why the time is quadratiat the beginning until the gmp library [gmp℄ hange the algorithm used to ompute the multipliation: atthe begining it uses a naive algorithm (omplexity O(n2)) and then it uses Karatsuba algorithm (omplexity
O(nlog2(3))). This explains the hanges on the urve of �gure 7.

Fig. 7. Deryption time
5.3 Key generationThe generation of key in our implementation of the RSA protool is done as follows:1. ompute two random numbers of size n

22. �nd to prime numbers p1 and p2 of size n
2 using the mpz_nextprime primitive on the two previous number.3. ompute d = e−1 mod [(p1 − 1)(p2 − 1)] using the mpz_invert11



The operation of �nding the next prime is the longest. And as we use a probabilisti algorithm, the timeneeded for �nding a prime number is also "random". That is why we observe satter plot on �gure 8.For the generation of the Merkle-Hellman protool keys we use the following algorithm:SUM = 0o�set = 0for i = 1 to n doR = random number of size n + offsetif R ≤ SUM thenR=2Ro�set++end ifprivKey[i℄=RSUM=SUM+Ro�set++end forThat is why we observe the quadrati aspet of the urve on �gure 8.
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Fig. 8. Generation time5.4 SeurityThe problem of breaking RSA is equivalent to fatoring numbers. The best known algorithm for integerfatorisation is NFS (see [Pom96℄), its omplexity is sub-exponential (see [Lan℄). In 1999, a team of omputersientist fatorized RSA-155 (see 9.4): a RSA number omposed of 155 digits approximatively 512 bits (see[CLR+00℄). The unit used to measure the number of operations needed to run the algorithm is mips: amillion operation per seonds during one year. It took 8000 mips to fatorize RSA-155.The omplexity of NFS is O(e1.9223+o(1)(ln(n))
1
3 (ln ln(n))

2
3 ). As it is the best known algorithm for integerfatorisation, In order to ompare the seurity of RSA and the Merkle-Hellman ryptosystem, we used theresult of [CLR+00℄ then extrapolated it. This was the only way to estimate the value of the onstant of thetheoretial omplexity. We found a onstant ≈ 0.0000059. We also used the theoretial omplexity of the

L3 algorithm (see 4.1) to plot the number of operations needed for breaking RSA or the Merkle-Hellmanryptosystem.By onstrution (see 5.3), in the Merkle-Hellman protool, the size of the publi key parameters is ≈ 23n.We an onsider that the majorant is 23n + 1. The memory spae used for storing a Merkle-Hellman key of13



size n an be omputed as follows: we have n oe�ients of size 2n bits in average for the private key and wehave n oe�ients of size 3n bits. So the memory spae is O(n2) bits. We an also simplify the omplexity of
L3 as follows: O(n5(n + lnB) lnB) = O(n7) beause of the way we onstrut the oe�ients. We used fplll(see [Ste05℄) in order to determine more preisely the omplexity: for reduing a basis it took 9 seonds ona single proessor of 1.67 GHz that is why we onsider O(n7) ≈ 0.0001503n

