
Attack by Faults: DFA attacks on RSA

Mohammed ALMANSOORI, Eiman ALSHEBLI

and Omar BANI HASHIM

Emails: mohammed.almansoori@ensimag.imag.fr, alsheble@ensimag.imag.fr
and banihaso@ensimag.imag.fr

1 Abstract

Since the attacks by faults considered as a powerful way to attack the RSA.
The attacks describe in this paper are based on corrupting the public modulus
N [BCG08][BCDG09]. We describe here the implementation of two attacks on
the modular exponentiation part of the RSA system.
The implementation details and results were obtained using our own implemen-
taion of the attacks using the (GIVARO-3.2.13 library).Since the two attacks
cover both the iterative and the recursive modular exponentiation algorithms,
which raises the concern for the need for protecting the public key

2 Introduction

Injection faults is considered as a powerful way to attack systems in order to
recover private inforamation. There are many attacks implemented using this
method. In this paper, we will describe the theory and implementation sides of
the two Di�erential Faults Analysis (DFA) Attacks.
The �rst attack is described in the paper (Perturbating RSA Public Keys: An
improved Attack)[BCG08]. While, The second one is described in the paper
(Faults Attacks on RSA Public Keys: Left-To-Right Implementation are also
Vulunerable) [BCDG09]. Our Implementation is based on those two papers.
This paper consists of four sections. The theory section includes a general
background of the RSA system and the information for the attack requirments.
The second section, which is the implementaion section is about the algorithm
impelementation of the two attacks. Before the end we present the results of
both attacks. And �nally, the conclusion of this paper.

1

3 Background

Before starting to talk about the modular exponentiation, we need to consider
the following notations. We will assume that N is the public modulus and it is
the product of two large prime numbers p and q. Also we will assume that the
length of N is n. Let e be the public exponent and d as the private exponent.
Both p and q are coprime to ϕ(N) ≡ (p− 1) · (q− 1), where ϕ(.) denotes Euler's
totient function. The exponents e and d are linked together by the equation
e·d ≡ 1modϕ(N)s. Two operations can be performed using the private exponent
d. The �rst operation is the RSA Decryption in which you decrypt a ciphertext

C by computing
∼
m ≡ CdmodN ≡ C

Pi=n−1
i=0 2i·di . modN where di stands for

the i-th bit of d. The
∼
m will be equal to m if there were no errors during the

computation, transmission or decryption of C. The second operation is the
RSA signature. To sign a message m with a sign S, the signature should be as
S = ṁmodN where ṁ = µ(m) for some hash and /or deterministic padding
function µ. To know that the signature S is validated, we need to check that
Se ≡ ṁmodN .

4 Theory

4.1 Modular Exponentiation

In this section, we will talk about the implementation of the two di�erent binary
exponentiation algorithms that are used often for computing RSA modular ex-
ponentiation ṁdmodN . The exponent d in the previous equation is expressed
in binary form as d =

∑n−1
i=0 2i · di.

4.1.1 Iterative Algorithm (Right to Left)

This algorithm calculates the modular exponentiation by scanning iteratively
the bits of the private exponent d from the least (LSB) to most signi�cant bit
(MSB). This was the reason for calling it the Right to left algorithm. This
algorithm is considered as the most used algorithm to compute the modular
exponentiation.

2

Iterative Algorithm �Right to Left modular exponentiation�

INPUT: m, N , d
OUTPUT: A ≡ mdmodN

1 : A := 1;
2 : B := m;
3 : for i from 0 upto (n− 1)
4 : if (di == 1)
5 : A := (A ·B)modN ;
6 : endif
7 : B := B2modN ;
8 : endfor
9 : return A;

4.1.2 Recursive Algorithm (Left to Right)

The Left-to-Right algorithm does the opposite of Right-to-Left algorithm. It
computes the modular exponentiation by scanning recursively the bits of the
private exponent d from the most signi�cant bit (MSB) to least signi�cant bit
(LSB). This algorithm requires less memory than the previous one and thus it
is considered lighter.

