
Chapter 4

 Cryptographic hash functions
References:

–  A. J. Menezes, P. C. van Oorschot, S. A. Vanstone: Handbook of
Applied Cryptography –
Chapter 9 - Hash Functions and Data Integrity [pdf available]

–  D Stinson: Cryprography – Theory and Practice (3rd ed),
Chapter 4 – Security of Hash Functions

–  S Arora and B Barak. Computational Complexity: A Modern Approach
(2009). Chap 9. Cryptography (draft available)
http://www.cs.princeton.edu/theory/complexity/ (see also Boaz Barak
course http://www.cs.princeton.edu/courses/archive/spring10/cos433/)

Grenoble University – M2 SCCI Security Proofs - JL Roch

Hash function
•  Hash functions take a variable-length message and reduce it

to a shorter message digest with fixed size (k bits)
 h: {0,1}* →{0,1}k

•  Many applications: “Swiss army knives” of cryptography:
–  Digital signatures (with public key algorithms)
–  Random number generation
–  Key update and derivation
–  One way function
–  Message authentication codes (with a secret key)
–  Integrity protection
–  code recognition (lists of the hashes of known good programs or

malware)
–  User authentication (with a secret key)
–  Commitment schemes

•  Cryptanalysis changing our understanding of hash functions

–  [eg Wang’s analysis of MD5, SHA-0 and SHA-1 & others]

Hash Function Properties
•  Preimage resistant

–  Given only a message digest, can’t find any message (or preimage)
that generates that digest. Roughly speaking, the hash function must
be one-way.

•  Second preimage resistant
–  Given one message, can’t find another message that has the same

message digest. An attack that finds a second message with the same
message digest is a second pre-image attack.

•  It would be easy to forge new digital signatures from old signatures if the
hash function used weren’t second preimage resistant

•  Collision resistant
–  Can’t find any two different messages with the same message digest

•  Collision resistance implies second preimage resistance
•  Collisions, if we could find them, would give signatories a way to repudiate

their signatures
–  Due to birthday paradox, k should be large enough !

•  Collision_attack ≤P 2nd-Preimage_attack

•  Careful: Collision_resistance NOT≤P Preimage_resistance
–  Let g : {0,1}*→ {0,1}n be collision-resistant and preimage-resistant.
–  Let f: {0,1}*→ {0,1}n+1 defined by f(x):=if (|x|=n) then “0||x” else “1||g(x)”.
–  Then f is collision resistant but not pre-image resistant.

•  But :
(Collision_resistance and one way) �P Preimage_resistance

•  Let F be a basic “compression function” that takes in input a block of fixed

size (k+r bits) and delivers in ouptut a digest of size k bits :
–  For some fixed k and n, F “compresses” a block of n bits to one of k=n-r bits

 F: {0,1}k+r → {0,1}k (eg. for SHA2-384 k=384 bits and r=640 bits)

•  One-to-one padding: M → M || pad(M) to have a bit length multiple of r :
–  M || pad(M) = M1, M2, M3…,Ml [one-to-one padding: M≠M’ ! M||pad(M) ≠ M”||pad(M’)]

•  Ex.1: pad(M)=“0…0”||s, where s=64 bits that encode the bitlength of M
•  Ex.2: pad(M)=“0…0”||u||1||v, where u=bitlength(M) and v=“0”log(u)

•  F is extended to build h: {0,1}* →{0,1}k
 based on a provable secure extension scheme.

–  Eg: Merkle scheme: last output of compression function is the h-bit digest.

Building hash functions:
compression + extension

M1

k-bit
fixed IV

k-bit
chaining value

k-bit
message

digest

… F F

Ml
… …

Provable compression functions
•  Example: Chaum-van Heijst - Pfitzmann

–  two prime numbers q and p=2q+1.
�  α and β to primitive elements in Fp.
–  Compression function h1

•  Theorem: If LOGα(β) mod p is impossible to compute
 (i.e. to find x such that αx=β mod p),

then h1 is resistant to collision.
–  Proof ?
-> Training exercises (Form 4 : on the web): building a

provable secure compression function F and a provable
secure parallel extension scheme.

•  Example: Merkle-Damgard scheme:
–  Preprocessing step: add padding to injectively make that the size of the input is a multiple of r:

Compute the hash of x || Pad(x).

 hi = F (hi-1 || xi)

•  Theorem: If the compression function F is collision resistant then
 the hash function h is collision resistant .

–  Proof: by contradiction (reduction) and induction.

•  Note: Drawback of Merkle-Damgard: pre-image and second preimage
–  There exist O(2k-t) second-preimage attacks for 2t-blocks messages [Biham&al. 2006]

Provable Extension schemes

M1

h-bit
fixed IV

h-bit
chaining value

h-bit
message

digest

… F F

Ml … …

Other extension schemes
•  Merkle tree:

•  Variants: Truncated Merkle-tree, IV at each leave

•  HAIFA : hi = F (hi-1 || xi || iencoded on 64 bits)
•  where compression F: {0,1}k+r+64 → {0,1}k
•  Lower bound W(2k) for 2nd-preimage[Bouillaguet&al2010]

•  …

 NIST recommendations
[april 2006, Bill Burr]

n k r Unclassified use Suite B

Through
2010

After
2010

Secret Top Secret

MD4 512 128 384

MD5 512 128 384

SHA1 512 160 352 √

SHA2-224 512 224 288 √ √

SHA2-256 512 256 256 √ √ √

SHA2-384 1024 384 640 √ √ √ √

SHA2-512 1024 512 512 √ √

MD5
•  The message is divided into blocks of n = 512 bits

–  Padding: to obtain a message of length multiple of 512 bits
•  [B1..Bk] => [B1..Bk10..0k0..k63]

 where [k0..k63] is the length k of the source (in 32 bits words)

•  One step: 4 rounds of 16 operations of this type:
–  Mi plaintext (32 bits): 16*32=512 bits
–  A,B,C,D: current hash -or IV-: 4*32=128bits
–  Ki: constants
–  F: non linear box, + mod 232

•  First collisions found in 2004 [Wang, Fei, Lai,Hu]
–  No more security guarantees
–  Easy to generate two texts with the same MD5 hash

Secure Hash Algorithms SHA
•  SHA1: n=512, k=160; 80 rounds with 32 bits words:

–  Wt plaintext (32 bits; 16*32=512 bits)
–  A,B,C,D,E: current hash -or IV-: 5*32=160bits
–  Kt: constants
–  F: non linear box, + mod 232

–  Weaknesses found from 2005
•  235 computations [BOINC…]

•  SHA2: 4 variants: k=224/384/256/512
•  k=Size of the digest
•  SHA-256: n=512, k=256

–  64 rounds with 32 bits words
–  Message length <264-1
–  SHA-224: truncated version

•  SHA-512: n=1024, k=512
–  80 rounds with 64 bits words
–  Message length <2128-1
–  SHA-384: truncated version

SHA-3 initial timeline
(the Secure Hash Standard)

•  April 1995 FIPS 180-1: SHA-1 (revision of SHA, design similar to MD4)
•  August 2002 FIPS 180-2

specifies 4 algorithms for 160 to 512 bits digest
 message size < 264: SHA-1, SHA-256 ; < 2128 : SHA-384, and SHA-512.

