Grenoble University — M2 SCCI Security Proofs - JL Roch

Chapter 4

Cryptographic hash functions

References:

— A.J. Menezes, P.C. van Oorschot, S. A. Vanstone: Handbook of
Applied Cryptography —
Chapter 9 - Hash Functions and Data Integrity [pdf available]

— D Stinson: Cryprography — Theory and Practice (3™ ed),
Chapter 4 — Security of Hash Functions

— S Arora and B Barak. Computational Complexity: A Modern Approach
(2009). Chap 9. Cryptography (draft available)
http://www.cs.princeton.edu/theory/complexity/ (see also Boaz Barak

course http://www.cs.princeton.edu/courses/archive/spring10/cos433/)

Hash function

» Hash functions take a variable-length message and reduce it
to a shorter message digest with fixed size (k bits)

h: {0,1} —{0,1}

» Many applications: “Swiss army knives” of cryptography:

Digital signatures (with public key algorithms)
Random number generation

Key update and derivation

One way function

Message authentication codes (with a secret key)
Integrity protection

code recognition (lists of the hashes of known good programs or
malware)

User authentication (with a secret key)
Commitment schemes

» Cryptanalysis changing our understanding of hash functions

[eg Wang'’s analysis of MD5, SHA-0 and SHA-1 & others]

Hash Function Properties

* Preimage resistant

— Given only a message digest, can’t find any message (or preimage)
that generates that digest. Roughly speaking, the hash function must
be one-way.

« Second preimage resistant

— Given one message, can'’t find another message that has the same
message digest. An attack that finds a second message with the same
message digest is a second pre-image attack.

+ |t would be easy to forge new digital signatures from old signatures if the
hash function used weren’t second preimage resistant
 Collision resistant
— Can'tfind any two different messages with the same message digest
» Collision resistance implies second preimage resistance

+ Collisions, if we could find them, would give signatories a way to repudiate
their signatures

— Due to birthday paradox, k should be large enough !

« Collision_attack <, 2"9-Preimage_attack

 Careful: Collision_resistance NOT<, Preimage_resistance
— Letg:{0,1}*— {0,1}" be collision-resistant and preimage-resistant.
— Letf: {0,1}*— {0,1}"*1 defined by f(x):=if (|x|=n) then “O||x” else “1||g(x)”.
— Then fis collision resistant but not pre-image resistant.

 But:
(Collision_resistance and one way) = Preimage_resistance

Building hash functions:
compression + extension

Let F be a basic “compression function’ that takes in input a block of flxed
size (k+r bits) and delivers in ouptut a digest of size k bits :

— For some fixed k and n, F “compresses” a block of n bits to one of k=n-r bits
F: {0,1}r — {0,1} (eg. for SHA2-384 k=384 bits and r=640 bits)

One-to-one padding. M — M || pad(M) to have a bit length multiple of r :
- M]|| pad(M) = M, M,, Ms....M, [one-to-one padding: M#M’ & M||pad(M) # M”||pad(M’)]
+ Ex.1: pad(M)="0...0"||s, where s=64 bits that encode the bitlength of M
« Ex.2: pad(M)="0...0"||u||1]]v, where u=bitlength(M) and v="0"1°9(v)

F is extended to build h: {0,1} —{0,1}k
based on a provable secure extension scheme.
— Eg: Merkle scheme: last output of compression function is the h-bit digest.

l M1 l MI
k-bit k-bit k-bit
. —> —> —> ——>
fixed IV F chaining value "’ F message
digest

Provable compression functions

Example: Chaum-van Heijst - Pfitzmann
— two prime numbers q and p=2qg+1.
- o and {3 to primitive elements in F .
— Compression function h,
hy: F,xF, — F,

(r1,22) — ™3 mod p

Theorem: If LOG_(p) mod p is impossible to compute
(i.e. to find x such that o*=f mod p),

then h, is resistant to collision.

— Proof ?

-> Training exercises (Form 4 : on the web): building a
provable secure compression function F and a provable
secure parallel extension scheme.