Recursive Algorithm �Left-to-Right modular exponentiation�

INPUT: m, d, N
OUTPUT:A ≡ mdmodN

1: if (d == 1)
2: return m;
3: else
4: // call the function it self with dividing d by 2
5: A= modularExponentiation(m, b

2 , N)
6: A = A2modN
7: if(dis odd)
8: return A = A ·mmodN
9: else
10: return A = AmodN

3

4.2 Modular Exponentiation Attacks

4.2.1 Fault Model

Both of our attacks are based on modifying the Public Modulus N during the
computation of the Modular Exponentiation. This is done in real life using a
laser beam. The laser beam a�ects N by changing a random byte from N into
a random non-zero byte value (R8). For more details see (Sect 5.2).

4.2.2 Attack Against �Right-To-Left� Modular Exponentiation

If we assumed that the binary representation of d is d =
∑n−1

i=0 2i ·di. Then, the
RSA signature will be written as:

S ≡ ṁ
Pn−1

i=0 2i·dimodN

When a fault occurs j steps before the end of the exponentiation, this step will
start with a faulty square, regardless of the value of dn−j may be:

B̂ ≡ (ṁ2n−j−1
modN)2modN̂

So, becuase of the fault injection the algorithm will keep computing the faulty
operations. Thus, the correct operation that executed before the fault injection
will be denoted as

A ≡ ṁ
P(n−j−1)

i=0 2i·dimodN

and so we will obtain the following:

Ŝ ≡ ((A · B̂)...)B̂2j−1
modN̂

≡ A · B̂
Pn−1

i=(n−j) 2i·dimodN̂

≡
[
(ṁ

P(n−j−1)
i=0 2i·dimodN) · (ṁ2(n−j−1)

modN)
Pn−1

i=(n−j) 2[i−(n−j)+1]·di

]
modN̂

Since the fault injection has occured during the computation, this results to
divide the computation into a correct part and a faulty one. Also, since the
attacker can trigger the fault injection using Simple Power Analysis, he knows
the values of j for each faulty signature Ŝ. Therefore, he can �gure as well the
�rst computation step that has been infected by the fault. As a result, he can
�gure the number of bits of d that are handled with the wrong modulus.

Now, we are going to give an example of how the algorithm (Algorithm 2
[BCG08]) allows you to retreive the Private Key d. In our example, l = 1(l
is the number of bits you retreive each time). Lets assume that N = 1141,
d = 3533,m = 9726 , the N̂ = 11423(that the laser beam changed N into) and
the binary representation of d = 001101110011012.

The �rst thing we do is obtain a correct signature S.

4

S = mdmodN
S = 97263533mod 11413 = 5761

The next step, is to obtain the faulty signatures. Since the �rst attack starts
recovering the bits from the Most Signi�cant Bit (MSB)to the Least Signi�cant
Bit (LSB). The �rst fault location will be 14. But as we saw above the �rst two
bits of dare zero(Number of bits of d = 12). So, the �rst two fault injections
will not change Sand we will not get a fault signature Ŝ.

The �rst faulty signature Ŝwe will get will be when jk = 2. The faulty sig-
nature we get will be Ŝ = 4994. Becuase we know that the d11 = 1, we will
start with d

′

(k) = 1 just to show you how the algorithm works. So we start by

calcualting d
′
.

d
′

:= [d
′

(k)<<(n − (jk + 1))] + d(We had to change the algorithm to make

it work)
d
′
:= [1<<(14− (2 + 1))] + 0 = 2048

We know that the faulty Public Modulus is N̂ = 11423.
S
′

(d′ ,N̂ ′)
:= [(S · ṁ−d

′

)modN ·(ṁ2(n−jk−1)
modN)2

[1−(n−jk)] ·d
′

]mod N̂

S
′

(d′ ,N̂ ′)
:= [(5761 · 9726−2048)mod 11413·(97262(14−2−1)

mod 11413)2
[1−(14−2)] ·2048]mod 11423

S
′

(d′ ,N̂ ′)
:= [3398·(4096)2

−11 ·2048]mod 11423

S
′

(d′ ,N̂ ′)
:= [3398·4096]mod 11423 = 4994 =Ŝ

After that, we add the recovered bit to d.
d = d

′

4.3 Attack Against �Left-To-Right� Modular Exponenti-
ation

In this part, we apply the same attack principle of the �rst attack but this
time on the �Left-To-Right� Modular Exponentiation. Same as the �rst attack,
the fault is injected into the Public Modulus Nat step jk, so that the internal
register value before the modi�cation is:

A ≡ ṁ
∑n−1

i=j 2i−j · dimodN

And since the perturbed operation is a square, then the faulty signature will
be:

Ŝ ≡ (((A2.ṁdj−1)2 · ṁdj−2)2 · · ·)2 · ṁd0mod N̂

≡ A2j

· ṁ
∑j−1

i=0 2i.dimod N̂

5

We can see that it splits the equation into two parts, the right part (A) and
the faulty part after the step jk. Which makes it the same as the �rst attack,
if N̂ is a prime number, then the square roots can be computed in polynomial
time.
The attacker can take advantage of the two parts equation. Since the right
internal register A is j − thtime square multiplied by the message power to the
next bit of the private exponent after the jkstep. The attacker can �nd A2j

for
the searched value d′(k)and it can be computed as:

R(d,
(k),N̂i)

≡ Ŝk · ṁ−d,
(k)mod N̂i

N̂ihave to be a prime number Since R(d,
(k),N̂)is expected to be a multiple

quadratic residue (jk − thquadratic residue) modulo N̂i. if its not a quadratic
residue then the attacker can deduce that the candidates are wrong and try
another ones.
Now for the �nal modular check. At this point the attacker can �nd S′so that
he can compare it to the right signature S, which can be found as the
following:

S′ ≡ ((R
(d,

(k),N̂i)
)1/2jkmod N̂i)2

jk · ṁd,
(k)modN

Finally, he check if the S′satis�es S, then he can go and recover the next bit of
the private exponent.
To understand the concept more better, we tried an example:
Suppose we have the following values:

N = 11413 = 14bits size
m = 9726
d = 3533 = 001101110011012

S ≡ mdmodN ≡ (9726)3533mod 11413
≡ 5761mod 11413

At jk = 3, the attacker injects a faults intoN , and lets say the new modi�ed pub-
lic modulus is N̂ = 11423which is a prime number. then Sk ≡ 8356mod 11423

As we explained before that equation will split into two parts that will help
the attacker to recover jk − thbit of the private exponent dif N̂ is a prime num-
ber.

The attacker now is searching for the value of the next bit of the private expo-
nent dat jk = 3, and he has already obtained the drecover = 5.

6

we know that the d3 = 1of d = 3533. we can see that d,
(k) = d3 · 2jk +drecover =

1 · 23 + 5 = 13

Now, we can �nd R(d,
(k),N̂i)

as the following:

R(d,
(k),N̂i)

≡ Sk ·m−d,
(k)mod N̂≡ 8356 · (9726)−13mod 11423≡ 8356mod 11423

After that the attacker �nd the jk − thsquare roots modulo N̂ in order to �nd
the right internal register A. So that the attacker check the �nal modular by
�nding S,

S′ ≡ ((R
(d,

(k),N̂i)
)1/2jk

mod N̂i)2
jk · ṁd,

(k)modN

≡ ((8356)1/23
mod 11423)2

3
· (9726)13mod 11413

≡ (5440)2
3
· (9726)13mod 11413

≡ 5761mod 11413

we can see that S, ≡ S modN ≡ 5761mod 11413. And now the attacker adds
the recovered bit to d.
drecover := d

′

(k)