•  2007 FIPS 180-2 scheduled for review
–  Q2- 2009 First Hash Function Candidate Conference
–  Q2- 2010 Second Hash Function Candidate Conference

•  Oct 2008 FIPS 180-3 http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf

specifies 5 algrithms for SHA-1, SHA-224, SHA-256, SHA-384, SHA-512.

•  2012: Final Hash Function Candidate Conference
•  2 October 2012 : SHA-3 is Keccak (pronounced
catch-ack�).

–  Creators: Bertoni, Daemen, Van Assche (STMicroelectronics) & Peeters (NXP Semiconductors)

The five SHA3 finalists
•  BLAKE

–  New extension scheme (HAIFA) + stream cipher (Chacha)

•  Grøstl
–  Compression function (two permutations) +

 Merkle-Damgard extension + output transformation (Matyas-Meyer-Oseas)

•  JH
–  New extension scheme + AES/Serpent cipher

•  Keccak
–  Extension « sponge construction » + compression

•  Skein
–  Extension « sponge construction » + Threefish block cipher

SHA-3 : Keccak
•  Alternate, non similar hash function to MD5, SHA-0

and SHA-1:
–  Design : block permutation + Sponge construction

•  But not meant to replace SHA-2
•  Performance 12.5 cycles per byte on Intel Core-2 cpu;

efficient hardware implementation.

•  Principle (sponge construction):
–  message blocks XORed with the state which is then

permuted (one-way one-to-one mapping)
–  State = 5x5 matrix with 64 bits words = 1600 bits
–  Reduced versions with words of 32, 16, 8,4,2 or 1 bit

Keccak block permutation
•  Defined for w = 2ℓ bit (w=64, ℓ = 6 for SHA-3)
•  State = 5 x 5 x w bits array : notation: a[i, j, k] is the bit with

index (i×5 + j)×w + k (arithmetic on i, j and k is performed mod 5, 5 and w)
•  block permutation function = 12+2ℓ iterations of 5 subrounds :

–  θ: xor each of the 5xw colums of 5 bits parity of its two neighbours :
 a[i][j][k] �= parity(a[0..4][j−1][k]) � parity(a[0..4][j+1][k−1])

–  ρ: bitwise rotate each of the 25 words by a different number, except a[0][0]
 for all 0≤t≤24, a[i][j][k] = a[i][j][k−(t+1)(t+2)/2] with

–  π: Permute the 25 words in a fixed pattern: a[3i+2j] [i] = a[i][j]

–  χ: Bitwise combine along rows: a[i][j][k] �= ¬a[i][j+1][k] & a[i][j+2][k]

–  ι: xor a round constant into one word of the state. In round n, for 0≤m≤ℓ,
 a[0][0][2m−1] �= b[m+7n] where b is output of a degree-8 LFSR.

Sponge construction = absorption+squeeze
•  To hash variable-length messages by r bits blocks (c = 25w – r)
•  Absorption:

–  The r input bits are XORed with the r leading bits of the state
–  Block function f is applied

•  Squeeze:
–  r first bits ot the states produced as outputs
–  Block permutation applied if additional output required

•  « Capacity » : c = 25w-r bits not touched by input/output
–  SHA-3 sets c=2n where n = size of output hash (1 step squeeze only)

•  Initial state = 0. Input padding = 10*1

•  Due to birthday paradox, the expected number of k-bit hashes that can be generated
before getting a collision is 2k/2

–  Security of a hash function with 128 bits digest cannot be more than 264

•  Choose a provable secure compression function F : {0,1}k+r -> {0,1}k
–  eg Chaum-van Heijst-Pfitzmann (discrete logarithm, cf exrecise)

–  Or based on a (provably secure) symmetric block cipher EK
eg Matyas-Meyer-Oseas; Davies-Meyer; Miyaguchi-Preneel; Meyer-Shilling (MDC2)

–  Or …

•  Choose a provable secure extension scheme to build hF from F
–  Eg: Merkle scheme: hF(x || b1..br)= F(h(x) || b1..br) [cf course]
–  Or (usually when k=r) : hF (x || y) = F(hF(x) || hF(y)) [cf exercise]

–  And use an initial value IV of k bits to initialize the scheme
 hF(b1..br)= F(IV || b1..br)

Provable secure hash functions

•  Bloc cipher : [key K , plaintext P] -> ciphertext C with |C| = |P| < |C| + |P|
-> Can be used as a compression function

•  Expected number of operations to find a collision by brute force less than 2|P|/2

•  But: a hash function is public, so is IV => cannot be used as is !

Building a compression function
from a symmetric block cipher (1/3)

EK

|P| bits

|P| bits

 |K| bits EK

P

C

K

•  Examples with a block cipher E with block size k and Merkle extension scheme :
–  g is a function that extends the hash to match the key size (might be identity)

•  Theorem: Under the black-box model for the underlying block cipher, the 3 schemes
are proved secure.
Expected number of operations to find

 - a collision = 2k/2 - a pre-image: 2k

Building a compression function
from a symmetric block cipher (2/3)

•  Use of a block cipher with block size k to built a compression function with 2k digest
–  Examples: MDC-2 and MDC-4, based on Merkle extension scheme

•  MDC2 :

•  Theorem [Steinberger 2007]: Under the black-box model for the underlying block cipher,
expected number of operations to find a collision ≥ 23k/5

–  Better than 2 pre-image: 2k/2 , even if far from the upper bound 2k

Building a compression function
from a symmetric block cipher (3/3)

Building a Block-cipher from
hash function

•  Building:
Basic compression function Block cipher

•  Examples: SHACAL-1 (from SHA-1) SHACAL-2 (from SHA-256)

g

Hi-1 (k bits)

Hi (k bits)

Mi (r bits) g

Pi (k bits block of the plaintext)

Ci (k bits of the ciphered blocks)

Ki (key = r bits,
 or less with padding)

Other hash functions
•  Based on modular arithmetic:

–  Eg MASH [Modular Arithmetic Secure Hash] based on RSA
[MASH1: 1025 bits modulus -> 1024 bits digest

•  Keyed hash functions :
–  Use a private key to build a hash
–  MAC (Message Authentication Code)

•  Based on a block cipher - HMAC Based on a hash
function

Keyed hash functions
•  Use a private key to build a hash

–  MAC (Message Authentication Code)

•  Examples:
–  Based on a block cipher - HMAC:based on a hash fn

CBC-MAC: based on CBC

What we have seen today

•  Importance of hash function
•  Hash function by compression + extension

– Provable security
– SHA1, SHA2

•  SHA 3 : sponge construction
•  Other hash functions :

– Hash function built from sym. Cipher (and reverse)
– Keyed hash function / HMAC

[detailed construction at next lecture]

Hash functions :
Security of MAC / HMAC

Outline
•  Message Authentication Codes (MAC) and

Keyed-hash Message Authentication Codes (HMAC)

•  Keyed hash family

•  Unconditionally Secure MACs

•  Ref: D Stinson: Cryprography – Theory and Practice (3rd ed),
Chap 4.

