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ha Alexandre Anzala-Yamajako and Antoine RojatGrenoble INP Ensimaghttp://www.ensimag.frJune 18, 2009Abstra
t. In this arti
le, we present a 
ryptosystem introdu
ed in 1978 by Ralph Merkle and MartinHellman [MH78℄ in se
tion 2. This 
ryptosystem is based on the knapsa
k problem. The purpose of ourarti
le is to de
ide whether it is a valid alternative to the RSA 
ryptosystem or not. The RSA 
ryp-tosystem is des
ribed in se
tion 3. In order to 
ompare those proto
ols we implement both of them.We 
ompare the performan
es of those two proto
ols in se
tion 5. It appears that the knapsa
k 
ryp-tosystem is faster than RSA but regarding the se
urity, it 
annot sustain the 
omparison with RSA.We also des
ribe an atta
k against the Merkle-Hellman 
ryptosystem based on latti
e redu
tion inse
tion 4. This atta
k does not allow to re
over the private key of somebody but the atta
ker is ableto de
ipher any 
iphered message.
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1 Introdu
tionIn [Dif76℄, Whit�eld Di�e and Martin E. Hellman des
ribed the idea of publi
 key 
ryptography and the
on
ept of trap door one way fun
tion. This paper was a landmark as it o�ered an alternative to symmetri

ryptography (when the same key is used for en
ryption as well as de
ryption) and the problem of key-ex
hange. In asymmetri
 
ryptography the key needed to en
rypt a plaintext is di�erent from the key usedto de
rypt it. This allows someone, let's 
all her Ali
e, to publish her en
ryption key. If Bob wants to send ase
ret message to Ali
e, he will en
rypt the message using Ali
e's publi
 en
ryption key and send it to her.Ali
e 
an then de
rypt and read the message. Assuming she didn't dis
lose her se
ret key, she's the only onewho 
an do so. The pro
ess is summarized in �gure 1. Another upside of asymmetri
 
ryptography is that it

Fig. 1. En
ryption-de
ryption me
hanismallows to build proto
ols for purposes others than only sending se
rets su
h as digital signing (see [Riv78℄),authenti
ation or Zero-Knowledge (see [QQQ+90℄).The main underlying prin
iple of publi
-key 
ryptography is the notion of trapdoor one-way fun
tion: Aone-way fun
tion is a fun
tion that is �easy� to 
ompute but �hard� to invert. More formally:De�nition 1. f is a one-way fun
tion if it is 
omputationally feasible (in polynomial time) to get f(x) from
x, but for whi
h it is 
omputationally infeasible to get x from f(x)One 
an see that if x is the message Bob wants to send to Ali
e, 
omputing f(x) and sending it to Ali
e isquite useless: Ali
e (just like anyone else) does not have the 
omputational power to get x from f(x). Thisis when the notion of trapdoor 
omes in handy:De�nition 2. A trapdoor one-way fun
tion is a one-way fun
tion with the spe
ial property that with aparti
ular pie
e of information (the trapdoor) it be
omes 
omputationaly feasible to get x from f(x)Ali
e keeping this �trapdoor� se
ret,is ensured to be the only way one that 
an get x from f(x) in reasonabletime. 3



Following the publi
ation of [Dif76℄ resear
hers 
on
entrated their e�orts in �nding 
andidate trapdoorone-way fun
tion. Several of these 
andidates relied on number theoriti
 problems, higher residuosity (see[Na
98℄), dis
rete logarithm (see [Gam85℄) and , integer fa
torisation (see [Riv78℄) among others. Anotherway for building asymmetri
 
ryptographi
 s
hemes is to 
hoose a 
omputationally hard problem, use aneasy instan
e as the private key, a hard instan
e as the publi
 key, the trapdoor one-way being the inversibletransformation used to transform the easy instan
e into the hard instan
e (see [MH78℄).2 Knapsa
k 
ryptosystems2.1 The knapsa
k problemThere are two kinds of knapsa
k problems:� Additive: Given a �nite sequen
e of integers: (ai)i=1..n and S ∈ N, is it possible to �nd (ǫi)i=1..n ∈ {0, 1}nsu
h that S =
n∑

i=1

ǫiai ?� Multipli
ative: Given a �nite sequen
e of integers: (ai)i=1..n and P ∈ N, is it possible to �nd (ǫi)i=1..n ∈

