
Ordonnancement
pour le parallélisme

Denis Trystram
trystram@imag.fr

ID-IMAG

november 2003

Contenu et Plan

• Context and Introduction

• Definitions and basic results

• Communication Delays

• Taking into account new characteristics

• Malleable Tasks

• On-line and multi-criteria optimization

Scheduling problem

Scheduling

Scheduling problem

Computational units are identifed and their
relations are analyzed. We determine when and

where they will be executed.

Scheduling

Target systems

1980: shared-memory parallel systems and
vector machines.

80-90: systèmes parallèles distribués très
variés.

Années 90: systèmes distribués à gros grain à
réseaux dynamiques.

Actuellement: grappes (hiérarchiques), calcul
sur grilles hétérogènes et distantes.

Taxinomy of Applications

off-line

Regular

off-line

(batch)

mixed

clairvoyant

on-line

unpredictible

(not clairvoyant)

Irregular

on-line

multi-applications

Applications

Precedence Task Graph

Let G=(V,E) be a weighted graph

 iff (ordre partiel)

The vertices are weighted by the execution times.

The arcs are weighted by the data to be transfered
from a task to another.

Eji !),(ji<<

Data-flow Graph

T

T ’ T ’ ’

Data-flow Graph

bipartite graph

T

T ’ T ’ ’

T

T ’ T ’ ’

x ’ x ’ ’

Example:
computing C = AB by Strassen

Matrices A and B are partitionned by quadrant.

C12 = A11 * (B12 - B22) + (A11 + A12) * B22

B11 B12

B21 B22

A11 A12

A21 A22

Strassen: computing C = AB

T1 = A11 + A12 ; T2 = A21 - A11;
T3 = A12 - A22 ; T4 = A21 + A22;
T5 = A11 + A22 ;
U1 = B11 + B22 ; U2 = B11 + B12;
U3 = B21 - B11 ; U4 = B12 - B22;
U5 = B21 + B22 ;
P1 = T5 * U4 ; P2 = T4 * B11 ;
P3 = A11 * U4 ; P4 = A22 * U3 ;
P5 = T1 * B22 ; P6 = T2 * U2 ;
P7 = T3 * U5 ;
C11 = P1 + P4 - P5 + P7 ; C12 = P3 + P5;
C21 = P2 + P4; C22 = P1 + P3 - P2 + P6 ;

Strassen’s Task Graph

Formal Definition

The problem of scheduling graph G = (V,E) weighted by
function t on m processors:

(without communication)

Determine the pair of functions (date,proc) subject to:

•respect of precedences

•objective: to minimize the makespan

))(,()()(:),(iprocitidatejdateEji +!"#

maxC

3 fields notation

[Graham,Lenstra-Lageweg-Veltman1990]

 b1|b2|b3

[Lenstra-Lageweg-Veltman,1990]

 b1|b2|b3

•b1- resources and model

[Lenstra-Lageweg-Veltman,1990]

 b1|b2|b3

•b1- resources and model

•b2 - graph and schedule

[Lenstra-Lageweg-Veltman,1990]

 b1|b2|b3

•b1- resources and model

•b2 - graph and schedule

•b3 - objective

[Lenstra-Lageweg-Veltman,1990]

 b1|b2|b3

•b1- resources and model

•b2 - graph and schedule

•b3 - objective

Example: max, CpjprecP!

Parameters of a Problem

•b1- implicit, BSP, LogP, , P or Pm

•b2 - prec, trees, grids - dup, pmtn, pj, Cij

•b3 - , overhead

!P

! iCC ,max

Example

Scheduling without
communication (m=3)

Theoretical Models
PRAM: modèles de référence pour la
classification.

Shared-memory: ordonnancement pur, sans
délais de communication. Grain fin et
faiblement couplé.

Distributed-memory: prise en compte des
communications (UET-UCT) explicites et
modèles élargis (linéaires, LogP, etc..).

Grappes et Grilles: nouveaux paramètres.

Central Scheduling Problem

P | prec, pj | Cmax is NP-hard [Ulmann75]

Thus, we are looking for good heuristics.

•Competitive ratio r:

maximum over all instances of

The schedule S is said -competitive iff
*!
!

! !" #)(r

Some results

Pinf | prec, pj | Cmax is polynomial (longest path)

Pm | prec, pj=1 | Cmax is still open for m>2

P2 | prec, pj=1 | Cmax is polynomial

[Coffman-Graham72]

List scheduling

Principle: build first the list of ready tasks and execute
them with any greedy policy (in any order when they
are available).

Pm | prec, pj | Cmax is 2-competitive

Analysis of list scheduling

We start from the end of the schedule:

 where W is the total work

The idea of the proof is to bound the term idle
m

idleW+=!