Provable Extension schemes

Example: Merkle-Damgard scheme:
— Preprocessing step: add padding to injectively make that the size of the input is a multiple of r:
Compute the hash of x || Pad(x).

IV|1 I\/II
h-bit h-bit h-bit
" — —> —> ——>
fixed IV F chaining value "’ F message
digest

hi=F (hiq [x)

Theorem: If the compression function F is collision resistant then
the hash function h is collision resistant .

— Proof: by contradiction (reduction) and induction.

Note: Drawback of Merkle-Damgard: pre-image and second preimage
— There exist O(2kt) second-preimage attacks for 2t-blocks messages [Biham&al. 2006]

Other extension schemes
e Merkle tree:

Hash
0

AN

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
Data Data Data Data
block block block block
000 001 002 003

* Variants: Truncated Merkle-tree, IV at each leave

* HAIFA: hy=F (hiq || X || lencoded on 64 bits)

« where compression F: {0,1}k**64 — [0 1}k
« Lower bound W(2¥) for 2nd-preimage[Bouillaguet&al2010]

NIST recommendations
[april 2006, Bill Burr]

n k r Unclassified use Suite B

Through | After | Secret | Top Secret
2010 2010

MD4 512 |128 |384

MD5 512 | 128 |384

SHA1 512 160 |352 4

SHA2-224 512 |224 |288 v v

SHA2-256 |512 |256 |256 v v v

SHA2-384 | 1024 | 384 |640 v v v v

SHA2-512 {1024 | 512 | 512 v v

MD5

» The message is divided into blocks of n = 512 bits
— Padding: to obtain a message of length multiple of 512 bits
* [B,..B,]=> [B,..B,10..0ky..k;]
where [k,..Kg3] is the length k of the source (in 32 bits words)

« One step: 4 rounds of 16 operations of this type: Y)
— M, plaintext (32 bits): 16*32=512 bits E
H

Mi—H
— A,B,C,D: current hash -or IV-: 4*32=128bits kiof]
— Ki: constants
— F: non linear box, + mod 2%
« First collisions found in 2004 [Wang, Fei, Lai,Hu] LA [& [¢ [?®|

— No more security guarantees
— Easy to generate two texts with the same MD5 hash

Secure Hash Algorithms SHA

« SHA1: n=512, k=160; 80 rounds with 32 bits words:
— W, plaintext (32 bits; 16*32=512 bits) [aleTowe]
— AB,C,D,E: current hash -or IV-: 5*32=160bits

K. constants

F: non linear box, + mod 232

Weaknesses found from 2005
+ 235 computations [BOINC...]

« SHAZ2: 4 variants: k=224/384/256/512

» k=Size of the digest (ATBTCTO[ETFICTH]

+ SHA-256: n=512, k=256 "
— 64 rounds with 32 bits words . rh
— Message length <264-1
— SHA-224: truncated version

 SHA-512: n=1024, k=512
— 80 rounds with 64 bits words
— Message length <2128-1
— SHA-384: truncated version

SHA-3 initial timeline
(the Secure Hash Standard)

April 1995 FIPS 180-1: SHA-1 (revision of SHA, design similar to MD4)

August 2002 FIPS 180-2
specifies 4 algorithms for 160 to 512 bits digest

message size < 264 SHA-1, SHA-256 ; < 2128 : SHA-384, and SHA-512.
2007 FIPS 180-2 scheduled for review

— Q2- 2009 First Hash Function Candidate Conference

— Q2- 2010 Second Hash Function Candidate Conference

Oct 2008 FIPS 180-3 http://csrc.nist.gov/publications/fips/fips180-3/fips180-3 final.pdf
specifies 5 algrithms for SHA-1, SHA-224, SHA-256, SHA-384, SHA-512.

2012: Final Hash Function Candidate Conference
2 October 2012 : SHA-3 is Keccak (pronounced “catch-ack”).