��

Universal hash family
•  Notations:

–  X is a set of possible messages
–  Y is a finite set of possible message digests or authentication tags
–  FX,Y is the set of all functions from X to Y

•  Definition 4.1:
A keyed hash family is a four-tuple F =(X, Y, K,H), where the following
condition are satisfied:

– K, the keyspace, is a finite set of possible keys
– H, the hash family, a finite set of at most |K| hash functions.

For each K ∈ K, there is a hash function hK ∈ H. Each hk: X → Y

•  Compression function:
•  X is a finite set, N=|X|. Eg X = {0,1}k+r N = 2k+r
•  Y is a finite set M=|Y|. Eg Y = {0,1}r M=2r
•  |FX,Y| = MN
•  F is denoted (N,M)-hash family

�	

Random Oracle Model�
–  Model to analyze the probability of computing preimage,

second pre-image or collisions:
–  In this model,

•  a hash function hK: X →Y is chosen randomly from F
•  The only way to compute a value hK(x) is to query the oracle.

–  THEOREM 4.1
Suppose that h ∈ FX,Y is chosen randomly, and let X0 ⊆ X.
Suppose that the values h(x) have been determined (by
querying an oracle for h) if and only if x ∈X0.

Then, for all x ∈X \ X0 and all y ∈Y,
 Pr[h(x)=y] = 1/M

�

Algorithms in the Random
Oracle Model�

–  Randomized algorithms make random choices during their execution.

–  A Las Vegas algorithm is a randomized algorithm
•  may fail to give an answer
•  if the algorithm returns an answer, then the answer must be correct.

–  A randomized algorithm has average-case success probability ε if the

probability that the algorithm returns a correct answer, averaged over all
problem instances of a specified size , is at least ε (0≤ε<1).

 For all x (randomly chosen among all inputs of size s):
 Pr(Algo(x) is correct) ≥ ε

–  (ε,q)-algorithm : terminology to design a Las Vegas algorithm such that:
•  the average-case success probability ε
•  the number of oracle queries made by algorithms is at most q.

��

Example of (ε,q)-algorithm�
•  Algorithm 4.1: FIND PREIMAGE (h, y, q)

–  choose any X0 ⊆ X,|X0| = q
–  for each x ∈X0 do { if h(x) = y then return (x) ; }
–  return (failure)

•  THEOREM 4.2 For any X0 ⊆ X with |X0| = q, the average-case
success probability of Algorithm 4.1 is ε=1 - (1-1/M)q.
Algorithm 4.1 is a (1 - (1-1/M)q ; q) – algorithm

•  Proof Let y ∈Y be fixed. Let Χ0 = {x1,x2..,xq}.
 The Algo is successful iff there exists i such that h(xi) = y.

•  For 1 ≤ i ≤ q, let Ei denote the event “h(xi) = y”.
The Ei’s are independent events; from Theo. 4.1, Pr[Ei] = 1/M for all 1≤i≤q.
Therefore,

The success probability of Algorithm 4.1, for any fixed y, is constant.
Therefore, the success probability averaged over all y ∈Y is identical, too.�
€

Pr[E1∨ E2 ∨ ...∨ Eq] =1− 1− 1
M

$

%
&

'

(
)
q

��

Message Authentication Codes�
•  One common way of constructing a MAC is to incorporate a

secret key into an unkeyed hash function.

•  Suppose we construct a keyed hash function hK from an
unkeyed iterated hash function h,
by defining IV=K and keeping this initial value secret.

•  Attack: the adversary can easily compute hash without
knowing K (so IV) with a (1-1)–algorithm:
–  Let r = size of the blocks in the iterated scheme
–  Choose x and compute y = h (x) (one oracle call)
–  Let x’= x || pad(x) || w, where w is any bitstring of length r

Let x’ || pad(x’) = x || pad(x) || w || pad(x’) (since padding is known)
–  Compute y’ = IteratedScheme(y, w || pad(x’)) (iterated scheme is

known)
–  Return (x’, y’) which is a valid pair ; (we have y’=h(x’))

��

Message Authentication Codes
(ε,q)-forger �

–  Assume MD iterated scheme is used, let zr = hK(x)
 The adversary computes zr+1←compress(hK(x)||yr+1)
 zr+2 ← compress(zr+1 ||yr+2)
 …
 zr’ ← compress((zr’-1 || yr’)
 and returns zr’ that verifies zr’=hK(x’).

•  Def: an (ε,q)-forger is an adversary who
–  queries message x1,…,xq,
–  gets a valid (x, y), x !∈ {x1,…,xq}
–  with a probability at least ε that the adversary outputs a

 forgery (ie a correct couple (x, h(x))

Hash functions :
Security of MAC / HMAC

Outline
•  Message Authentication Codes

–  Intoduction. Choosing K=IV isn�t a good idea.
•  Keyed hash family

– Security proof for nested HMAC
•  Unconditionally Secure MACs

��

Nested MACs and HMAC�

–  A nested MAC builds a MAC algorithm from the
composition of two hash families

•  (X,Y,K,G), (Y,Z,L,H)
•  composition: (X,Z,M,G °H)
• M = K × L
• G°H = { g°h: g ∈ G, h ∈ H }
•  (g°h)(K,L)(x) = gK(hL(x)) for all x ∈ X

–  Theorem: the nested MAC is secure if
•  (Y,Z,L,H) is secure as a MAC, given a fixed key
•  (X,Y,K,G) is collision-resistant, given a fixed key

��

•  (1) a forger for the nested MAC (big MAC attack)

–  (K,L) is chosen and kept secret
–  The adversary chooses x and query a big (nested) MAC

oracle for values of gK(hL (x))
–  output (x’,z) such that z = gK(hL (x’)) (x’ was not query)

•  (2) a forger for the little MAC (little MAC attack) (Y,Z,L,H)

–  L is chosen and kept secret
–  The adversary chooses y and query a little MAC oracle

for values of hL(y)
–  output (y’,z) such that z = hL(y’) (y’ was not query)

Nested MACs and HMAC
Security proof with 3 adversaries

�

��

•  (3) a collision-finder for the hash function (X,Y,K,G),
when the key is secret (unknown-key collision attack)
i.e. a collision finder for the hash function gK

–  K is secret
–  The adversary chooses x and query a hash oracle

for values of gK(x)
–  output x’, x’’ such that x’ ≠ x’’ and gK(x’) = gK(x’’)

Nested MACs and HMAC
Security proof with 3 adversaries

�

��

Nested MACs and HMAC
Security proof�

•  THEOREM 4.9 Suppose (X,Z,M,G °H) is a nested MAC.