{0, 1}n su
h that P =

n∏

i=1

aǫi

i ?Theorem 1. The knapsa
k problem is NP-hardEven tough the knapsa
k problem is said to be very hard, there are instan
es very easy to solve. Beforedes
ribing su
h instan
es, we need to introdu
e the following de�nition:De�nition 3. (aj)j∈J is a super in
reasing sequen
e when
∀k ∈ J,


 ∑

j∈J, j<k

aj


 < akProposition 1. Solving an additive knapsa
k problem when the 
oe�
ients form a super in
reasing sequen
eis feasible in linear 
omplexity.Proof. Let (ai)i=1..n be a super in
reasing sequen
e and S =

n∑

i=1

ǫiai be an instan
e of an additive knapsa
k.We need to determine the value of (ǫi).Consider ǫn: an < S ⇒ ǫn = 1 indeed by hypothesis, an >

n−1∑

i=1

ai.Then, we 
an 
onsider the following knapsa
k instan
e
(ai)i=1..n−1 with S′ = S − an if ǫn = 1 or S′ = S if ǫn = 0.This gives us a linear algorithm to solve this kind of problems.Proposition 2. Solving a multipli
ative knapsa
k problem when the 
oe�
ients are all 
oprime is feasiblein linear 
omplexity.Proof. Let (ai)i=1..n be a sequen
e su
h that ∀(i, j), i 6= j, gcd(ai, aj) = 1 and P =

n∏

i=1

aǫi

i be an instan
eof a multipli
ative knapsa
k.
∀k ∈ {1, .., n}, de�ne pk = P mod [ak].If ǫk = 1, ∃K ∈ ZP = ak × K this implies pk = 0.This gives an easy and fast way for re
overing the ǫi.Re
ipro
ally if pk = 0 it implies that that P mod [ak] = 0 and by de�nition ak|P . So we 
an dedu
e that ǫk4



2.2 The 
ryptosystemThe ex
hanged messages will be 
omposed by bits. Let b = b0...bn be a message.In order to en
rypt a message, the sender needs to get the publi
 key of the re
eiver: (pubrec
i )i=1..n. Thenhe en
rypts the message i.e. he 
omputes

C =

n∑

i=1

bipubrec
i (or

n∏

i=1

(pubrec
i )bi).After that, he sends the message to the re
eiver.The re
eiver gets C and he 
omputes C0 = f−1(C) where f is the one-to-one fun
tion su
h that ∀i, pubrec

i =
f(privrec

i ). He is now able to de
rypt C0 and re
over the message b.We have implemented two di�erent knapsa
k 
ryptosystems:The �rst one has been proposed by Ralph Merkle and Martin Hellman [MH78℄ in 1978. The keys aregenerated as follows:Compute a super in
reasing sequen
e (privi)i=1..n whi
h will be the private key.Let M be su
h that M >

n∑

i=1

privi.Let W ∈ N be su
h that gcd(W, M) = 1.The publi
 key will be (pubi)i=1..n where ∀i, pubi = fW (privi) and fW : Z/MZ −→ Z/MZ su
h that
∀x ∈ Z/MZ f(x) = Wx mod [M ]. (see 9.2 for details)The se
ond one has been proposed by Masakatu Morii and Masao Kasahara in 1988. The private key is amultipli
ative knapsa
k (privi)i=1..n where ∀i, g
d(privi, privj 6=i) = 1.Let p ∈ N su
h that ∀i, g
d(privi, p) = 1 and p >