— Creators: Bertoni, Daemen, Van Assche (STMicroelectronics) & Peeters (NXP Semiconductors)

SHA-3/ASIC@ VT

The five SHAS3 finalists

BLAKE
— New extension scheme (HAIFA) + stream cipher (Chacha)

Grostl

— Compression function (two permutations) :
Merkle-Damgard extension + output transformation (Matyas-Meyer-Oseas)

JH

— New extension scheme + AES/Serpent cipher

Po » i En 35
- & & & N —#—BLAKE
AR - 4 i " _ =
/ CubeHash
f / I / 25 A ECHO
¢ z / Fugue
Keccak U

— Extension « sponge construction » + compression i '

Skein 7

— Extension « sponge construction » + Threefish block cipher

SHA-3 : Keccak

Alternate, non similar hash function to MD5, SHA-0O
and SHA-1:

— Design : block permutation + Sponge construction
But not meant to replace SHA-2

Performance 12.5 cycles per byte on Intel Core-2 cpu;
efficient hardware implementation.

Principle (sponge construction):

— message blocks XORed with the state which is then
permuted (one-way one-to-one mapping)

— State = 5x5 matrix with 64 bits words = 1600 bits
— Reduced versions with words of 32, 16, 8,4,2 or 1 bit

Keccak block permutation

Defined for w = 2t bit (w=64, £ = 6 for SHA-3)
« State = 5 x 5 x w bits array : notation: a|i, j, k] is the bit with

index (ix5 + j)xw + Kk (arithmetic on i, j and k is performed mod 5, 5 and w)
» block permutation function = 12+2¢{ iterations of 5 subrounds :

— 0: xor each of the 5xw colums of 5 bits parity of its two neighbours
ali[jl[k] e= parity(a[0..4][j—-1][k]) ® parity(a[0..4][j+1][k-1])

— p: bitwise rotate each of the 25 words by a different number, except a[0][0]
for all 0<t<24, a[il[j][k1 = a[i[j][k—(t+1)(t+2)/2] with

O-Cy0

— 1 Permute the 25 words in a fixed pattern: a[3i+2j][/] = a[/][j]
— x: Bitwise combine along rows: a[i][jl[k] ®= —~a[/][j+7][k] & a[i][j+2][k]

— 12 Xor a round constant into one word of the state. In round n, for 0sm=<t,
a[0][0][2™-1] e= b[m+7n] where b is output of a degree-8 LFSR.

Sponge construction = absorption+squeeze

To hash variable-length messages by r bits blocks (c = 25w —r)

Absorption:
— The rinput bits are XORed with the r leading bits of the state
— Block function f is applied

Po P P i

E:: l:: i

H"'I 'l

Squeeze: |

— r first bits ot the states produced as outputs
— Block permutation applied if additional output required

« Capacity » : ¢ = 25w-r bits not touched by input/output

— SHA-3 sets c=2n where n = size of output hash (1 step squeeze only)

Initial state = 0. Input padding = 10*1

Provable secure hash functions

* Due to birthday paradox, the expected number of k-bit hashes that can be generated

before getting a collision is 2k2
— Security of a hash function with 128 bits digest cannot be more than 264

« Choose a provable secure compression function F : {0,1}<*" -> {0,1}k
— eg Chaum-van Heijst-Pfitzmann (discrete logarithm, cf exrecise)

— Or based on a (provably secure) symmetric block cipher E,
eg Matyas-Meyer-Oseas; Davies-Meyer; Miyaguchi-Preneel; Meyer-Shilling (MDC2)

— Or...

+ Choose a provable secure extension scheme to build he from F
— Eg: Merkle scheme: hg(x || by..b,)= F(h(x) || bs..b,) [cf course]
— Or (usually when k=r) : hg (x| y) =F(he(x) || he(y)) [cf exercise]

— And use an initial value IV of k bits to initialize the scheme
he(by..b,)= F(IV || by..b,)

Building a compression function
from a symmetric block cipher (1/3)

+ Bloccipher: [key K, plaintext P] -> ciphertext C with |C| =|P| < |C| + |P|
-> Can be used as a compression function

P |P| bits

Exe K Ey <+ IKl bits
} I

C |P| bits

« Expected number of operations to find a collision by brute force less than 2IPI’2

» But: a hash function is public, so is IV => cannot be used as is !