(3) Suppose there does not exist an (ε1,q+1)-collision attack for
a randomly chosen function gK ∈ G, when the key K is secret.

(2) Further, suppose that there does not exist an (ε2,q)-forger
for a randomly chosen function hL∈H, where L is secret.

(1) Finally, suppose there exists an (ε,q)-forger for the nested
MAC, for a randomly chosen function (g°h)(K,L) ∈ G °H.

Then ε ≤ ε1+ε2

�	

Proof�
•  From (1) Adversary queries x1,..,xq to a big MAC oracle and get

(x1, z1)..(xq, zq).
It outputs a [possibly] valid (x, z) with Prob [z=(g°h)(K,L) (x)] = ε

•  With previous x, x1,.., xq make q+1 queries to a hash oracle gK :
 y = gK(x), y1 = gK(x1),..., yq = gK(xq)

•  if y ∈ {y1,..,yq}, say y = yi, then x, xi is solution to Collision;
from (3), the probability of forging such a collision is ε1.

•  else, output (y, z) which is a [possibly] forgery for hL with
probability ≥ ε-ε1.

•  Besides, q (indirect) little MAC queries have been performed

for(y1,z1), ..., (yq,zq). From (2), (y,z) is a [possibly] forgery for hL
with probability ≤ε2.

•  Finally, little MAC attack probability is ≥ ε-ε1and ≤ ε2 :
thus ε-ε1 ≤ ε2 � ε≤ε1+ε2.

�

Nested MACs and HMAC�
•  HMAC is a nested MAC algorithm that is proposed by FIPS

standard
–  for MD5 and SHA1 : [RFC 2202]

•  HMACK(x) = SHA-1((K ⊕ opad) || SHA-1((K ⊕ ipad) || x))

–  x is a message
–  K is a 512-bit key
–  ipad = 3636…..36 (512 bit)
–  opad = 5C5C….5C (512 bit)�

��

CBC-MAC(x, K)�

Cryptosystem 4.2: CBC-MAC (x, K)

•  denote x = x1 ||…|| xn ,xi is a bitstring of length t
•  IV ← 00..0 (t zeroes)
•  y0 ← IV
•  for i ← 1 to n
 do yi ← EK(yi-1 ⊕ xi)

•  return (yn)

A popular way to construct a MAC using a
block cipher EK with secret key K :

��

CBC-MAC(x, K)
Birthday collision attack�

•  (1/2, O(2t/2))-forger attack
–  n ≥ 3, q ≈ 1.17 × 2t/2

–  x3,…, xn are fixed bitstrings of length t.
–  choose any q distinct bitstrings of length t,

 x1
1, …, x1

q, and randomly choose x2
1, …, x2

q

–  define xl
i = xl, for 1≤i≤q and 3≤l≤n

–  define xi = x1
i ||…|| xn

i for 1 ≤ i ≤ q
–  xi ≠ xj if i ≠ j , because x1

i ≠ x1
j.

–  The adversary requests the MACs of x1, x2,…, xq

��

CBC-MAC(x, K)�
–  In the computation of MAC of each xi, values
 y0

i … yn
i are computed, and yn

i is the resulting MAC.
 Now suppose that and xi and xj have identical MACs.
–  hK(xi) = hK(xj) if and only if y2

i = y2
j, which happens if and

only if y1
i ⊕ x2

i = y1
j ⊕ x2

j.
–  Let xδ be any bitstring of length t

•  v = x1
i || (x2

i ⊕ xδ) ||…||xn
i

•  w = x1
j || (x2

j ⊕ xδ) ||…||xn
j

–  The adversary requests the MAC of v
–  It is not difficult to see that v and w have identical MACs,

so the adversary is successfully able to construct the
MAC of w, i.e. hK(w) = hK(v)!!!�

Hash functions :
Security of MAC / HMAC

Outline
•  Message Authentication Codes

–  Intoduction. Choosing K=IV isn�t a good idea.
•  Keyed hash family

– Security proof for nested HMAC
•  Unconditionally Secure MACs

��

Unconditionally Secure MACs
•  Unconditionally secure MACs

–  a key is used to produce only one authentication tag
–  Thus, an adversary makes at most one query.

•  Deception probability Pdq

–  maximum value of ε such that (ε,q)-forger for q = 0, 1

•  payoff (x, y) = probability of a vaild pair (x, y=hK0(x)) :

 Pr[y = hK0(x)]

•  Impersonation attack ((ε,0)-forger)

–  Pd0 = max{ payoff(x,y): x ∈ X, y ∈ Y } (4.1)

||
|})(:{|

K
K yxhK K =∈

=

��

Unconditionally Secure MACs�
•  Substitution attack ((ε,1)-forger)

–  query x and y is reply, x ∈X, y ∈Y
–  Probability(x’, y’) is valid = payoff(x’,y’;x,y), x’ ∈ X and x ≠ x’
–  payoff(x’,y’;x,y) = Pr[y’ = hK0(x’)) | y = hK0(x)] =

–  Let V = {(x, y): | {K ∈K : hK(x) = y} | ≥1}

–  Pd1 = max{ payoff(x’, y’; x, y): x, x’ ∈ X, y, y’ ∈Y ,

 (x,y) ∈ V, x ≠ x’} (4.2)

€

Pr[y '= hK 0(x')∧ y = hK 0(x)]
Pr[y = hK 0(x)]

=
|{K ∈K : hK (x ') = y',hK (x) = y} |

|{K ∈K : y = hK (x)} |

��

Unconditionally Secure MACs�
•  Example 4.1 X = Y = Z3 and K = Z3×Z3

 for each K = (a,b) ∈ K and each x ∈X,
 h(a,b)(x) = ax + b mod 3
 H = {h(a,b): (a,b) ∈ Z3 × Z3}

–  Pd0 = 1/3
–  query x = 0 and answer y = 0

 possible key K0 ∈ {(0,0),(1,0),(2,0)}.
 The probability that K0 is key is 1/3
 Pd1 = 1/3

 But if (1,1) is valid then K0 = (1,0)

Key / x 0 1 2

(0,0) 0 0 0

(0,1) 1 1 1

(0,2) 2 2 2

(1,0) 0 1 2

(1,1)� 1 2 0

(1,2)� 2 0 1

(2,0)� 0 2 1

(2,1)� 1 0 2

(2,2)� 2 1 0

Authentication matrix

��

Strongly Universal Hash
Families

–  Definition 4.2: Suppose that (X,Y,K,H) is an (N,M) hash
family.
This hash family is strongly universal provided that the
following condition is satisfied :

 for every x, x’ ∈X such that x ≠ x’, and for every y, y’ ∈Y :
 |{K∈K : hK(x) = y, hK(x’) = y’}| = |K|/M2

–  Example 4.1 is a strongly universal (3,3)-hash family.