n∏

i=1

privi.Let e be su
h that g
d(e, p − 1) = 1 and 
ompute d = e−1mod[p − 1].The publi
 key is the multipli
ative knapsa
k (pubi)i=1..n where ∀i, pubi = prive
i [p] and p.(See 9.3 for more details)3 The RSA 
ryptosystem3.1 The RSA Cryptosystem [Riv78℄1. We 
onsider n, p, q ∈ N su
h that p and q are prime numbers and n = pq2. We also 
onsider e, d ∈ N su
h that ed ≡ (φ(n))3. The publi
 key pk is (e,n) and the private key sk is (d,n)4. ∀x ∈ Z/nZ, en
ryptpk(x) = xe mod[n]5. ∀y ∈ Z/nZ, de
ryptsk(y) = xd mod[n] Fig. 2. The RSA 
ryptosystemTo ben
hmark the knapsa
k 
ryptosystem we had to 
hoose another 
ryptosystem to a
t as referen
e. The
hoi
e was fairly obvious: RSA (for 
ryptographers Rivest, Shamir and Adleman) is a well studied proto
ol5



and probably the most widely used one sin
e the publi
ation of [Riv78℄. Rivest et al. paper was writtenfollowing the publi
ation of the forementioned[Dif76℄. The idea behind the RSA s
heme is that given ansu�
iently well 
hoosen integer n, it is 
omputationally infeasible to fa
tor it into the produ
t of its primefa
tors and that �nding φ(n) is as hard as fa
toring n. In �gure 2 are shown the method for en
ryption andde
ryption for the RSA 
ryptosystem.4 The L
3 algorithm [Len82℄ and atta
k on the knapsa
k 
ryposystem4.1 The algorithmThroughout this se
tion, when we 
onsider some ve
tors (bi)i=1..n, (b∗i )i=1..n will always denote the result ofthe orthogonalization via the Gram-S
hmidt pro
ess of (bi)i=1..n. And ‖.‖ will always denotes the eu
lidiannorme.De�nition 4. A latti
e L is a dis
rete sub group of R

n.More pre
isely, L is a latti
e of dimension m if L 6= ∅ and there exists m ve
tors b1, ... , bn linearyindependant over R su
h that L = ⊕m
i=1ZbiDe�nition 5. Let (bi)i=1..n be the basis of a latti
e. (bi)i=1..n is said to be weakly-redu
ed when

∀i, j i 6= j , |
(bj|b

∗
i )

‖b∗i ‖
2
| <

1

2De�nition 6. We de�ne xxq as the 
losest integer from x:
xxq = sgn(x)⌊|x| + 0.5⌋.where ⌊.⌋ is the �oor fun
tion.Remark 1. This is the 
losest integer away from zero.Here is an algorithm produ
ing weakly-redu
ed basis:Input: (bi)i=1..n a basis of a latti
eOutput: (bi)i=1..n weakly-redu
edfor k = 2 to n dofor j = k − 1 to 1 do

bk = bk − x
(bk|b∗

i
)

‖b∗
i
‖2 qbjend forend for Fig. 3. Weak redu
tion of a basis (bi)i=1..nThere are several other de�nitions of the 
losest integer su
h as:1. xnq = ⌊n + 0.5⌋2. xnq is the 
losest even integerIn order to implement the weak redu
tion we had to 
hoose a de�nition to handle the 
ase of perfe
thalves. We 
hoose the one we proposed be
ause the algorithm on �gure 4 is deterministi
 (for a given instan
eit will always output the same result). But with the following input < 1, 20, 80 >, S = 21, and the de�nition

⌊n+0.5⌋ of the 
losest integer, the LLL algorithm was not able to �nd the solution and there is no reason inthis 
ontext to round up to 
losest even integer. While 
hoosing the previous we gave we found the solution.We veri�ed with the implementation proposed by Damien Sthele [Ste05℄ and he found the same result asours. 6



De�nition 7. A basis (bi)i=1..n is said to be LLL-redu
ed with a fa
tor δ when1. it is weakly redu
ed2. it veri�es the Lovasz 
ondition:
∀k, ‖b∗k+1‖

2 ≥ (δ − (
(bk+1|b∗k)