While there exist some time slots with idle periods:

 there is one active task which is linked with Tj

Tj
m

We continue from Ti until it remains no idle time

Tj

Ti

Proof:

!"#"# tmlmidle ch)1()1(

!
"+# t
m

m 1*$$

*!"
m

W

As the critical path is also a lower bound of the optimum:

()*12 !!
m

"#

Worst case

The bound is tight:

Consider (m-1)m UET tasks and 1 task of length m

12 != m" m=*!

m

Anomalies [Graham]

2

1

4

3

5

6

7

Weights: (4,2,2,5,5,10,10)

1

2 3
4
5

6
7

C=14

Anomalies [Graham]

2

1

4

3

5

6

7

All weights have one unit less:

(3,1,1,4,4,9,9)

1

2 3
54

67
C=20

Lower bounds

Basic tool:

Theorem of impossibility [Lenstra-Shmoys’95]

• given a scheduling problem and an integer c,
if it is NP-complete to schedule this problem in
less than c times, then there is no schedule with
a competitive ratio lower than (c+1)/c.

Application
Proposition

The problem of deciding (for any UET graph) if
there exists a valid schedule of length at most 3 is
NP-complete.

Proof: by reduction from CLIQUE

Application
Proposition

The problem of deciding (for any UET graph) if
there exists a valid schedule of length at most 3 is
NP-complete.

Proof: by reduction from CLIQUE

Corollary: a lower bound for the competitive ratio
of is 4/3.max1, CpjprecPm =

(finer) Upper Bound
 Consider problem P |prec, pj=1 | Cmax

Proposition

There exists a (list-)algorithm whose performance
guarantee is 2-2/m [Lam-Sethi,77] [Braschi-
Trystram,94].

Proof adequate labeling of the tasks plus a priority
based on the critical path.

Taking communications into account:
the delay model

Introduced by [Rayward-Smith, 89]

•Total overlap of communications by local
computations

•Possible duplication

•Simplified communications (unitary in the basic
paper)

•No preemption allowed

Formal Definition

The problem of scheduling graph G = (V,E) weighted by
function t on m processors:

(with communication)

Determine the pair of functions (date,proc) subject to:

•respect of precedences

•objective: to minimize the makespan

),())(,()()(:),(jiciprocitidatejdateEji ++!"#

maxC

Basic delay model

Comparing with no communication:

•Handling explicitly the communications is
harder than the basic scheduling model

Scheduling with small delay with
and without duplication

Scheduling with UCT delay with
and without duplication

Brent’s Lemma

• Property:
 let be the competitive ratio of an

algorithm with an unbounded number of
processors. There exists an algorithm with
performance ratio for an abritrary
number of processors.

!

1+!

Principle

Gantt chart for m* processors

time

m processors

m processors

Thus,

Proof

!!+" ### *m

!!" *#$$

m** !! "#

(Similar to Graham’s bound)

() mm *1!"! +#

Consequences:
trivial Upper Bound

•As Pinf | prec, pj=1| Cmax is optimal
(competitive ratio of 1), then:

P| prec, pj=1 | Cmax is 2-competitive.

•As Pinf | dup,prec, pj,cij| Cmax is 2-competitive,
then:

P|dup, prec, pj, cij = 1 | Cmax is 3-competitive

List scheduling
with communication delays

Trivial solution for UCT [Rayward-Smith]: insert
systematically a communication at each step. 3-
competitive algorithm.

Better solution for general graphs:

The principle is the same: just add a term proportional
to the sum of the communications on the longest path
[Hwang-Chow-Anger-Lee,89].

Formulation of P|prec,pj=1,cij=1|Cmax
as a ILP.

Xij are the decision variables
0 if task allot(i)=allot(j)

More sophisticated algorithms
than list-algorithms

Objective: minimize (C)
Constraints:

Solving as an ILP

CidateVi !+"# 1)(,

)(1)(,),(, jdateXidateEji ji !++"#

)(deg, ireeX
j

ji !"

1,0, =jiX

0)(, !"# idateVi

Solve the LP with xij real numbers in [0,1]
and then, relax the solution:
xij < 0.5 are set to 0, the others are set to 1

Property:
this algorithm is 4/3-competitive.

Solving as an ILP

Principle: unbounded number of processors.
Starting from the smallest granularity, the
tasks are gathered into subsets of tasks.

Property:
Critical path or maximum independent sets.

Clustering Algorithms

Pinf|prec,pj,cij<=1,dup|Cmax
is polynomial [Colin-Chretienne,90]

Idea: Find a spanning tree of minimum
(local-) weights and schedule it by
duplicating all the leaves.