�	

Unconditionally Secure MACs�
•  LEMMA 4.10 Suppose that (X,Y,K,H) is a strongly

universal (N,M)-hash family.
Then for every x ∈X and for every y ∈Y

 |{K∈K : hK(x) = y}| = |K|/M.

•  Proof x, x’ ∈X and y ∈Y, where x ≠ x’
 |{K∈K : hK(x) = y}| = ∑

∈

==∈
Y

K
'

|}')'(,)(:{|
y

KK yxhyxhK

MMy

||||
'

2

KK

Y

== ∑
∈

Unconditionally Secure MACs�
•  THEOREM 4.11 Suppose that (X,Y,K,H) is a strongly

universal (N,M)-hash family. Then (X,Y,K,H) is an
authentication code with Pd0 = Pd1 = 1/M

•  Proof From Lemma 4.10
payoff(x,y) = 1/M for every x ∈X and y ∈Y, and Pd0 = 1/M
 x,x’ ∈X such that x ≠ x’ and y,y’ ∈Y, where (x,y) ∈ V

 payoff(x’,y’;x,y)=

 Therefore Pd1 = 1/M

|})(:{|
|})(,')'(:{|

yxhK
yxhyxhK

K

KK

=∈

==∈

K
K

MM
M 1
/||
/|| 2

==
K
K

��

Unconditionally Secure MACs�
•  THEOREM 4.12 Let p be prime.

For a, b ∈ Zp, let fa,b: Zp → Zp with f(a,b)(x) = ax + b mod p.
 Then (Zp, Zp, Zp × Zp, {fa,b: Zp → Zp}) is a strongly universal
(p,p)-hash family.

•  Proof x, x’, y, y’ ∈ Zp, where x ≠ x’.
 ax + b ≡ y (mod p), and ax’ + b ≡ y’ (mod p)
 a = (y-y’)(x’-x)-1 mod p , and
 b = y - x(y’-y)(x’-x)-1 mod p
 (note that (x’ - x)-1 mod p exists because x !≡ x’ (mod p)
and p is prime)

��

Unconditionally Secure MACs�
•  THEOREM 4.13 Let l be a positive integer and let p be

prime. Define X = {0,1}l \ {(0,…,0)}
 For every r ∈ (Zp)l, define fr: X → Zp by :
 fr(x) = < r , x > = Σi=1,…,l ri . Xi mod p

Then (X, Zp, (Zp)l, {fr : r ∈ (Zp)l}) is a strongly universal
(2l - 1,p)-hash family.

��

Unconditionally Secure MACs�

•  Proof Let x, x’ ∈ X, x ≠ x’, and let y, y’ ∈ Zp.
 Show that the number of vectors r ∈(Zp)l such
that r.x ≡y (mod p) and r.x’ ≡y’ (mod p) is pl-2.
 The desired vector r are the solution of two linear
equations in l unknowns over Zp.
 The two equations are linearly independent, and so
the number of solution to the linear system is pl-2.
Then |{K∈K : hK(x) = y, hK(x’) = y’}| =pl-2.= |K|/M2.

r

��

Unconditionally Secure MACs�

•  4.5.2 Optimality of Deception Probabilities
–  THEOREM 4.14 Suppose (X,Y,K,H) is an (N, M)-

hash family. Then Pd0 ≥ 1/M. Further, Pd0 = 1/M if
and only if
 |{K ∈ K : hK(x) = y}| = |K|/M (4.3)
 for every x ∈X, y ∈Y.

1
||
||

||
|})(:{|),(==

=∈
=∑∑

∈∈ K
K

K
K

YY y

K

y

yxhK
yxpayoff

��

Unconditionally Secure MACs�
•  THEOREM 4.15 Suppose (X,Y,K,H) is an (N, M)-hash

family. Then Pd1 ≥ 1/M.

∑∑
∈∈ =∈

==∈
=

YY K
K

'' |})(:{|
|})(,')'(:{|),;','(

y K

KK

y yxhK
yxhyxhK

yxyxpayoff

1
|})(:{|
|})(:{|
=

=∈

=∈
=

yxhK
yxhK

K

K

K
K

��

Unconditionally Secure MACs�
•  THEOREM 4.16 Suppose (X,Y,K,H) is an (N, M)-hash

family. Then Pd1 ≥ 1/M if and only if the hash family is
strongly universal.

•  proof " has already proved in Theorem 4.11.
 First show V = X ×Y
 Let (x, y’) ∈ X ×Y ; We will show (x’, y’) ∈ V
 Let x ∈ X, x ≠ x’. Choose y ∈ Y such that (x,y) ∈ V
 From Theorem 4.15

 (4.4)

 for every x, x’ ∈X, y, y’ ∈Y such that (x,y) ∈V.

MyxhK
yxhyxhK

K

KK 1
|})(:{|

|})(,')'(:{|
=

=∈

==∈

K
K

��

Unconditionally Secure MACs�
�|{K ∈ K : hK(x’) = y’, hK(x) = y}|>0
 => |{K ∈ K : hK(x’) = y’| > 0
 This prove that (x’,y’) ∈V, and hence V = X ×Y.�
 From (4.4) we know that (x,y) ∈V and (x’,y’) ∈V, so
we can interchange the roles of (x, y) and (x’, y’).
 |{K ∈ K : hK(x) = y}| = |{K ∈ K : hK(x’) = y’}|
 for all x, x’, y, y’.
 |{K ∈ K : hK(x) = y}| is a constant.
 |{K ∈ K : hK(x’) = y’, hK(x) = y}| is a constant

��

Unconditionally Secure MACs�
•  COROLLARY 4.17 Suppose (X,Y,K,H) is an (N, M)-

hash family such that Pd1 = 1/M. Then Pd0 = 1/M.
•  Proof Under the stated hypotheses, Theorem 4.16

says that (X,Y,K,H) is strongly universal.
 Then Pd0 = 1/M from Theorem 4.11.