‖b∗k‖
2

)2)‖b∗k‖
2In [Len82℄ A.K Lenstra, H.W Lenstra and L.Lovasz showed that if a basis is LLL-redu
ed with a fa
tor

3
4 , their algorithm (see �gure 4) will produ
e a "small" basis: a basis 
omposed by small ve
tors. In order toimplements the LLL algorithm we use a 
ourse tea
hed by Ni
olas Brisebarre ([Bri03℄).Input: B = (bi)i=1..n a basis of a latti
eOutput: (bbi)i=1..n LLL-redu
ed with a fa
tor δ{At step k, we 
onsider that B = (b1, . . . , bk) is LLL-redu
ed.}

k← 1while k ≤ n do
B ← B

S

bk+1WeakRedu
tion(B)if ‖b∗k+1‖
2 ≥ (δ − (

(bk+1|b
∗

k
)

‖b∗
k
‖2 )2)‖b∗k‖

2 then
k← k + 1elseswap bk and bk+1

k← k − 1end ifend while Fig. 4. The L3 algorithmThe 
omplexity of this algorithm was �rst given by Lenstra et al. in [Len82℄. We have O(n6 ln3 B) wheren is the size of the basis and B is su
h that ∀i, ‖bi‖ < B. But faster implementations using �oating-point
al
ulus are know to work under O(n5(n + lnB) lnB) (see [Ste05℄).

7



4.2 Atta
k on the Merkle-Hellman 
ryptosystem [LO85℄Altought the subset sum is NP-hard the litterature shows that the instan
e used in the Merkle-Hellman
ryptosystem 
an be broken in polynomial time by redu
tion to a latti
e and the use of the LLL-baseredu
tion algorithm. This method raises two questions:1. How does one 
hoose the latti
e in question ?2. Why is the output of LLL algorithm the solution to the knapsa
k problem ?We denote Ali
e's publi
 key (a1, a2, . . . , an), Bob plaintext m (mi, i = 1, . . . , n being the i-th bit of m) and
M =

n∑

i=1

aimi. The latti
e ve
tor basis being referred to as b1, . . . , bn+1 (see �gure 5) the output of the LLLalgorithm will be denoted b̂1, . . . , b̂n+1. We also need to de�ne the notion of density:De�nition 8. The density d of a subset sum problem is the quantity n

log2( max
i=1,...,n

ai)
.Let's 
onsider L the latti
e spanned by the ve
tors in �gure 5: L = {

n∑

i=1

zibi + bn+1, zi ∈ Z}. Noti
e that theve
tor solution expanded m̂ = (m1, . . . , mn, 0) is in L be
ause of the integer linear relation m̂ =

n+1∑

i=1

mibi.We 
an also noti
e that m̂ is a fairly short ve
tor of L, this statement 
an be justi�ed by the fa
t that in
ryptographi
 settings we have ai >> n ≥ ‖m̂‖2. Intuitively, if one wants to �nd a short ve
tor in L, onebetter try to nullify the last 
oordinate be
ause its 
ontribution to the norm is likely to be far bigger thanthe rest of the ve
tor.
b1 = (1, 0, 0, . . . , 0,−KpubAlice

1 )

b2 = (0, 1, 0, . . . , 0,−KpubAlice
2 )...

bn = (0, 0, 0, . . . , 1,−KpubAlice
n )

bn+1 = (0, 0, 0, . . . , 0, KS)Fig. 5. The subset sum latti
e
In fa
t [LO85℄ Lagarias and Odlyzko stated that for all problems of density d < 0.645 the ve
tor m̂ solutionhas a very high probability of being the shortest non-zero ve
tor of the latti
e spanned by the ve
tors in5 (see [CJL+91℄ for a formal proof). This way we manage to redu
e the subset sum problem to the one of�nding the shortest ve
tor of L. However the LLL algorithm doesn't a
tually �nd the shortest ve
tor of agiven latti
e but we know that the length of the shortest (and �rst) ve
tor of its output is bounded by therelation:

‖b̂1‖
2 < 2n−1λ2 (1)where λ is the norm of the a
tual shortest ve
tor of the latti
e. (see [Len82℄, [JS94℄). The 
onstant K is atri
k to �fool� the LLL into giving us the shortest ve
tor: we know that the shortest ve
tor of the latti
e is thesolution to the knapsa
k problem. Being a binary ve
tor, we have the following relation about the shortest8



ve
tor λ2 < n. Suppose K > n2n−1 and x ∈ L su
h that the last 
oordinate of x isn't zero we 
an thenderive that ‖x‖2 > K > n2n−1 and x 
annot be the shortest ve
tor of the output LLL without 
ontradi
ting1. We are now sure that the output of LLL is in fa
t the shortest ve
tor of L whi
h is m̂, the ve
tor solutionto the subset sum problem. Note that the bound given by the equation 1 is a worst-
ase bound, in average, the ve
tors found by LLL are mu
h better. This is why we allowed ourselves to set K to 1.The last point we need to make to show the e�
ien
y of atta
ks on the Merkle-Hellman proto
ol usingLLL is about density. We know that by 
onstru
tion (see [MH78℄) ai's are greater than 22n and therefore
d < n

ln2 22n = 1
2 < 0.645After breaking the Merkle Hellman 
ryptosystem, 
ryptographers went on to build knew knapsa
k-based
ryptosystems of higher density, however Coster et al. showed in [CJL+91℄ that the bound 
ould be in
reasedup to 0.9408 simply by using a di�erent matrix.

9



5 Comparaison between RSA and knapsa
kRemark 2. In order to measure the time spent by our programs, we use the getrusage POSIX tool.5.1 En
ryptionIn our implementation of the RSA 
ryptosystem, the value of e is the 
onstant 216+1. The en
ipher fun
tion
omputes 
iphered message = (clear message)e mod [n]. The 
omplexity of this operation is O(log2(e))t(n)where t(n) is the 
omplexity of a modular multipli
ation of size n. That is why the en
ryption time for theRSA proto
ol is linear with respe
t to the size of the key.For the Merkle-Hellman 
ryptosystem, the en
ryption is essentially the summation of size 2n whi
h is alinear operation. That is why we observe a linear dependen
y between the time and the size of the key usedfor en
ryption.

Fig. 6. En
ryption time5.2 De
ryptionThe de
ryption in the Merkle-Hellman 
onsists of1. a modular multipli
ation2. some substra
tionsThe time needed for the modular multipli
ation is small regarding the number of substra
tion that is whywe observe a straight line on �gure 7. 10



For RSA, we 
ompute a modular exponentiation. The order of the exponent's size is approximately n. Indeedas the parameter e is 
onstant, the size of the parameter d will grow with n. That is why the time is quadrati
at the beginning until the gmp library [gmp℄ 
hange the algorithm used to 
ompute the multipli
ation: atthe begining it uses a naive algorithm (
omplexity O(n2)) and then it uses Karatsuba algorithm (
omplexity
O(nlog2(3))). This explains the 
hanges on the 
urve of �gure 7.

Fig. 7. De
ryption time
5.3 Key generationThe generation of key in our implementation of the RSA proto
ol is done as follows:1. 
ompute two random numbers of size n

22. �nd to prime numbers p1 and p2 of size n
2 using the mpz_nextprime primitive on the two previous number.3. 
ompute d = e−1 mod [(p1 − 1)(p2 − 1)] using the mpz_invert11



The operation of �nding the next prime is the longest. And as we use a probabilisti
 algorithm, the timeneeded for �nding a prime number is also "random". That is why we observe s
atter plot on �gure 8.For the generation of the Merkle-Hellman proto
ol keys we use the following algorithm:SUM = 0o�set = 0for i = 1 to n doR = random number of size n + offsetif R ≤ SUM thenR=2Ro�set++end ifprivKey[i℄=RSUM=SUM+Ro�set++end forThat is why we observe the quadrati
 aspe
t of the 
urve on �gure 8.

