Processor-oblivious parallel
algorithms with provable
performances

Applications

Jean-Louis Roch

MO AIS
Lab. Informatique Grenoble, INRIA, France

Informatique et SCIENTIFIQUE de Grenoble

~/ Ditibution

, . . THrOT NATIONAL
/ Laboratoire CENTRE MATIONAL Institut National DF BECKERCHE EN
‘ DE L& RECHERCHE Polytechnique INFORMATIOUE EF
F T0UE

=

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
 Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Adaptive parallel algorithms
e Scheme 2: Amortizing the overhead of synchronization (Nano-loop)
* Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

* Putting things together: processor-oblivious prefix computation

Interactive parallel computation?

Any application is “parallel’:
scomposition of several programs / library procedures (possibly concurrent) ;

eeach procedure written independently and also possibly parallel itself.

|G
&

|
%ﬂﬁ ﬁﬂﬂﬁ
S e L ()

Interactive
Distributed

Simulation
3D-reconstruction
+ simulation

+ rendering

[B Raffin &E Boyer]
- 1 monitor

- 5 cameras,

-6 PCs

AR

4

NeW pal‘a||6| SuppOI‘tS from small too large

Le P e
Parallel chips & multi-core architectures: Q Tl

- MPSoCs (Multi-Processor Systems-on-Chips) -

- GPU : graphics processors (and programmable: Shaders; Cuda SDK) e %

- Dual Core processors (Opterons, Itanium, etc.)

- Heteregoneous multi-cores : CPUs + GPUs + DSPs+ FPGAs (Cell)

v

Commodity SMPs:
- 8 way PCs equipped with multi-core processors (AMD Hypertransport) + 2 GPUs

Clusters:
- 72% of top 500 machines
- Trends: more processing units, faster networks (PCI- Express)
- Heterogeneous (CPUs, GPUs, FPGAs)

Grids:
- Heterogeneous networks
- Heterogeneous administration policies
- Resource Volatility

Dedicated platforms: eg Virtual Reality/Visualization Clusters:
- Scientific Visualization and Computational Steering
- PC clusters + graphics cards + multiple I/O devices
(cameras, 3D trackers, multi-projector displays)

Grimage platform

Parallelism induces overhead :
e.g. Parallel prefix on fixed architecture

® Prefix problem :

KA
e input:ay, ay, ..., a, = H ay,
e output : =y, ..., m, with

® Sequential algorithm :

® for (n[0]=a[0], i=1;i<=n; i++) ali]=n[i-1]~a[il; | performs only n operations

® Fine grain optimal parallel algorithm :
apa;a,azay ...

a,qa,
BHEH
Ladner- é o 3 =
[Fi:h;‘igﬂ Critical time = 2. log n

Parallel
‘ refix fS|ze n/ ‘ but performs 2.n ops — requires
T T, n
1\q5 3\¢ qs \ twice more
aj wy operations
than

* Tight lower bound on p identical processors:

Optimal time T, = 2n/ (p+1) —
but performs 2 n.p/(p+1) ops

sequential !!

[Nicolau&al. 1996]

Lower bound(s) for the prefix

Prefix circuit of depth d
 tricchsol
#operations > 2n - d

parallel time >

(+1) ﬂave

The problem

To design a single algorithm that computes efficiently prefix(a) on
an arbitrary dynamic architecture

parallel
P=max
Sequential p?;fgel parallel /2

algorithm

P=100

Which algorithm
to choose ?

Heterogeneous network Multi-user SMP server Grid

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, ... but not only: SMP server in multi-users mode

Processor-oblivious algorithms

Dynamic architecture : non-fixed number of resources, variable speeds
eg: grid, SMP server in multi-users mode,....

Networkofworkstitiors

=> motivates the design of «processor-oblivious» parallel algorithm that:

+ is independent from the underlying architecture:
no reference to p nor II(t) = speed of processor i at time t nor ...