Building a compression function
from a symmetric block cipher (2/3)

Examples with a block cipher E with block size k and Merkle extension scheme :
— gis a function that extends the hash to match the key size (might be identity)

Matyas-Meyer-Oseas Davies-Meyer Miyaguchi-Preneel

T H; 1 T

A4

\4
H;>+ E 114>+ E S

o)
F
——
t

p4 p4 v

< MNe »Ne
NP O* >
\ \ A\
H,‘ Hx' Hi

Theorem: Under the black-box model for the underlying block cipher, the 3 schemes
are proved secure.

Expected number of operations to find
- a collision = 2k2 - a pre-image: 2k

Building a compression function
from a symmetric block cipher (3/3)

Use of a block cipher with block size k to built a compression function with 2k digest
— Examples: MDC-2 and MDC-4, based on Merkle extension scheme

MDC2 : | |

ind ———
o=

-

in3
Hy oy L..E

(P

A

-1

out out2

1 1,

Theorem [Steinberger 2007]: Under the black-box model for the underlying block cipher,
expected number of operations to find a collision = 23/

— Better than 2 pre-image: 2¥2 | even if far from the upper bound 2k

Building a Block-cipher from
hash function

Building:

Basic compression function

H,_1 (k bits)

g [« M, (r bits)

H. (k bits)

=

Block cipher

P, (k bits block of the plaintext)

g

«— K (key =r bits,
or less with padding)

Ci (k bits of the ciphered blocks)

Examples: SHACAL-1 (from SHA-1) SHACAL-2 (from SHA-256)

Other hash functions

 Based on modular arithmetic:

— Eg MASH [Modular Arithmetic Secure Hash] based on RSA
[MASH1: 1025 bits modulus -> 1024 bits digest

« Keyed hash functions :
— Use a private key to build a hash

— MAC (Message Authentication Code)

» Based on a block cipher

function

- HMAC Based on a hash

Keyed hash functions

« Use a private key to build a hash
— MAC (Message Authentication Code)

« Examples:
— Based on a block cipher - HMAC:based on a hash fn

ml m2 mx m

N S & k
T m E}<—ipad

k k k [D

result @ pad

CBC-MAC: based on CBC _ 1IN

Ciy1 = Ex(C; @ M;) ‘
i K G D HMACK(m) = h((]\' P opad) || h((K @ ipad’\||m)>

What we have seen today

Importance of hash function

Hash function by compression + extension
— Provable security

— SHA1, SHA2

SHA 3 : sponge construction

Other hash functions :

— Hash function built from sym. Cipher (and reverse)

— Keyed hash function / HMAC
[detailed construction at next lecture]

Hash functions :
Security of MAC / HMAC

Outline

* Message Authentication Codes (MAC) and
Keyed-hash Message Authentication Codes (HMAC)

« Keyed hash family

» Unconditionally Secure MACs

 Ref: D Stinson: Cryprography — Theory and Practice (3" ed),
Chap 4.

Universal hash family

Notations:
— X is a set of possible messages
— ¢ is a finite set of possible message digests or authentication tags
— #*7is the set of all functions from xto v

Definition 4.1:
A keyed hash family is a four-tuple ¥ =(x, v, K,%#), where the following
condition are satisfied:

- K, the keyspace, is a finite set of possible keys

- H, the hash family, a finite set of at most | k] hash functions.
For each K € ¥, there is a hash function hy€ #. Each h: X — ¢

* Compression function:
* Xis a finite set, N=|x]. Eg x={0,1}r N = 2k
* ¥is a finite set M=|9]. Eg ¥={0,1} M=2r
. |(FXW’| = MN
» Fis denoted (N,M)-hash family 26

Random Oracle Model

— Model to analyze the probability of computing preimage,
second pre-image or collisions:
— In this model,
* a hash function hy: X —7 is chosen randomly from ¥
» The only way to compute a value hy(x) is to query the oracle.