12



Fig. 8. Generation time5.4 Se
urityThe problem of breaking RSA is equivalent to fa
toring numbers. The best known algorithm for integerfa
torisation is NFS (see [Pom96℄), its 
omplexity is sub-exponential (see [Lan℄). In 1999, a team of 
omputers
ientist fa
torized RSA-155 (see 9.4): a RSA number 
omposed of 155 digits approximatively 512 bits (see[CLR+00℄). The unit used to measure the number of operations needed to run the algorithm is mips: amillion operation per se
onds during one year. It took 8000 mips to fa
torize RSA-155.The 
omplexity of NFS is O(e1.9223+o(1)(ln(n))
1
3 (ln ln(n))

2
3 ). As it is the best known algorithm for integerfa
torisation, In order to 
ompare the se
urity of RSA and the Merkle-Hellman 
ryptosystem, we used theresult of [CLR+00℄ then extrapolated it. This was the only way to estimate the value of the 
onstant of thetheoreti
al 
omplexity. We found a 
onstant ≈ 0.0000059. We also used the theoreti
al 
omplexity of the

L3 algorithm (see 4.1) to plot the number of operations needed for breaking RSA or the Merkle-Hellman
ryptosystem.By 
onstru
tion (see 5.3), in the Merkle-Hellman proto
ol, the size of the publi
 key parameters is ≈ 23n.We 
an 
onsider that the majorant is 23n + 1. The memory spa
e used for storing a Merkle-Hellman key of13



size n 
an be 
omputed as follows: we have n 
oe�
ients of size 2n bits in average for the private key and wehave n 
oe�
ients of size 3n bits. So the memory spa
e is O(n2) bits. We 
an also simplify the 
omplexity of
L3 as follows: O(n5(n + lnB) lnB) = O(n7) be
ause of the way we 
onstru
t the 
oe�
ients. We used fplll(see [Ste05℄) in order to determine more pre
isely the 
omplexity: for redu
ing a basis it took 9 se
onds ona single pro
essor of 1.67 GHz that is why we 
onsider O(n7) ≈ 0.0001503n

1
7 .size of RSA key 
orresponding Knapsa
k keynumber of 
oe�
ients memory spa
e128 34 5,6 Kb256 149 108,4 Kb512 1077 5,5 Mb1024 14756 1,01 Gb2048 463490 980 Gb4096 42906924 8.17 106 GbFig. 9. equivalen
e between RSA and Merkle-HellmanThe values we obtain are not pre
ise enought and it is strange that RSA-256 or RSA-128 seems less se
urethat the knapsa
k 
ryptosystem. But after the values seem more realisti
. Anyway the general idea of theprevious array was to show that the Merkle-Hellman 
ryptosystem is not usable in pra
ti
e.Furthermore the knapsa
k 
ryptosystem has been totally broken by Adi Shamir in 1982 (see [Sha82℄). Thenseveral variants of the knapsa
k 
ryptosystems have been proposed over the years and almost all of themhave been broken (for a global review see [Lai℄).
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6 Con
lusionThe 
ryptosystems based on the knapsa
k problem are 
omputationally easier than the RSA proto
olwhen it 
omes to en
ryption and de
ryption whi
h are nothing more than sums and at most one modularmultipli
ation. Furthermore the key generation stage is simpler: it only requires the generation of a super-in
reasing sequen
e, one modular inversion and n modular multipli
ations whi
h is in no way 
omparableto the �nding of two large strong primes. This is a substential advantage over RSA be
ause some of thehardware 
ryptography is implemented on have very limited 
omputing power and/or are very little powered.The knapsa
k 
ryptosystem, as it turned out, did not sustainted the 
omparison to the se
urity o�ered byRSA. The equivalent to the widely used 1024 bit long RSA key is a 463490 bit long whi
h would o