+ on a given architecture, has performance guarantees :
behaves as well as an optimal (off-line, non-oblivious) one

2. Machine model and work stealing

Heterogeneous machine model and work-depth framework
Distributed work stealing

Work-stealing implementation : work first principle

Examples of implementation and programs:
Cilk , Kaapi/Athapascan

Application: Nqueens on an heterogeneous grid

10

Processor speeds are assumed to change arbitrarily and adversarially:

model [Bender,Rabin 02] IT{(t) = instantaneous speed of processor i at time t
(in #unit operations per second)

Assumption : Max;¢{ IT(t) } < constant . Min; ({ IT(t) }

Def. for a computation with duration T

+ total speed: Iy, = Zico, p 2o, 7 TIi(Y)
* average speed per processor: m,,,=1,/P
Q “Work” W = #total number operations performed
/D \ “Depth” D = #operations on a critical path
C) (~parallel ‘time” on o resources)
O For any greedy maximum utilization schedule:

[Graham69, Jaffe80, Bender-Rabin02]

makespan = = +1—l -
P plI,, p) W,

OO

= A distributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local task (depth-first execution)

ot

1"

= A distributed and randomized algorithm that
computes a greedy schedule :

» Each processor manages a local stack (depth-first execution)

-
€ € @

» When idle, a processor steals the topmost task on a remote -non idle- victim processor
(randomly chosen)

» Theorem: With good probability, [Acar,Blelloch, Blumofe02, BenderRabin02]

» #steals < p.D
D

» ion time = == +0| —
» execution time pIL, m,.

> Interest:
if Windependent of p and D is small, work stealing achieves near-optimal schedule

12

Work stealing implementation

Scheduling

efficient policy ——————, control of the policy

(close to optimal)

(realisation)

Difficult in general (coarse grain)
But easy if D is small worksteaiing]

Execution time =

(i)
P, \IL, (fine grain)

Expensive in general (fine grain)
But small overhead if a small
number of tasks

(coarse grain)

If D is small, a work stealing algorithm performs a small number of steals

=> Work-first principle: “scheduling overheads should be borne by the critical path

of the computation” [Frigo 98]

Implementation: since all tasks but a few are executed in the local stack, overhead
of task creation should be as close as possible as sequential function call

At any time on any non-idle processor,

efficient local degeneration of the parallel program in a sequential execution

Work-stealing implementations following
the work-first principle : Cilk

= Cilk-5 http://supertech.csail.mit.edul/cilk/ : C extension

= Spawn f(a); sync (serie-parallel programs)

= Requires a shared-memory machine

= Depth-first execution with synchronization (on sync) with the end of a task :
- Spawned tasks are pushed in double-ended queue

= “Two-clone” compilation strategy

[Frigo-Leiserson-Randall98] :

« on a successfull steal, a thief executes the continuation on the topmost ready task ;
¢ When the continuation hasn’t been stolen, “sync” = nop ; else synchronization with its thief

01 cilk int fib (int n)

02 {

03 if (n < 2) return n;

04 else

05 {

06 int x, y;

07

08 x = spawn fib (n-1);
09 y = spawn fib (n-2);
10

11 sync;

12

13 return (x+y);

14 }

15 }

int fib (int n)

<

frame pointer
allocate frame
initialize frame

1
2

3 fib_frame
4 £ = alloc
5 £->sig
6

7

8

if (n<2) {

free(s, sizeof(xf)); free frame

return n;

save PC
save live vars
store frame pointer
push frame
x = fib (n-1); do C call
if (pop(x) == FAILURE) pop frame

return 0; me stolen
second spaun

) sync is free!
21 free(f, sizeof(s£)); free frame
22 return (x+y);

= won the 2006 award "Best Combination of Elegance and Performance” at HPC Challenge Class 2,
SC'06, Tampa, Nov 14 2006 [Kuszmaul] on SGI ALTIX 3700 with 128 bi-Ithanium]

Work-stealing implementations following
the work-first principle : KAAPI

= Kaapi/ Athapascan hitp:/kaapi.gforge.inria.fr : C++ library

= Fork<f>()(a, ...) with access mode to parameters (value;read;write;r/w;cw) specified
in f prototype (macro dataflow programs)

Supports distributed and shared memory machines; heterogeneous processors
Depth-first (reference order) execution with synchronization on data access :

¢ Double-end queue (mutual exclusion with compare-and-swap)
« on a successful steal, one-way data communication (write&signal)