Conclusion
•  Hash function :

– Compression + extension
– Provably secure compression (ex.) + extension
– Examples of hash functions (SHA-3)

•  MAC and HMAC
– Hash family and oracle model (forger adversary)
– Security conditions
– Unconditionally secure MAC (key used once)

•  Strongly universal hash families

ANNEX / Back slides

•  Slides à réviser pour integration

��

4.2 Security of Hash
Functions

•  If a hash function is to be considered secure, these
three problems are difficult to solve
–  Problem 4.1: Preimage

•  Instance: A hash function h: X → Y and an
element y ∈Y.

•  Find: x ∈X such that f(x) = y
–  Problem 4.2: Second Preimage

•  Instance: A hash function h: X → Y and an
element x ∈X

•  Find: x’ ∈X such that x’ ≠ x and h(x’) = h(x)
–  Problem 4.3: Collision

•  Instance: A hash function h: X →Y .
•  Find: x, x’ ∈X such that x’ ≠ x and h(x’) = h(x)

��

Security of Hash Functions�

–  A hash function for which Preimage cannot be
efficiently solved is often said to be one-way or
preimage resistant.

–  A hash function for which Second Preimage cannot be
efficiently solved is often said to be second preimage
resistant.

–  A hash function for which Collision cannot be efficiently
solved is often said to be collision resistant.

��

Security of Hash Functions�
•  4.2.1 The Random Oracle Model

–  The random oracle model provides a
mathematical model of an “ideal” hash function.

–  In this model, a hash function h: X →Y is chosen
randomly from FX,Y

•  The only way to compute a value h(x) is to query the
oracle.

–  THEOREM 4.1 Suppose that h ∈ FX,Y is chosen
randomly, and let X0 ⊆ X. Suppose that the values
h(x) have been determined (by querying an oracle
for h) if and only if x ∈X0. Then Pr[h(x)=y] = 1/M for
all x ∈X \ X0 and all y ∈Y.

��

Security of Hash Functions�
•  4.2.2 Algorithms in the Random Oracle Model

–  Randomized algorithms make random choices
during their execution.

–  A Las Vegas algorithm is a randomized algorithm
•  may fail to give an answer
•  if the algorithm does return an answer, then the

answer must be correct.
–  A randomized algorithm has average-case

success probability ε if the probability that the
algorithm returns a correct answer, averaged over
all problem instances of a specified size , is at
least ε (0≤ε<1).

��

Security of Hash Functions�
•  We use the terminology (ε,q)-algorithm to denote a

Las Vegas algorithm with average-case success
probability ε
–  the number of oracle queries made by algorithms

is at most q.
•  Algorithm 4.1: FIND PREIMAGE (h, y, q)

–  choose any X0 ⊆ X,|X0| = q
–  for each x ∈X0

 do if h(x) = y
 then return (x)

–  return (failure)

��

Security of Hash Functions�
•  THEOREM 4.2 For any X0 ⊆ X with |X0| = q, the

average-case success probability of Algorithm 4.1 is
ε=1 - (1-1/M)q.
–  proof Let y ∈Y be fixed. Let Χ0 = {x1,x..,xq}.

 For 1 ≤ i ≤ q, let Ei denote the event “h(xi) = y”.
 From Theorem 4.1 that the Ei’s are independent
events, and Pr[Ei] = 1/M for all 1 ≤ i ≤ q.
 Therefore
 The success probability of Algorithm 4.1, for any
fixed y, is constant.
 Therefore, the success probability averaged over
all y ∈Y is identical, too.�

q

q M
EEE !

"

#
$
%

& −−=∨∨∨
111]...Pr[11

��

Security of Hash Functions�
•  Algorithm 4.2: FIND SECOND PREIMAGE (h,x,q)

–  y # h(x)
–  choose X0 ⊆ X \{x}, |X0| = q - 1
–  for each x0 ∈X0

 do if h(x0) = y
 then return (x0)

–  return (failure)�
•  THEOREM 4.3 For any X0 ⊆ X \{x} with |X0| = q - 1,

the success probability of Algorithm 4.2 is ε= 1 - (1 -
1/M)q-1.�

��

Security of Hash Functions�
•  Algorithm 4.3: FIND COLLISION (h,q)

–  choose X0 ⊆ X , |X0 | = q
–  for each x ∈X0

 do yx $ h(x)
–  if yx = yx’ for some x’ ≠ x

 then return (x, x’)
–  else return (failure)�

�	

Security of Hash Functions�
•  Birthday paradox

–  In a group of 23 randomly chosen people, at least
two will share a birthday with probability at least ½.

–  Finding two people with the same birthday is the
same thing as finding a collision for this particular
hash function.

–  ex: Algorithm 4.3 has success probability at least
½ when q = 23 and M = 365

•  Algorithm 4.3 is analogous to throwing q balls
randomly into M bins and then checking to see if
some bin contains at least two balls.�

�

Security of Hash Functions�
•  THEOREM 4.4 For any X0 ⊆ X with |X0| = q, the

success probability of Algorithm 4.3 is

–  proof Let X0 = {x1,..,xq}.

 Ei : the event “h(xi) ∉ {h(x1),..,h(xi-1)}.” , 2 ≤ i ≤ q
 Using induction, from Theorem 4.1 that Pr[E1] = 1
and
 for 2 ≤ i ≤ q.

)1)...(2)(1(1
M
qM

M
M

M
M +−−−

−=ε

M
iMEEEE ii
1]..|Pr[121

+−
=∧∧∧ −

)1)..(2)(1(]...Pr[21 M
qM

M
M

M
MEEE q

+−−−
=∧∧∧

��

Security of Hash Functions�
•  The probability of finding no collision is

•  ε denotes the probability of finding at least one

collision

–  Ignore –q,
–  ε= 0.5, q ≈ 1.17
–  Take M = 365, we get q ≈ 22.3

M
qq

M
iq

i

q

i

M
i

eee
M
i q

i 2
)1(1

1

1

1

1
1)1(

−−
−−

=

−

=

−

=
∑

≈≈−
−
=∏ ∏

x is small
1-x ≈ e-x

ε−≈
−−

12
)1(

M
qq

e)1ln(
2

)1(
ε−≈

−−

M
qq

ε−
≈−

1
1ln22 Mqq

ε−
≈

1
1ln2Mq

M

	�

Security of Hash Functions�

•  This says that hashing just over random
elements of X yields a collision with a prob. of
50%.

•  A different choice of εleads to a different
constant factor, but q will still be proportional
to . So this algorithm is a (1/2, O())-
algorithm.