Influence of the duplication

Colin-Chrétienne

P|prec,pj=1,cij=1,dup|Cmax
is 2-competitive [Hanen-Munier,97]

Idea: by applying a list scheduling with
duplication of parts of paths.

Duplication with a fixed number
of processors

Synthesis
small communication delays

trees, SP,

bipartite

polynomial

UET-UCT

NP-hard

no duplication

polynomial

duplication

unbounded number of proc.

trees,

bipartite

NP-hard

interval order

polynomial

UET-UCT

NP-hard

m processors

Scheduling with large delay

This problem is harder than with small
communication delay

No competitive algorithm is known at this time

with a constant ratio (linear in the granularity factor)

Detailed result

Consider P | prec, pj=1, c>1 | Cmax

The best lower bound known at this time is
1+1/(g+3) [Bampis-Gianakos-Konig,98]

Practically, if g<<1 not interesting...

Large communication delays
upper bound

Consider again P | prec, pj=1, c>1 | Cmax

The best upper bound known at this time is (c+2)
[Bampis-Gianakos-Konig,97].

Another way to obtain this result is the trivial (list)
algorithm which starts with no communication and
systematically insert a communication between the
computation steps...

Synthèse
grands délais de communication

duplication

pi>1 et c>1

NP-difficile

biparti

polynomial

arbres

NP-difficile

pas de duplication

infinité de processeurs

arbres binaires

complets et m=2

polynomial

arbres binaires

pi>1 et c>1 et m=2

NP-difficile

m processeurs

Processeurs Uniformes
(hétérogène)

Two natural extensions of the delay models are
towards uniform (Q) and unrelated (R) processors.

NP-hard for very simple problems

NP-hard for 1 machine plus a set of (m-1) identical
machines

Scheduling independent chains

Qm|chains,pj=1,c=1|Cmax is strongly NP-hard while

Pm|chains,pj=1,c=1|Cmax is linear.

Example: scheduling chains
on 2 processors (v1=1,v2=2).

Idea: compute the maximum number of tasks to
allocate to the slowest processor.

n1=7
n2=6
n3=2
Total n=15

101,
21
)21(2

max =!
"
#

$
%
&

+

+
' n

vv

nnv
(

*12 !"" <#+nv

2=!
10

Alternative models: BSP
BSP is a programming paradigm [Valiant,90] whose
principle is a series of independent steps of
computations and communication-synchronization.

computations computations

Alternative models: BSP
BSP is a programming paradigm [Valiant,90] whose
principle is a series of independent steps of
computations and communication-synchronization.

computations computations

Scheduling under BSP is finding a tradeoff between
load-balancing and number of CS

Coming back to the example

Scheduling in BSP

Parameters of BSP

•Latency (minimum time between communications)

•computing an h-relation (hg+s)

•based on a cost function

Complexity under BSP

•Simple problems under the delay model become
hard under BSP

•However, it seems possible to design good
competitive algorithms (for instance for scheduling
independent chains).

Alternative models: LogP

Need of computational models closer to the actual
parallel systems [Culler et al.]: 4 parameters.

•L latency

•o overhead

•g gap

•P number of processors

Alternative models: LogP

No overlap.

O + L + O

Alternative models: LogP

No overlap. g

Alternative models: LogP

No overlap.

The delay model is a LogP-system where o=g=0

g

Scheduling the previous
example in LogP

Complexity of LogP

Of course, LogP seems (is?) harder.

It is true for

(LogP)Pinf | Fork,pj | Cmax and

(LogP)P=2 | Fork,pj | Cmax

Scheduling a fork graph under LogP

LogP is harder.

32 5 1 2

Alternative models :
Malleable Tasks

Malleable Tasks

Natural link with applications:

• Partitioning the graph into routines.

• Parallel routines that can be analyzed easily
(prediction of performances, using for instance
PRAM algorithms or library routines).

Communications are implicit

Malleable Tasks

Informal definition:

A malleable task (MT) is a computational unitthat can
itself be executed in parallel on an arbitrary number of
processors.

History of MT
[Du-Leung] SIAM J.Discrete Maths 89

[Turek] SPAA’92

Related to:

•Resource constraint scheduling [Graham75].

•Multiprocessor Tasks [Lloyd81], recent survey of
[Drozdowski] in EJOR 86.

•Divisible Tasks [Srinivasa Prasanna-Musicus96]
[Robertazzi]

Exemple

Advantage of MT

The granularity is large, thus, it allows to neglect
communications between MT or at least to consider
the SCT assumption…

The performance analysis of each MT can give a
rather good execution time estimation

Taking into account the
communications

We introduce a penalty factor for representing
the global overhead (communications plus
synchronizations plus sequential character).