1 struct sum { [— o
2 void operator() (Shared_r < int > a,

3 shared_r < int > b,

4 Shared_w < int > r)

5 { r.urite(a.read() + b.read()); }

6 }

7

8 struct fib { A

9 void operator() (int n, Shared_w<int> r)

10 { if (n <2) r.write(n);

11 else

12 { int rl, r2;

13 Fork< fib >() (n-1, rl) ;

14 Fork< fib >() (n-2, r2) ;
15 Fork< sum >() (rl, r2, r) ;
16 }
17} s
18 } ;

(b) Shared finks

= Kaapi won the 2006 award “Prix special du Jury” for the best performance at NQueens contest, Plugtests-
Grid&Work’06, Nice, Dec.1, 2006 [Gautier-Guelton] on Grid’5000 1458 processors with different speeds.

N-queens: Takaken C sequential code
parallelized in C++/Kaapi

= T. Gautier&S. Guelton won the 2006 award “Prix special du Jury” for the best
performance at NQueens contest, Plugtests- Grid&Work’06, Nice, Dec.1, 2006

= Some facts [on on Grid’5000, a grid of processors of heterogeneous speeds]
- NQueens(21)in 78 s on about 1000 processors
- Nqueens (22)in 502.9s on 1458 processors
- Nqueens(23) in 4435s on 1422 processors [~24.10% solutions]
- 0.625% idle time per processor
- < 20s to deploy up to 1000 processes on 1000 machines [Taktuk, Huard]
- 15% of improvement of the sequential due to C++ (template)

= =5 5 Grid’5000 utilization

during sonsest : i .— m
Grids000 Grid Load Tast day © oria0 000 02i20 E
3 XY Wouser cry [wice <o B System <PU [141e CPU
[t | vodes cros Sunn ses o ;

6 instances Nqueens(22)

Orsay CPU Tast hour

Network
orsay Netvark Tast hour

M

N
P
i)
ot
o
g
3
O

Competitor X
Competitor Y
Grid’5000 free
N-Queens(23)

16

Experimental results on SOFA [CIMIT-ETZH-INRII-G

— " N~ [Allard 06]
Bar-fem-implicit-32 Bar-fem-implicit-32
[@ Linear w Linear
71w 8x8x0x4 | e 7 1m 8x8x0x4 |
6|7 axaxis | _},; PO T s oy axax1e
4 6x6%26 A A o | | 4 6x6x26 = = e
5-{|e Bx8x36 3= 5-{|e BxBx36 oot T
x 10x10x46§ X 10x10x46 =]
34 ¥ 34 '«f‘ = v"'v"vv
A / 2] / A v
1 1
0173 45675 ttonizbielsi 0133435675 R bLb
Kaapi (c++,~500 lines) Cilk (c, ~240 lines)
Preliminary results on GPU NVIDIA 8800 GTX Speedup GPU Bar-spring-euler

e speed-up ~9 on Bar 10x10x46 to Athlon64 2.4GHz
128 “cores” in 16 groups
*CUDA SDK : “BSP”-like, 16 X [16 .. 512] threads
*Supports most operations available on CPU
*~2000 lines CPU-side + 1000 GPU-side

Speedup

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
 Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Extended work-stealing : concurently sequential and par

9

3. Work-first principle and adaptability

Work-first principle: -implicit- dynamic choice between two executions :
* asequential “depth-first” execution of the parallel algorithm (local, default) ;
* aparallel “breadth-first’ one.
Choice is performed at runtime, depending on resource idleness:
rare event if Depth is small to Work
WS adapts parallelism to processors with practical provable performances
* Processors with changing speeds / load (data, user processes, system, users,
e Addition of resources (fault-tolerance [Cilk/Porch, Kaapi, ...])

The choice is justified only when the sequential execution of the parallel
algorithm is an efficient sequential algorithm:
» Parallel Divide&Conquer computations

-> But, this may not be general in practice

20

How to get both optimal work W, and W, small?