M

M

M

	�

Security of Hash Functions�
•  The birthday attack imposes a lower bound on the size

of secure message digests. A 40-bit message digest
would be very in secure, since a collision could be found
with prob. ½ with just over 2^20 (about a million)
random hashes.

•  It is usually suggested that the minimum acceptable
size of a message digest is 128 bits (the birthday attack
will require over 2^64 hashes in this case). In fact, a
160-bit message digest (or larger) is usually
recommended.

	�

Security of Hash Functions�
•  4.2.3 Comparison of Security Criteria

–  In the random oracle model, solving Collision is
easier than solving Preimage of Second
Preimage.

–  Whether there exist reductions among these three
problems which could be applied to arbitrary hash
functions? (Yes.)

–  Reduce Collision to Second Preimage using
Algorithm 4.4.

–  Reduce Collision to Preimage using Algorithm 4.5.

	�

Security of Hash Functions�
–  Algorithm 4.4: COLLISION TO SECOND PREIMAGE

(h)

•  external ORACLE2NDPREIMAGE
•  choose x ∈X uniformly at random
•  if (ORACLE2NDPREIMAGE(h,x) = x’) (!error here

in the text)
 then return (x, x’)

•  else return (failure)

	�

Security of Hash Functions�

–  Suppose that ORACLE2NDPREIMAGE is an
 (ε, q)-algorithm that solves Second Preimage for a

particular, fixed hash function h.
 Then COLLISIONTOSECONDPREIMAGE is an
 (ε, q)-algorithm(!error here in text) that solves Collision

for the same hash function h.

–  As a consequence of this reduction, collision

resistance implies second preimage resistance.

	�

Security of Hash Functions�
•  Algorithm 4.5: COLLISION TO PREIMAGE

(h)
– external ORACLEPREIMAGE
– choose x ∈ X uniformly at random
– y ← h(x)
–  if (ORACLEPREIMAGE(h,y) = x’) and (x’ ≠

x)
 then return (x, x’)

– else return (failure)

	�

Security of Hash Functions�
•  THEOREM 4.5 Suppose h: X → Y is a hash

function where |X| and |Y | are finite and |X| ≥
2|Y |. Suppose ORACLEPREIMAGE is a (1,q)
algorithm for Preimage, for the fixed hash
function h.(and so h is surjective(onto)) Then
COLLISION TO PREIMAGE is a (1/2, q+1)
algorithm for Collision, for the fixed hash
function h.

		

Security of Hash Functions�
•  proof For any x ∈X, define equivalence class C :

[x]= {x1 ∈X : h(x) = h(x1)}
 (see text for detailed notation)

 Given the element x ∈X, the probability of
success is (|[x]| - 1) / |[x]| in
ORACLEPREIMAGE.
 The probability of success of algorithm
COLLISION TO PREIMAGE is (average)

∑∑∑
∈ ∈∈

−
=

−
=

C CC xx C
C

x
x

success
||
1||

||
1

|][|
1|][|

||
1]Pr[

χχ χ

)1-|C|(
||
1-1)|C(|

||
1

∑ ∑∑
∈ ∈∈

==
C CC C CC χχ

2
1

||
2/||||

||
| |||

=
−

≥
−

=
χ
χχ

χ
χ Y

	

4.3 Iterated Hash Function�
•  Compression function: hash function with a finite

domain
•  A hash function with an infinite domain can be

constructed by the mapping method of a compression
function is called an iterated hash function.

•  We restrict our attention to hash functions whose
inputs and outputs are bitstrings (i.e., strings formed of
0s and 1s).

	�

4.3 Iterated Hash Function�
•  Iterated hash function h:

 Suppose that compress: {0,1}m+t → {0,1}m is a

compression function (where t ≥ 1).

–  Preprocessing
•  given x (|x| ≥ m + t + 1)
•  construct y = x || pad(x)
 such that |y| ≡ 0 (mod t)
 y = y1 || y2 ||…|| yr, where |yi| = t for 1 ≤ i ≤ r
•  pad(x) is constructed from x using a padding

function.
•  the mapping x -> y must be an injection (1 to 1)

l

tmi

i }1,0{}1,0{
1

→
∞

++=


�

Iterated Hash Function�
–  Processing

•  IV is a public initial value which is a bitstring of
length m.

•  z0 ← IV
•  z1 ← compress(z0 || y1)
• ….
•  zr ← compress(zr-1 || yr)

–  Optional output transformation
•  g: {0,1}m → {0,1}l

•  h(x) = g(zr)�

compress function:
{0,1}m+t → {0,1}m (t ≥ 1)�

�

Iterated Hash Function�

•  4.3.1 The Merkle-Damgard Construction
–  Algorithm 4.6: MERKLE-DAMGARD(x)

•  external compress
•  comment: compress: {0,1}m+t → {0,1}m,

where t ≥ 2
•  n ← |x|
•  k ← 2n/(t - 1)3
•  d ← n - k(t - 1)
•  for i ← 1 to k - 1
 do yi ← xi

�

Iterated Hash Function�
•  yk ← xk || 0d

•  yk+1 ← the binary representation of d
•  z1 ← 0m+1

 || y1

•  g1 ← compress(z1)
•  for i ← 1 to k
 do zi+1 ← gi || 1 || yi+1

 gi+1 ← compress(zi+1)
•  h(x) ← gk+1

•  return (h(x)) �

�

Iterated Hash Function�
•  THEOREM 4.6 Suppose compress : {0,1}m+t → {0,1}m

is a collision resistant compression function, where t
≥ 2. Then the function

 as constructed in Algorithm 4.6, is a collision resistant
hash function.

•  proof
 Suppose that we can find x ≠ x’ such that h(x)= h(x’).
 y(x) = y1 || y2 ||..|| yk+1, x is padded with d 0’s
 y(x’) = y’1 || y’2 ||..|| y’l+1 , x’ is padded with d’ 0’s
�g-values : g1,.., gk+1 or g’1,.., g’l+1

m

tmi

ih }1,0{}1,0{:
1

→
∞

++=


�

Iterated Hash Function�
•  case 1:|x| !≡ |x’| (mod t - 1)

 d ≠ d’ and yk+1 ≠ y’l+1
 compress(gk || 1 || yk+1) = gk+1= h(x) = h(x’) = g’l+1

 = compress (g’l || 1 || y’l+1),
which is a collision for compress because yk+1 ≠ y’l+1

•  case2: |x| ≡ |x’| (mod t - 1)
•  case2.a: |x| = |x’|

 k = l and yk+1 = y’k+1
 compress(gk || 1 || yk+1) = gk+1 = h(x) = h(x’) = g’k+1

 = compress (g’k || 1 || y’k+1)
 If gk ≠ g’k, then we find a collision for compress, so
assume gk = g’k.�

�

Iterated Hash Function�
 compress(gk-1 || 1 ||yk) = gk = g’k
 = compress (g’k-1 || 1 || y’k)
 Either we find a collision for compress, or gk-1 = g’k-1

 and yk = y’k.
 Assuming we do not find a collision, we continue
work backwards, until finally we obtain
 compress(0m+1 || y1) = g1 = g’1 = compress (0m+1||y’1)
 If yk ≠ y’k, then we find a collision for compress, so we

 assume y1 = y’1.
 But then yi = y’i for 1 ≤ i ≤ k+1, so y(x) = y(x’).