Penalty

Le temps d’exécution parallèle décroit avec le nombre de
processeurs et la pénalité augmente.

More Formally

Definition of Inefficiency factor of task T on i processors
whose execution time is exec(T,i):

Expected Properties:

)1,(

),(
),(

Texec

iiTexec
iT =µ

!)(., iµ

!
i

i)(.,µ

Formal definition
Scheduling of the MT-graph G = (V,E) on m processors:

Find two functions (date,allot) suject to:

• resource constraint

• respect of precedences

•objective: minimizing the makespan

!
"

#$
%

%
sloti

miallot)(:

:),(Eji !"

jiCiallotitidatejdate ,))(,()()(++!

maxC

Scheduling MT

Two types of algorithms:

• simple allotment – complex multi-processor
scheduling

• sophisticated allotment – simple multi-processor
scheduling

Principle in two successive phases (allocation et packing)

General approach

•L’allocation est sophistiquée, réalisée par un
algorithme de Programmation Mathématique
(type Sac-à-dos).

•Utilisation d’un algorithme d’ordonnancement
« simple » (liste).

To focus on the allotment

K dual Approximation

•On fixe une valeur de l’objectif d (entier).

•On applique un algorithme, si la garantie
obtenue est plus mauvaise que kd, on
recommence (dichotomie).

Independent MT
as a case study

Let us consider 7 MT to be scheduled on
m=10 processors.

Canonical Allotment

W/m
1

Canonical Allotment

Maximal number of processors needed for
executing the tasks in time lower than 1.

1

m

2-shelves scheduling

Idea: to analyze the structure of the optimum
where the tasks are either greater than ½ or not.

Thus, we will try to fill two shelves with these
tasks.

How to select the tasks?

Knapsack: min(W*) s.c. # processeurs de S1<m

1

m

1/2

Transformations et
ordonnancement

1

m

1/2

Jobs rigides
(non clairvoyant)

Soit n jobs indépendants à ordonnancer chacun avec
une estimation du nombre de processeurs pi.

Ordonnancement rigide

J1 J2 J3 J4

(1) (1) (1) (1)

(1)

m

(2) (2) (2) (2)

m

(2)

Performance garantie

4-approximation avec l’heuristique FFD.

Technique : adversaire clairvoyant.

Ordonnancement MT général

Généralisation à des graphes avec structures de
précédence : même méthodologie avec un
ordonnancement plus complexe (liste avec garantie).

Structures spécifiques (chaines, arbres, SP, …)

Garanties en (3+sqrt(5))/2

On-line scheduling

Constructing a batch scheduling

Analysis: there exists a nice result which gives a
guaranty for an execution in batch function of the
guaranty of the scheduling policy inside the
batches.

Analysis [Shmoys]

previous last batch last batch

Cmaxr
(last job)

n

Proposition

*maxmax
2 CC !"

Analysis

Tk is the duration of the last batch

On another hand, and

Thus:

TrC kn
+!*max"

rD nk
!

"1

TTDC kkk
++=

!! 11max

*maxmax
2 CC !"

*max, CTi
i !"#

Multi criteria

The Makespan is not always the adequate
criterion.

System point of view:
Average completion time (weighted)
Other criteria: Stretch, Asymptotic

throughput

A first solution

Construct a feasible schedule from two schedules
of guaranty r for minsum and r’ for makespan with
a guaranty (2r,2r’) [Stein et al.].

Instance: 7 jobs (moldable tasks) to be scheduled
on 5 processors.

Schedules s and s’

Schedule s
(min sum)

3 5

4
1 2

6
7

Schedule s’
(makespan)

7

2

1
4

6
3
5

New schedule

3 5

4
1 2

6
7

7

2

1
4

6
3
5

r’Cmax

New schedule

3 5

4
1 2

6
7

7

6 5

New schedule

3

4
1 2

7

6 5

New schedule

3

4
1 2

7

6 5

2r’Cmax

New schedule

3

4
1 2

7

6 5

2r’Cmax

Similar bound for the first criterion

Analysis

The best known schedules are:
8.53 [Schwiegelsohn] for minsum and 3/2 [Mounie
et al.] for makespan leading to (17.06,3).

Improvement

We can improve this result by determining the
Pareto curves (of the best compromises):
(1+λ)/ λ r and (1+ λ)r’

Idea:
take the first part of schedule s up to λ r’Cmax

Pareto curve

Another way for better schedules

We propose now a new solution for a better result
which has no to consider explicitely schedule for
minsum (based on a nice dynamic framework).

Conclusion

We have presented and discussed the problem of
scheduling in the context of Parallel Processing.

There is an important impact of the computational
model on the performances.

Communications are crucial and have to be
optimized. Partitioning is more important than
internal scheduling.