upyalmost a terabyte (1000 gigabytes) of storage.For all the reason we mentionned above, when Merkle and Hellman proposed their proto
ol in [MH78℄, itappeared to be a good alternative to the RSA proto
ol. However their 
ryptosystem was broken by Shamir in1982 (see [Sha82℄). After that Merkle and Hellman published an amelioration of their 
ryptosystems whi
hinvolved an iterative pro
ess for the publi
 key generation. This was designed to resist Shamir's atta
k.However Bri
kell in [Bri84℄ proposed a method for breaking even this new 
ryptosystem. A
tually variousatta
ks, most of them based on the latti
e redu
tion algorithm L3 we des
ribed in se
tion 4, broke almostall variants of 
ryptosystems based on the knapsa
k problem. That is why those kind of 
ryptosystems havenever been used in pra
ti
e and why resear
hers progressively lost interest.However the Masakatu Morii-Masao Kasahara 
ryptosystem des
ribed in [Lai℄ whi
h use a easy multipli
a-tive knapsa
k as a private key and transform it into the private key using the RSA theorem. Laurent Evainin [Eva08℄ des
ribed a knapsa
k-based 
ryptosystem built on NP-hard instan
e.Even thought knapsa
k-based 
ryptosystems were never as su

esful as RSA the idea to use easy instan
eof �hard� problems as private key, hard instan
es as publi
 key and a one-to-one se
ret transformation as theone trapdoor one way fun
tion lived on. The NTRU publi
 key 
ryptosystem use the NP-hard in averageproblem of �nding the shortest ve
tor in a latti
e [HPS98℄.7 ThanksWe want to thanks M. Laurent Fousse for his useful remarks on our work.
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9 Appendix9.1 Knapsa
k: best known general algorithmThe best known algorithm for solving the knapsa
k without any 
ondition on its input problem runs with
Oc(n2

n

2 ) and also Om(2
n

2 ) where� Oc will denote the 
omplexity regarding the number of operations performed for solving a problem� Om will denote the storage spa
e needed for solving a problem9.2 Merkle-HellmanProposition 3. If gcd(W, M) = 1 then fW : Z/MZ −→ Z/MZ su
h that ∀x ∈ Z/MZ f(x) = Wx mod [M ]is a one-to-one fun
tion and f−1
W = fW−1 mod [M ].Let's assume Bob wants to send a message b = b1...bn to Ali
e: Bob 
omputes C =

n∑

i=1

bipubAlice
i and send

C to Ali
e.When Ali
e re
eives the message, she 
omputes
fW−1 mod [M ](C) = fW−1 mod [M ](

n∑

i=1

bipubAlice
i ) =

n∑

i=1

bifW−1 mod [M ](privAlice
i ) =

n∑

i=1

biprivAlice
iShe is now able to de
rypt the message fW−1 mod [M ](C) and re
over b.9.3 Masakatu Morii-Masao KasaharaTheorem 2. Consider n ∈ P.Let e, d be su
h that de = 1 mod [n − 1] and e, d < n.

∀x ∈ Z/nZ, xed = x mod [n]Proof. ed = 1 mod [p − 1] so ∃K ∈ Z su
h that ed = K(p − 1) + 1
xed = xK(p−1)+1 = x (x(p−1))K using Fermat's theorem, we know that
x(p−1) = 1 mod [p]. So we obtain xed = 1 mod [p] .Again let's assume that Bob wants to send a message b = b0...bn to Ali
e. He 
omputes C =

n∏

i=1

(pubAlice
i )bi mod [p]and sends C to Ali
e.When she re
eives the message, Ali
e will 
ompute:

Cd mod [p] =

n∏

i=1

(pubAlice
i )dbi mod [p] =

n∏

i=1

(privAlice
i )bi mod [p]She is now able to de
rypt the message n∏

i=1

(privAlice
i )bi mod [p] and re
over b.9.4 RSA-155RSA-155 =

10941738641570527421809707322040357612003732945449205990913842131476349984288934784717
997257891267332497625752899781833797076537244027146743531593354333897= 102639592829741105772054196573991675900716567808038066803341933521790711307779
×10660348838016845482092722036001287867920795857598929152227060823719306280864317