4.3.1 Tonelli and Shanks' Algorithm

we will use Tonelli and Shanks' algorithm in our attack against �Left-To-Right�
algorithm. Tonelli and Shanks' algorithm is an e�cient algorithm to compute
square roots modulo P, where P is prime number. This algorithm is probabilistic
and has a principle that based on isomorphism between the multiplicative group
(Z/PZ)∗and the additive group Z/ (P − 1) Z. If we assumed that P − 1can be
written like: P −1 = 2e.r andr is odd. Therefore, we can assume that the cyclic
group G of order 2e is a subgroup of Z/ (P − 1) Z. According to that, we can
assume also that z is the generator of G. And so, if we assumed that a is a
quadratic residue modulo N, then:

a(P−1)/2 ≡ (ar)2
e−1

≡ 1modP

Since armodP is a square in G, then we can say that there exists an integer k
that k ∈ [0 : 2e − 1]where

ar · zk = 1

in G. Therefore it will be applied to ar+1 · zk = a in G. Note that the square
root of a, is represented as

a1/2 ≡ a(r+1)/2 · zk/2modP

To summarize, there are two main operation for this algorithm. The �rst
main operation is to �nd the generator z of the subgroup G. While the other,
is to calculate the exponent k.

7

5 Implementation

We started the implementation phase by installing the GIVARO-3.2.13 library.
which allows you to use big numbers. Then, we started with building two RSA
Signature systems, which we need to implement both of the attacks. The �rst
one using the iterative �Right-To-Left� Modular Exponentiation. The second
one using the �Left-To-Right� Modular Exponentiation which runs recursively.
After that, we implemented a function that simulates the e�ects of the the laser
beam which is used in real life in both attacks. Moreover, for the Second Attack
we had to implement the Tonelli and Shanks Algorithm for Modular Square
Root with primes. At the end, we implemented the two attacks algorithms. All
these parts will be explained more deeply in this section.

5.1 Modular Exponentiation

We implemented both the Modular Exponentiation Algorithms mentioned be-
fore, but added the fault injection. In the �Right-To-Left� function we inject
the faulty Modulus N̂ just before the computation of a multiplication. On the
other hand, in the �Left-To-Right� function we change the value of N to N̂ just
before the computation of a square.

Iterative Algorithm
�Right-to-Left modular
exponentiation�

Recursive Algorithm
�Left-to-Right modular
exponentiation�

INPUT: m, N , d, jk
OUTPUT: A ≡ mdmodN

INPUT: m, N , d, jk
OUTPUT: A ≡ mdmodN

1 : A := 1;
2 : B := m;
3 : for i from 0 upto (n− 1)
4 : if (jkstep)
5 : // inject the fault Modulus
N = N̂
6: N = laserBeam(N);
7 : endif
8 : if (di == 1)
9 : A := (A ·B)modN ;
10 : endif
11 : B := B2modN ;
12 : endfor
13 : return A;

1: if (d == 1)
2: return m;
3: else
4: // call the function it self
with dividing d by 2
5: A= modularExponentiation(m, b

2 , N);
6: if(jkstep)
7: // inject a faults into public
modulus N = N̂
8: N = laserBeam(N);
9: endif
10: A = A2modN ;
11: if(dis odd)
12: return A = A ·mmodN ;
13: else
14: return A = AmodN ;
15: endif
16: endif

8

5.2 Laser Beam

In order to simulate the attacks we needed a function that simulates the e�ects
of the laser beam.

Laser Beam Algorithm

INPUT: N
OUTPUT:N̂

1 : // R8represents the random byte value that the laser beam will
put.
1 : R8 ∈ [1; 28 − 1] ;
2 : // i represents the random byte the laser beam hits.
3 : i ∈

[
0; n

8 − 1
]

4 : ε = R8 · 28i ;
5 : N̂ = N ⊕ ε;
6 : return N̂ ;

5.3 Attacks Against Modular Exponentiation

Before implementing the actual attacks there are some values we need to re-
trieve. First, we need to get a correct signature S using the Modular Expo-
nentiation function. After that, we get the pair set (faulty Signature Ŝ, fault
location j) which is composed of all the faulty signatures Ŝ and their fault lo-
cations, we use the Modi�ed Modular Exponentiation in this part .