— THEOREM 4.1
Suppose that h € #'7 is chosen randomly, and let x, C x.
Suppose that the values h(x) have been determined (by
querying an oracle for h) if and only if x €X,,

Then, for all x Ex\ x,and ally €7,
Pr[h(x)=y] = 1/M

27

Algorithms in the Random
Oracle Model

Randomized algorithms make random choices during their execution.

A Las Vegas algorithm is a randomized algorithm
* may fail to give an answer
« if the algorithm returns an answer, then the answer must be correct.

A randomized algorithm has average-case success probability € if the
probability that the algorithm returns a correct answer, averaged over all
problem instances of a specified size , is at least € (0<e<1).

For all x (randomly chosen among all inputs of size s):
Pr(Algo(x) is correct) > ¢

(€,q9)-algorithm : terminology to design a Las Vegas algorithm such that:
+ the average-case success probability € 28
+ the number of oracle queries made by algorithms is at most q.

Example of (g,q)-algorithm

* Algorithm 4.1: FIND PREIMAGE (h, vy, q)
— choose any x, C x|x| = q
— for each x €x,do { if h(x) =y then return (x) ; }
— return (failure)

- THEOREM 4.2 For any x, C x with |x;| = q, the average-case
success probability of Algorlthm 4.1is'e=1 - - (1-1/M)a.
Algorithm 4.1isa (1 -(1-1/M)9 ; q) — algorithm

Proof Lety €7 be fixed. Let X, = {X4,X..,X,}.
The Algo is successful iff there exists | such that h(x) =Y.

For 1 <i<q, let E; denote the event “h(x;) = y’.
The E;'s are mdependent events; from Theo 4.1, Pr[E] = 1/M for all 1=i<q.

Therefore PrlE, v E,v ..V E,]_1_(1_%)

The success probability of Algorithm 4.1, for any fixed y, is constant.
Therefore, the success probability averaged over all y €7 is identica), too.

Message Authentication Codes

* One common way of constructing a MAC is to incorporate a
secret key into an unkeyed hash function.

« Suppose we construct a keyed hash function h, from an
unkeyed iterated hash function h,
by defining IV=K and keeping this initial value secret.

- Attack: the adversary can easily compute hash without
knowing K (so V) with a (1-1)-algorithm:
— Let r = size of the blocks in the iterated scheme
— Choose x and compute y = h (x) (one oracle call)
— Letx’=x|| pad(x) || w, where w is any bitstring of length r
Let X’ || pad(x’) = x || pad(x) || w || pad(x’) (since padding is known)
— Compute y’ = lteratedScheme(y, w || pad(x’)) (iterated scheme is
known)
— Return (X, y’) which is a valid pair ; (we have y'’=h(x’)) 30

Message Authentication Codes
(g,q)-forger

— Assume MD iterated scheme is used, let z, = h,(x)
The adversary computes z,,,<—compress(h,(X)|[Y,+1)
Ziyp < COmpreSS(ZrH ”yr+2)

Zp <= Compress((zm ” yr)
and returns z,. that verifies z,=h,(x’).

« Def: an (g,q)-forger is an adversary who
— queries message Xy,...,Xg,
— gets a valid (X, y), X 1€ {x4,...,X.}

— with a probability at least € that the adversary outputs a

forgery (ie a correct couple (x, h(x))
31

Hash functions :
Security of MAC / HMAC

Outline

» Message Authentication Codes

— Intoduction. Choosing K=IV isn’t a good idea.
« Keyed hash family

— Security proof for nested HMAC

« Unconditionally Secure MACs

Nested MACs and HMAC

— A nested MAC builds a MAC algorithm from the
composition of two hash families

* (KYKG), (VZ,LH)

 composition: (X,Z2,M,G °H)

eM=Kx L

G’H={g°h:gE G, hEH}

* (9°h)k y(X) = gk(h(x)) forall x € X

— Theorem: the nested MAC is secure if
* (v,Z,L,H) is secure as a MAC, given a fixed key