General approach: to mix both
a sequential algorithm with optimal work W,
and a fine grain parallel algorithm with minimal critical time W,

Folk technique : parallel, than sequential
Parallel algorithm until a certain « grain »; then use the sequential one
Drawback : W, increases ;0) ...and, also, the number of steals

Work-preserving speed-up technique sini-panss) Sequential, then parallel Cascading pajssz :
Careful interplay of both algorithms to build one with both

W, small and W;=0(W)

Use the work-optimal sequential algorithm to reduce the size
Then use the time-optimal parallel algorithm to decrease the time
Drawback : sequential at coarse grain and parallel at fine grain ;0(

21

Extended work-stealing: concurrently sequential and parallel

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,...]
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

- one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPartComputation (often not performed)

SeqCompute P

SeqCompute —> 1

22

Extended work-stealing : concurrently sequential and parallel

Based on the work-stealing and the Work-first principle :

Instead of optimizing the sequential execution of the best parallel algorithm,
let optimize the parallel execution of the best sequential algorithm

Execute always a sequential algorithm to reduce parallelism overhead

= parallel algorithm is used only if a processor becomes idle (ie workstealing) [Roch&al2005,...]
to extract parallelism from the remaining work a sequential computation

Assumption : two concurrent algorithms that are complementary:

- one sequential : SeqCompute (always performed, the priority)
- the other parallel, fine grain : LastPartComputation (often not performed)

SeqCompute_main

T

SeqCompute ——> compfte:

Note:
* merge and jump operations to ensure non-idleness of the victim

* Once SeqCompute_main completes, it becomes a work-stealer

11

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
 Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Extended work-stealing : concurently sequential and parallel

¢ Scheme 2: Amortizing the overhead of synchronization (Nano-loop)

24

Extended work-stealing and granularity

= Scheme of the sequential process : nanoloop
While (not completed(Wrem)) and (next_operation hasn’t been stolen)

{

atomic { extract_next k operations ; Wrem -= k ; }
process the k operations extracted ;

}
= Processor-oblivious algorithm
= Whatever p is, it performs O(p.D) preemption operations (« continuation faults »)
-> D should be as small as possible to maximize both speed-up and locality

= If no steal occurs during a (sequential) computation, then its arithmetic work is optimal
to the one Wo,,, of the sequential algorithm (no spawn/fork/copy)

-> W should be as close as possible to W,

= Choosing k = Depth(W,,,,) does not increase the depth of the parallel algorithm
while ensuring O(W/ D) atomic operations :
since D> log, W,,,, thenifp=1: W~W,,
= Implementation : atomicity in nano-loop based without lock
= Efficient mutual exclusion between sequential process and parallel work-stealer

= Self-adaptive granularity

12

25

Interactive application with time constraint

Anytime Algorithm:
+ Can be stopped at any time (with a result)
* Result quality improves as more time is allocated

In Computer graphics, anytime algorithms are common:
Level of Detail algorithms (time budget, triangle budget, etc...)
Example: Progressive texture loading, triangle decimation (Google Earth)

Anytime processor-oblivious algorithm:
On p processors with average speed IT,,,, it outputs in a fixed time T

a result with the same quality than
a sequential processor with speed I, in time p.IT,,..

Example: Parallel Octree computation for 3D Modeling

26

Parallel 3D Modeling

3D Modeling :
build a 3D model of a scene from a set of calibrated images

On-line 3D modeling for interactions: 3D modeling from

J\“l Lr—

multiple video streams (30 fps)

13

Octree Carving (. soaresos]

A classical recursive anytime 3D modeling algorithm.

Standard algorithms with time control:

Level 0 ﬁ Level 0 6
State of a cube: N
- Grey: mixed => split Levell —— 7 [\ SO
- Black: full :stop == ~
Level 1 ﬂ - White: empty : stop —U —[] g ' ' g I—U I—_U
ﬁ 2 Level 2 N\ ;
- misis] I Isisisils]s)
Level 2 4“ i Width first
Js5
Depth first

+ iterative deepening

At termination: quick test to decide all grey cubes time control

Width first parallel octree carvin928

Well suited to work-stealing
-Small critical path, while huge amount of work (eg. D =8, W = 164 000)
- non-predictable work, non predictable grain :
For cache locality, each level is processed by a self-adaptive grain :
“sequential iterative” / "parallel recursive split-half”

Octree needs to be “balanced” when stopping:
+ Serially computes each level (with small overlap)
+ Time deadline (30 ms) managed by signal protocol

Unbalanced Balanced

Theorem: W.r.t the adaptive in time T on p procs., the sequential algorithm:
- goes at most one level deeper: 1d;-d, I=<1;
- computes at most: ng=n, + O(log n,) .