We implemented this part using a for loop. The loop starts from the Most
Signi�cant Bit (MSB) and keeps decrementing by l until it reaches the Least
Signi�cant Bit (LSB) in the First Attack. However, it does the opposite in the
Second Attack, it starts from the LSB and keeps increasing by l upto the MSB.
This way the faulty signatures Ŝwill be sorted according to their fault location.
In descending order for the First Attack and ascending order for the Second
one. the loop puts all the faulty signature Ŝ it obtains with their fault location
j in a set of pairs.

5.4 First Attack (Attack Against �Right-To-Left� Modu-
lar Exponentiation

After completing the previous steps we implemented the the Algorithm �DFA
against �Right-To-Left� Algorithm� which is described in (Perturbating RSA
Public Keys: An improved Attack)[Algorithm 2 BCG08] .

9

5.5 Second Attack (Attack Against �Left-To-Right� Mod-
ular Exponentiation)

5.5.1 Tonelli and Shanks Algorithm

There are essentially three algorithms to compute the Square Roots Modulo
prime, one of them is the Tonelli and Shanks algorithm that is quite e�cient.
That is why we used it in our implementation.[Cohen].

Algorithm: Tonelli and Shanks to compute the square roots
modulo p (from the book A Cource in Computational Algebraic
Number Theory, Author Henri Cohen).

INPUT: a, p
OUTPUT:x ≡ a2mod p

1: // (a
p) = 1which mean a quadratic residue

2: if((a
p) 6= 1)

3: return 0;
4: endif
5: p− 1 = 2e · q, q is odd
6: // choose numbers n until (a

p) = −1
7: while((nrandom

p) 6= −1)
8: endwhile
9: z ≡ nq mod p;
10: y = z; r = e; x ≡ a(q−1)/2mod p;
11: b ≡ a · x2mod p;
12: x ≡ a · xmod p;
13: while(b 6= 1)
14: // �nd the smallest m ≥ 1s.t
15: for(m = 1; b 6= 1; m++)
16: b ≡ 2mmod p;
17: endfor
18: if(r == m) // a is non-quadratic residue modulo p
19: return −1;
20: endif
21: // reduce the exponent
22: t ≡ yr−m−1mod p;
23: y ≡ t2mod p;
24: r ≡ mmod p;
25: x ≡ x.tmod p;
26: b ≡ b.y mod p;
27: endwhile
28: return x;

10

5.5.2 Dictionary of Prime modulus

In order to implement the second attack algorithm, we need to create a set of all
the possible prime values of N̂ . That is why we implemented the Build Prime
Dictionary Algorithm. this step allows the attacker to test all these values with
the faulty signatures.

Algorithm: Build Prime Dictionary

INPUT: N , Dlength

OUTPUT: the set of primes (Dicti)1≤i≤Dlength
,

1: n =the size length of N
2: i = 1;
3: // R8is a non zero random byte value
4: for R8from 1upto 255
5: // pos is the random byte location in N
6: for pos from 0upto (n8)− 1
7: N̂ = N ⊕ (R8 � 8× pos);
8: if (N̂ is prime)
9: Dict[i] = N̂ ;
10: i+ +;
11: endif
12: endfor
13: endfor
14: return Dict;

5.5.3 The Second Attack Algorithm

After implementing the both the Square Root and the Build_Prime_Dict func-
tions, we implemented the DFA against �Left-To-Right� Algorithm described in
(Faults Attacks on RSA Public Keys: Left-To-Right Implementation are also
Vulunerable) [Algorithm 3 BCDG09] .

11

6 Results

6.1 First Attack Results

Figure 1: First Attack Results

The tables bellow shows the Total time it takes to run the attack depending
on key size and the length of bits recovered each time.