* (XY K, G) is collision-resistant, given a fixed key
33

Nested MACs and HMAC
Security proof with 3 adversaries

* (1) a forger for the nested MAC (big MAC attack)
— (K,L) is chosen and kept secret

— The adversary chooses x and query a big (nested) MAC
oracle for values of gx(h, (x))

— output (x’,z) such that z = g,(h; (x’)) (X’ was not query)

» (2) a forger for the little MAC (little MAC attack) (v, Z,£,#)
— L is chosen and kept secret

— The adversary chooses y and query a little MAC oracle
for values of h (y)

— output (y’,z) such that z = h (y’) (y’ was not query)

34

Nested MACs and HMAC
Security proof with 3 adversaries

* (3) a collision-finder for the hash function (X,%,%,G),
when the key is secret (unknown-key collision attack)
i.e. a collision finder for the hash function gg

— K is secret

— The adversary chooses x and query a hash oracle
for values of gy(x)

— output xX’, X” such that x’ = x” and gx(x’) = gx(x”)

35

Nested MACs and HMAC

Security proof
« THEOREM 4.9 Suppose (X,Z,M,G °H) is a nested MAC.

(3) Suppose there does not exist an (¢4,q+1)-collision attack for
a randomly chosen function g« € G, when the key K is secret.

(2) Further, suppose that there does not exist an (¢,,q)-forger
for a randomly chosen function h €%, where L is secret.

(1) Finally, suppose there exists an (g,q)-forger for the nested
MAC, for a randomly chosen function (g9°4) |, € G °#.

Then € < g+¢,

36

Proof

From (1) dversary queries Xy,..,X, to a big MAC oracle and get

(X1’Z1) (q’
It outputs [SSIb|y] valid (x, z) with Prob [z=(g°f) ,(x)] = €

With previous X, Xq,.., Xq make q+1 queries to a hash oracle g :
Y = gk(X), Y1= 9u(Xq)s--+5 Ygq = 9k(Xq)

ify €{y;,...yq}, say y =y, then x, x; is solution to Collision;
from (3), the' probability of forgmg such a collision is €4

else, output (y, z) which is a [possibly] forgery for £ with
probab|llty 2 €-€,4.

Besides, g (indirect) little MAC queries have been performed
for(y1,z1) , (YgrZq)- From (2), (y,z) is a [possibly] forgery for h
with probablllty <£2

Finally, little MAC attack probability is > e-e;and < ¢e,: U
thus €-¢, < €, = e<e +e,. ¥

Nested MACs and HMAC

« HMAC is a nested MAC algorithm that is proposed by FIPS
standard
— for MD5 and SHA1 : [RFC 2202]

+ HMAC,(x) = SHA-1((K ® opad) || SHA-1((K @ ipad) || X))

— X is a message

— K'is a 512-bit key

— ipad = 3636.....36 (512 bit)
— opad = 5C5C....5C (512 bit)

38

CBC-MAC(x, K)

A popular way to construct a MAC using a
block cipher Ey with secret key K :

Cryptosystem 4.2: CBC-MAC (x, K)

* denote x = x4 ||...|| X, ,X; is a bitstring of length t
* [V < 00..0 (tzeroes)
*Yo< IV

e fori<— 1ton
do y; < Ex(y.1 @ X))

* return (y,)
39

CBC-MAC(x, K)
Birthday collision attack

« (1/2, O(2t2))-forger attack
—n=z=3,q=1.17 x 212
— X3,..., X, are fixed bitstrings of length t.
— choose any q distinct bitstrings of length t,
x4, ..., X49, and randomly choose x,1, ..., x,9
— define x| = x,, for 1=<i=q and 3<l<n
— define X' = x'||...|]| x,' for 1 =i<q
— x = X ifi =], because x, = Xx,.
— The adversary requests the MACs of x', x2,..., xd

40

CBC-MAC(x, K)

— In the computation of MAC of each x|, values
Yo Y, are computed, and y,' is the resulting MAC.
Now suppose that and x and x/ have identical MACs.
— he(X') = he(xd) if and only if y,' = y,l, which happens if and
only if y,'@® x,' =y, ® x,..
— Let x; be any bitstring of length t
* VEX (X @ X)] Ix
* W= (XD x)] Ix!