�

Iterated Hash Function�

•  This implies x = x’, because the mapping x → y(x) is
an injection.
 We assume x ≠ x’, so we have a contradiction.

•  case 2b: |x| ≠ |x’|
 Assume |x’| > |x|, so l > k
 Assuming we find no collisions for compress, we
reach the situation where
 compress(0m+1 || y1) = g1 = g’l-k+1 =
 compress (g’l-k || 1 || y’l-k+1).
 But the (m+1)st bit of 0m+1 || y1 is a 0
 and the (m+1)st bit of g’l-k || 1 || y’l-k+1 is a 1.
 So we find a collision for compress.

	

Iterated Hash Function�
•  Algorithm 4.7: MERKLE-DAMGARD2(x) (t = 1)

–  external compress
–  comment: compress: {0,1}m+1 → {0,1}m

–  n ← |x|
–  y ← 11 || f(x1) || f(x2) ||… || f(xn)

 denote y = y1 || y2 ||…|| yk, where yi ∈ {0,1},
 1 ≤ i ≤ k

–  g1 ← compress(0m || y1)
–  for i ← 1 to k - 1

do gi+1 ← compress(gi || yi+1)
–  return (gk)

f(0)=0
f(1)=01

Iterated Hash Function�
•  The encoding x → y = y(x), as defined algorithm 4.7

satisfies two important properties:
–  If x ≠ x’, then y(x) ≠ y(x’) (i.e. x → y = y(x) is an

injection)
–  There do not exist two strings x ≠ x’ and a string z

such that y(x) = z || y(x’) (i.e. no encoding is a
postfix of another encoding)

�

Iterated Hash Function�
•  THEOREM 4.7 Suppose compress : {0,1}m+1 → : {0,1}

m is a collision resistant compression function. Then
the function

 as constructed in Algorithm 4.7, is a collision resistant

hash function.
•  proof Suppose that we can find x ≠ x’ such that

 h(x) = h(x’).
 Denote y(x) = y1y2…yk and y(x’) = y’1y’2…y’l
 case1: k = l
 As in Theorem 4.6, either we find a collision for
compress, or we obtain y = y’.
 But this implies x = x’, a contradiction.

,}1,0{}1,0{:
2

m

mi

ih →
∞

+=


��

Iterated Hash Iterated Hash
Function Function�

�case 2: k ≠ l
 Without loss of generality, assume l > k
 Assuming we find no collision for compress, we have
following sequence of equalities:
 yk = y’l
 yk-1 = y’l-1
 … …
 y1 = y’l-k+1
 But this contradicts the “postfix-free” property We
conclude that h is collision resistant.

��

Iterated Hash Function�
•  THEOREM 4.8 Suppose compress: {0,1}m+t → {0,1}m

is a collision resistant compression function, where t
≥ 1. Then there exists a collision resistant hash
function

 The number of times compress is computed in the
evaluation of h is at most
 if t ≥ 2
 2n+2 if t = 1

 where |x| = n.

,}1,0{}1,0{:
1

m

tmi

ih →
∞

++=


!!

"
##

$
−

+
1

1
t
n

��

Iterated Hash Function�
•  4.3.2 The Secure Hash algorithm

–  SHA-1(Secure Hash Algorithm)
•  iterated hash function
•  160-bit message digest
•  word-oriented (32 bit) operation on bitstrings

–  Operations used in SHA-1
•  X ∧ Y bitwise “and” of X and Y
•  X ∨ Y bitwise “or” of X and Y
•  X ⊕ Y bitwise “xor” of X and Y
•  ¬X bitwise complement of X
•  X + Y integer addition modulo 232

•  ROTLs(X) circular left shift of X by s position
 (0 ≤ s ≤ 31)

��

Iterated Hash Function�
•  Algorithm 4.8 SHA-1-PAD(x)

–  comment: |x| ≤ 264 - 1
–  d ← (447-|x|) mod 512
–  l ← the binary representation of |x|, where |l| = 64
–  y ← x || 1 || 0d || l (|y| is multiple of 512)

•  ft(B,C,D) =
–  (B ∧ C) ∨ ((¬B) ∧ D) if 0 ≤ t ≤ 19
–  B ⊕ C ⊕ D if 20 ≤ t ≤ 39
–  (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D) if 40 ≤ t ≤ 59
–  B ⊕ C ⊕ D if 60 ≤ t ≤ 79

��

Iterated Hash Function�
•  Kt =

–  5A827999 if 0 ≤ t ≤ 19
–  6ED9EBA1 if 20 ≤ t ≤ 39
–  8F1BBCDC if 40 ≤ t ≤ 59
–  CA62C1D6 if 60 ≤ t ≤ 79

•  Cryptosystem 4.1: SHA-1(x)
–  extern SHA-1-PAD
–  global K0,…,K79
–  y ← SHA-1-PAD(x) denote y = M1 || M2 ||..|| Mn,

where each Mi is a 512 block
–  H0 ← 67452301, H1 ← EFCDAB89, H2 ←

98BADCFE, H3 ← 10325476, H4 ← C3D2E1F0�

��

Iterated Hash Function�
–  for i ← 1 to n

•  denote Mi = W0 || W1 ||..|| W15, where each Wi is
a word

•  for t ← 16 to 79
 do Wt ← ROTL1(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16)

•  A ← H0, ,B ← H1, C ← H2, D ← H3, E ← H4
•  for t ← 0 to 79
 temp ← ROTL5(A) + ft(B,C,D) + E +Wt + Kt
 E←D, D←C, C←ROTL30(B), B←A,
A←temp

•  H0 ← H0 + A, H1 ← H1 + B, H2 ← H2 + C,
 H3 ← H3 + D, H4 ← H4 + E

–  Return (H0 || H1 || H2 || H3 || H4)

��

Iterated Hash Function�

–  MD4 proposed by Rivest in 1990
–  MD5 modified in 1992
–  SHA proposed as a standard by NIST in 1993,

and was adopted as FIPS 180
–  SHA-1 minor variation, FIPS 180-1
–  SHA-256
–  SHA-384
–  SHA-512