Key Size 16 Bits
Length Max No. Iterations Time for a Single Iteration Total Time

1 16320 0.000015099 0.136576
2 16320 0.000014541 0.172955
3 24480 0.000014935 0.226950
4 32640 0.000014771 0.283235
5 65280 0.000013207 0.416099
6 97920 0.000014888 0.775602
7 195840 0.000008394 1.115020
8 261120 0.000007831 2.221420

Key Size 32 Bits

12

Length Max No. Iterations Time for a Single Iteration Total Time
1 65280 0.000013497 0.66
2 65280 0.000009926 0.69
3 89760 0.000013398 0.91
4 130560 0.000012836 1.51
5 228480 0.000012871 2.8
6 391680 0.000013079 4.2
7 652800 0.000013067 8.56
8 1044480 0.000012994 14.5142

Key size 64 Bits

Length Max No. Iterations Time for a Single Iteration Total Time
1 261120 0.000024051 5.29
2 261120 0.000023726 5.67
3 359040 0.000023626 7.59
4 522240 0.000023724 12.08
5 848640 0.000023656 19.57
6 1436160 0.000024139 33.44
7 2611200 0.000023913 56.62
8 4177920 0.000023910 102.32

Key Size 128 Bits

Length Max No. Iterations Time for a single Iteration Total Time
1 1044480 0.000076815 74.16
2 1044480 0.000075328 77.8
3 1403520 0.000076206 106.53
4 2088960 0.000074847 158.62
5 3394560 0.000075361 268.83
6 5744640 0.000076663 439.77
7 9922560 0.000075537 758.17
8 16711680 0.000076229 1291.22

The max number of iterations feild can also represent the number of the
rebuilt signatures S

′
we have to create in the attack. In our algorithm there

are 4 loops that are doing di�erent operations which means each one will takes
speci�c time to run depending on the size of the key and the length of the
retreived bits. The �rst loop starts from 1 and will keep working until it reaches
bn/lc. We can calculate the number of times this loop run by calculating L1 as
the following:

L1 = Ksize/l

where Ksize is the key size and l is the length of the retrieved bits. The
second loop will start running from 0 until 2l − 1which means it will run for 2l

times.

13

The third loop will start runnig from 1 until
(
28 − 1

)
and thus the maximum

number of times it will run is 255 times.
The forth loop will start runing from 0 up to (Ksize/8− 1). So, the number

of times this loop will be running is Ksize/8.
So, depending on what previously explained, the maximum number of iter-

ations can be calculated as the following:

MaxNo = L1 · 2l · 255 · Ksize/8

6.2 Second Attack Results

From the test we run on the second attack we obtained the following results.
The test has been tested with l = 1and l = 2. The results shows that the

l = 2takes less time than when we run the second attack with l = 1. We could
not success�y implement the attack for 3 ≤ l ≤ 8 because we didn't have

enough time.

Figure 2: Second Attack Results

14

6.3 Square Root Results

After testing the square root algorithm. We got di�erent results that are de-
scribed in the following �gure:

Figure 3: Square Root Algorithm Results

7 Conclusion

Finally, we managed to obtain detailed results for the First Attack with di�erent
l sizes. And we we able to successfully recover the Private Key dwith n=256
bits and that is due to the fact that it takes a very long time to test the attack
on bigger n. On the other hand, for the Second Attack we were only able to
successfully recover the Private Key dwith l=1and l=2 with n=128 bits. From
our results, we concluded that the Second Attack is faster than the First one
but requires more attempts, because doesn't work unless all the faulty Public
Modulus N̂are prime. Moreover, we found out that every time you increase the
l it takes more time to recover the Private Key d. But, we assume that with
bigger key sizes increasing the l might decrease the time of the attack.

15

References

[BCG08] A. Berzati, C. Canovas, and L. Goubin. Perturbating RSA Public
Keys: an Improved Attack. In Cryptography Hardware and Em-
bedded Systems (CHES 2008), Lecture Notes in Computer Science.
Springer-Verlag, 2008.

[BCDG09] A. Berzati, C. Canovas, J. Dumas and L. Goubin. Fault Attacks on
RSA Public Keys: Left-To-Right Implementation are also Vulnera-
ble. (2009)

[Cohen] Henry Cohen. A Course in Computational Algebraic Number The-
ory. Springer (1996)

16