— The adversary requests the MAC of v

— It is not difficult to see that v and w have identical MACs,
so the adversary is successfully able to construct the
MAC of w, i.e. h(w) = h,(v)!!!

41

Hash functions :
Security of MAC / HMAC

Outline

» Message Authentication Codes

— Intoduction. Choosing K=IV isn’t a good idea.
» Keyed hash family

— Security proof for nested HMAC

« Unconditionally Secure MACs

Unconditionally Secure MACs

Unconditionally secure MACs
— a key is used to produce only one authentication tag
— Thus, an adversary makes at most one query.

Deception probability Pd,
— maximum value of € such that (¢,q)-forger forq =0, 1

payoff (x, y) = probability of a vaild pair (x, y=hyy(x)) :
Pr[y = hKO(X)] _ ‘ {KEK : hK(X) = y} |
K|

Impersonation attack ((¢,0)-forger)
— Pd, = max{ payoff(x,y): X E X,y € 7} (4.1)

43

Unconditionally Secure MACs

» Substitution attack ((¢,1)-forger)
—query xandyisreply, X EX,y €Y
— Probability(x’, y’) is valid = payoff(x’,y’;x,y), X' € xand x = X’
— payoff(x,y’ix,y) = Prly’ = hyo(x)) | Y = heo(x)] =

Prly' = hey ()0 y = hyo(0)] MK EK :he(x) =y by () =}
Pr[y = h[(o(x)] |{KEK Ly = h[((x)} |

— Let ={(x, y): [{KEK.: he(x) =y} | =1}

— Pd, = max{ payoff(x, y’; x, y): x, X E X, ¥,y €7,
(X,y) € ¥, x = X’} (4.2) “4

Unconditionally Secure MACs

Example 4.1 X= 9= Zzand K = Z3xZ;,

for each K = (a,b) € K and each x €, Key/x |0 |1 |2
N(ap)(X) =ax + b mod 3 (0,0) 0 lo lo
H = {Napy (@,b) € Zy3x Z5} .
— Pd, = 1/3 ©i) |1 11 |1
— query x=0and answery =0 (0,2) 2 |2 |2
possible key K, € {(0,0),(1,0),(2,0)}. (1,0) 0 |1 |2
The probability that K, is key is 1/3 (1,1) 1 12 1o
Pd, = 1/3 '
(1,2) 2 |0 |1
But if (1,1) is valid then K, = (1,0) (2,0) 0 (2 |1
(2,1) 1 [0 |2
(2,2) 2 |1 |0

Authentication matr};(

Strongly Universal Hash

Families

— Definition 4.2: Suppose that (X, K %) is an (N,M) hash
family.
This hash family is strongly universal provided that the
following condition is satisfied :

for every x, X’ €x'such that x = x’, and for every y, y’ €7
{KEK: he(x) =y, he(x) =y}l = [KI/M?

— Example 4.1 is a strongly universal (3,3)-hash family.

46

Unconditionally Secure MACs

« LEMMA 4.10 Suppose that (x,%K,%) is a strongly
universal (N,M)-hash family.
Then for every x €Ex'and for everyy €7

{KEK: hy(x) = ¥} = |KI/M.

* Proof x, X €xand y €%, where x = X’
{KEK: h(x) =y} = EJ (KEK :h (x) =y, h(x) =)'}
y []

47

Unconditionally Secure MACs

« THEOREM 4.11 Suppose that (X, % K,#) is a strongly
universal (N,M)-hash family. Then (X, %K, #) is an
authentication code with Pd, = Pd, = 1/M

* Proof From Lemma 4.10
payoff(x,y) = 1/M for every x Exand y €%, and Pd,= 1/M
x,X' €x'such that x = X’ and y,y’ €%, where (x,y) € Vv

ayoff(x,y’;x,y)= HEEK /i (X) = ¥ he (¥) = v} |
payoff(x’,y’;x,y) enhon o
_IK|/M?