14

Timetms)

- 16 core Opteron machine, 64 images
- Sequential: 269 ms, 16 Cores: 24 ms
- 8 cores: about 100 steals (167 000 grey cells)

Results

[L. Soares 06]

Time : i Time

[

|

I

l

[

1§
Time(ms)

cPUs

8 cameras, levels 2 to 10 64 cameras, levels 2t07

Preliminary result: CPUs+GPU

1000

-1 GPU + 16 CPUs B
- GPU programmed in OpenGL 2 v Ideal
- efficient coupling till 8 but g e
g)
does not scale £ \‘\v*
5 l*itf't =
2 s
T S S I S
CPUs

29

Overview

¢ Introduction : interactive computation, parallelism and processor oblivious
 Overhead of parallelism : parallel prefix

* Machine model and work-stealing

* Scheme 1: Extended work-stealing : concurently sequential and parallel
* Scheme 2: Amortizing the overhead of synchronization (Nano-loop)
* Scheme 3: Amortizing the overhead of parallelism (Macro-loop)

15

4. Amortizing the arithmetic overhead
of parallelism

Adaptive scheme : extract_seg/nanoloop // extract_par
+ ensures an optimal number of operation on 1 processor
+ but no guarantee on the work performed on p processors

Eg (C++ STL): find_if (first, last, predicate)
locates the first element in [First, Last) verifying the predicate

This may be a drawback (unneeded processor usage) :
* undesirable for a library code that may be used in a complex application,
with many components
+ (or not fair with other users)
« increases the time of the application :
~any parallelism that may increase the execution time should be avoided

Motivates the building of work-optimal parallel adaptive algorithm
(processor oblivious)

31

4. Amortizing the arithmetic overhead
of parallelism (cont'd)

Similar to nano-loop for the sequential process :

« that balances the -atomic- local work by the depth of the remaindering one

Here, by amortizing the work induced by the extract_par operation,
ensuring this work to be small enough :

+ Either w.r.t the -useful- work already performed

+ Or with respect to the - useful - work yet to performed (if known)
+ or both.

Eg : find_if (first, last, predicate) :
+ only the work already performed is known (on-line)
+ then prevent to assign more than a(W,,.) operations to work-stealers
+ Choices fora(n):
*n/2 : similar to Floyd’s iteration (approximation ratio = 2)
* n/log* n : to ensure optimal usage of the work-stealers

32

16

33

[S. Guelton]

Results on find_if

N doubles : time predicate ~ 0.31 ms

nnnnnnn

With amortization macroloop

34

5. Putting things together

processor-oblivious prefix computation

Parallel algorithm based on :
- compute-seq/ extract-par scheme
- nano-loop for compute-seq

- macro-loop for extract-par

17

P-Oblivious Prefix on 3 proc.

Sequential
Ty 84 3, @3 34 35 A A7 Ag Ag A1 Ayy
o a
Main “12 >
Seq. ﬂ:1
&
I
5 Parallel
&

Work-
stealer 1

Work-
stealer 2

Po

Py

Py

time

35

P-Oblivious Prefix on 3 proc.

Sequential
Tya, a, a; a,
Main
i U1 T2 T3

Parallel
ai=ab*...*ai
3535 3; 38g 39 3493413y
Work- —
stealer 1
P
G 0
S\e'é\‘ea\)
Py
Work-
stealer 2 P,
0o 1 2 3
time

36

18

P-Oblivious Prefix on 3 proc.

Sequential
Tpay @ a3 a

Mai
S:(I; — ﬂ:1 T[z ﬂ:3 ﬂ:4 O(B

Preempt\ Tty Og

Parallel
a5 a6 a7 a8 ai=ab5*...*ai
Work-
stealer 1 00
6708 =
Bi=ag*...*ai
8, 8.,8,. 0 Pl
Work-
stealer 2 P, m
0o 1 2 3 4
time

37

P-Oblivious Prefix on 3 proc.