1
7 .size of RSA key orresponding Knapsak keynumber of oe�ients memory spae128 34 5,6 Kb256 149 108,4 Kb512 1077 5,5 Mb1024 14756 1,01 Gb2048 463490 980 Gb4096 42906924 8.17 106 GbFig. 9. equivalene between RSA and Merkle-HellmanThe values we obtain are not preise enought and it is strange that RSA-256 or RSA-128 seems less seurethat the knapsak ryptosystem. But after the values seem more realisti. Anyway the general idea of theprevious array was to show that the Merkle-Hellman ryptosystem is not usable in pratie.Furthermore the knapsak ryptosystem has been totally broken by Adi Shamir in 1982 (see [Sha82℄). Thenseveral variants of the knapsak ryptosystems have been proposed over the years and almost all of themhave been broken (for a global review see [Lai℄).
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6 ConlusionThe ryptosystems based on the knapsak problem are omputationally easier than the RSA protoolwhen it omes to enryption and deryption whih are nothing more than sums and at most one modularmultipliation. Furthermore the key generation stage is simpler: it only requires the generation of a super-inreasing sequene, one modular inversion and n modular multipliations whih is in no way omparableto the �nding of two large strong primes. This is a substential advantage over RSA beause some of thehardware ryptography is implemented on have very limited omputing power and/or are very little powered.The knapsak ryptosystem, as it turned out, did not sustainted the omparison to the seurity o�ered byRSA. The equivalent to the widely used 1024 bit long RSA key is a 463490 bit long whih would oupyalmost a terabyte (1000 gigabytes) of storage.For all the reason we mentionned above, when Merkle and Hellman proposed their protool in [MH78℄, itappeared to be a good alternative to the RSA protool. However their ryptosystem was broken by Shamir in1982 (see [Sha82℄). After that Merkle and Hellman published an amelioration of their ryptosystems whihinvolved an iterative proess for the publi key generation. This was designed to resist Shamir's attak.However Brikell in [Bri84℄ proposed a method for breaking even this new ryptosystem. Atually variousattaks, most of them based on the lattie redution algorithm L3 we desribed in setion 4, broke almostall variants of ryptosystems based on the knapsak problem. That is why those kind of ryptosystems havenever been used in pratie and why researhers progressively lost interest.However the Masakatu Morii-Masao Kasahara ryptosystem desribed in [Lai℄ whih use a easy multiplia-tive knapsak as a private key and transform it into the private key using the RSA theorem. Laurent Evainin [Eva08℄ desribed a knapsak-based ryptosystem built on NP-hard instane.Even thought knapsak-based ryptosystems were never as suesful as RSA the idea to use easy instaneof �hard� problems as private key, hard instanes as publi key and a one-to-one seret transformation as theone trapdoor one way funtion lived on. The NTRU publi key ryptosystem use the NP-hard in averageproblem of �nding the shortest vetor in a lattie [HPS98℄.7 ThanksWe want to thanks M. Laurent Fousse for his useful remarks on our work.
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9 Appendix9.1 Knapsak: best known general algorithmThe best known algorithm for solving the knapsak without any ondition on its input problem runs with
Oc(n2

n

2 ) and also Om(2
n

2 ) where� Oc will denote the omplexity regarding the number of operations performed for solving a problem� Om will denote the storage spae needed for solving a problem9.2 Merkle-HellmanProposition 3. If gcd(W, M) = 1 then fW : Z/MZ −→ Z/MZ suh that ∀x ∈ Z/MZ f(x) = Wx mod [M ]is a one-to-one funtion and f−1
W = fW−1 mod [M ].Let's assume Bob wants to send a message b = b1...bn to Alie: Bob omputes C =

n∑

i=1

bipubAlice
i and send

C to Alie.When Alie reeives the message, she omputes
fW−1 mod [M ](C) = fW−1 mod [M ](

n∑

i=1

bipubAlice
i ) =

n∑

i=1

bifW−1 mod [M ](privAlice
i ) =

n∑

i=1

biprivAlice
iShe is now able to derypt the message fW−1 mod [M ](C) and reover b.9.3 Masakatu Morii-Masao KasaharaTheorem 2. Consider n ∈ P.Let e, d be suh that de = 1 mod [n − 1] and e, d < n.

∀x ∈ Z/nZ, xed = x mod [n]Proof. ed = 1 mod [p − 1] so ∃K ∈ Z suh that ed = K(p − 1) + 1
xed = xK(p−1)+1 = x (x(p−1))K using Fermat's theorem, we know that
x(p−1) = 1 mod [p]. So we obtain xed = 1 mod [p] .Again let's assume that Bob wants to send a message b = b0...bn to Alie. He omputes C =

n∏

i=1

(pubAlice
i )bi mod [p]and sends C to Alie.When she reeives the message, Alie will ompute:

Cd mod [p] =

n∏

i=1

(pubAlice
i )dbi mod [p] =

n∏

i=1

(privAlice
i )bi mod [p]She is now able to derypt the message n∏

i=1

(privAlice
i )bi mod [p] and reover b.9.4 RSA-155RSA-155 =

10941738641570527421809707322040357612003732945449205990913842131476349984288934784717
997257891267332497625752899781833797076537244027146743531593354333897= 102639592829741105772054196573991675900716567808038066803341933521790711307779
×10660348838016845482092722036001287867920795857598929152227060823719306280864317