Sequential
Tay a az ag~— >~ >

Main —_ ﬂ:1 ﬂ:z ﬂ:3 ﬂ:4

Seq.
Preempt | TTg 611
Parallel
a5 ae a7 aB ai=ab5*...*ai
Work-
stealer 1

Bi=ag*...*ai
dg9 aip 34 34p

19

P-Oblivious Prefix on 3 proc.

Sequential
wa, a as a, ~— >~ >

T4 7017

Mai ¥
g U T2 T3 Tl

Parallel
a- a. a ai=ab5*...*ai
5 <6 7
Work-
stealer 1 J'|:5 J'|:6 J'|:7
=
Bi=ag*...*ai =
= S P| O
Work-
stealer 2 9T P s s e |
3
0 1 % 3 4 5 6 7
time
39

P-Oblivious Prefix on 3 proc.

Sequential

Toa, 8 a; A, — >~ >

Main >
Seq; m
~,
Implicit critical path on the sequential process T,=7 T, =6
Parallel
as ag a, ai=ab5*...*ai
Work-
stealer 1 TUe=TTRTT
576717 =
Bi=ag*...*ai
o210 I i s
Work-
stealer 2 TgT0 = e
0 1 2 3 4 5 6 7
time
40

20

41

Analysis of the algorithm

- 2n logn
. Execution time < S O

= Sketch of the proof :
Dynamic coupling of two algorithms that complete simultaneously:

= Sequential: (optimal) number of operations S on one processor

= Extract_par : work stealer perform X operations on other processors
- dynamic splitting always possible till finest grain BUT local sequential
 Critical path small (eg :log X witha W=n/log* n macroloop)
« Each non constant time task can potentially be splitted (variable speeds)

Ts = oy and T = 3 e + O (B

rlave
= Algorithmic scheme ensures T = T, + O(log X)

=> enables to bound the whole number X of operations performed
and the overhead of parallelism = (s+X) - #ops_optimal

42

Results 1/ 2 [D Traore]

Prefix sum of 8.108 double on a SMP 8 procs (1A64 1.5GHz/ linux)

5

H tial tine (s}
e = static grain: average Ling (o) ——
ingle user contex

adapt grain: average tine (s}

o Pure sequential

Tinels]l

Time (s)

o Optimal off-line on p procs

Oblivious
L]
- K 2 3 4 5 6 7 8
#processors =

Single-usercontext : processor-oblivious prefix achieves near-optimal performance :
- close to the lower bound both on 1 proc and on p processors

- Less sensitive to system overhead : even better than the theoretically “optimal” off-line parallel algorithm on p processor

21

Results 2/2 [D Traore]

Prefix sum of 8.108 double on a SMP 8 procs (1A64 1.5GHz/ linux)

Multi-user context :

External charge
(9-p external processes)

Time (s)

Off-line parallel algorithm for p processors

Oblivious

#processors

Multi-user context :
Additional external charge: (9-p) additional external dummy processes are concurrently executed

Processor-oblivious prefix computation is always the fastest
15% benefit over a parallel algorithm for p processors with off-line schedule,

43

Conclusion

= Fine grain parallelism enables efficient execution on a small number of
processors

= Interest : portability ; mutualization of code ;
= Drawback : needs work-first principle => algorithm design

= Efficiency of classical work stealing relies on work-first principle :
= Implicitly defenerates a parallel algorithm into a sequential efficient ones ;

= Assumes that parallel and sequential algorithms perform about the same amount of
operations

= Processor Oblivious algorithms based on Work-first principle

= Based on anytime extraction of parallelism from any sequential algorithm (may
execute different amount of operations) ;

= Oblivious: near-optimal whatever the execution context is.

= Generic scheme for stream computations :
parallelism introduce a copy overhead from local buffers to the output
gzip / compression, MPEG-4 / H264

44

22

Kaapi (kaapi.gforge.inria.fr)

* Work stealing / work-first principle

» Dynamics Macro-dataflow :
_ partitioning (Metis, ...)

« Fault Tolerance (add/del resources)

Kaapi :

[E Boyer, B Raffin 2006]

45

FlowVR (flowvr.sf.net)
* Dedicated to interactive applications
+ Static Macro-dataflow
+ Parallel Code coupling

Thank you !

23