1
K |/M M

Therefore Pd, = 1/M

Unconditionally Secure MACs

- THEOREM 4.12 Let p be prime.
Fora,be Z, letf,,: Z,— Z, with f,,(x) = ax + b mod p.

Then (£, Z Z x Z, {fab — Z;}) is a strongly universal
(p,p)- hash %mlly

 Proofx, x,y,y € Zp, where x = x'.
ax+b=y(modp),andax’ + b=y (mod p)
a=(y-y)(x-x)' mod p , and
b =y - x(y-y)(x'-x)" mod p
(note that (x’ - x)"' mod p exists because x !'= x’ (mod p)
and p is prime) L

49

Unconditionally Secure MACs

« THEOREM 4.13 Let | be a positive integer and let p be
prime. Define x={0,1}\ {(0,...,0)}

Forevery re(Z), define f: x— Z, by :
f(x)= <r,x>=2Z_, ,r.X modp

Then (X, Z,,, (Z,), {f, :r €(Z,)}) is a strongly universal
(2'- 1,p)-hash family.

50

Unconditionally Secure MACs

r
 ProoflLet x,xX €X, x=x,andlety, y € Zp.
Show that the number of vectors r &(Z,)' such
that r.x=y(modp)and r.x =y’ (mod p)is p-.
The desired vector r are the solution of two linear
equations in | unknowns over Z,.

The two equations are linearly independent, and so
the number of solution to the linear system is p'-2.
Then {KEX : h(x) = y, he(x') =y} =p+2.= [K|/M2.

[]

51

Unconditionally Secure MACs

— THEOREM 4.14 Suppose (X%, K H) is an (N, M)-
hash family. Then Pd, = 1/M. Further, Pd, = 1/M if
and only if
K E K: he(x) =y} = |KI/M (4.3)
for every X €X, y €%.

() =y 1K _

_Qlikex
;rpayoﬁ(x’) ;« X | K |

52

Unconditionally Secure MACs

- THEOREM 4.15 Suppose (X, %K, #) is an (N, M)-hash
family. Then Pd, = 1/M.

vt _ HKEK :h(x') =)', h(x) =y}
;yp"yoﬁ(x’y’x’y)‘y; K EX I (x) = 1}

[HKEK he (%)

Vi
HKEK iy (x) = i |

53

Unconditionally Secure MACs

« THEOREM 4.16 Suppose (X,%K,H) is an (N, M)-hash
family. Then Pd, = 1/M if and only if the hash family is
strongly universal.

» proof = has already proved in Theorem 4.11.

First show 7 = X xv

Let (x, y') € Xx7; We will show (X', y') € ¥
Let x € X, x = X’. Choose y € ¥'such that (x,y) € ¥/

From Theorem 4.15
{KEK h(x") =y he (x)=y}|

1
{KEK b (x) = y} | M (4.4)
for every x, X' €4, y, y €Y'such that (x,y) 7.

54

Unconditionally Secure MACs

(K€ K: he(X) =Y, he(x) = y}[>0
=> (K € K: h(x) = y'| >0
This prove that (x’,y’) €7, and hence 7 = X' xv.

From (4.4) we know that (x,y) €77and (x,y’) €7, so
we can interchange the roles of (x, y) and (X, y’).

{KE K: he(x) =y} = (K E K: he(X) =y}
forall x, X', y, y'.

K € K: hk(x) = y}| is a constant.

KK € K: he(X') =¥, he(x) = y}| is a constant

55

Unconditionally Secure MACs

« COROLLARY 4.17 Suppose (X% K,H) is an (N, M)-
hash family such that Pd, = 1/M. Then Pd,= 1/M.

* Proof Under the stated hypotheses, Theorem 4.16
says that (X, %K,%) is strongly universal.

Then Pd, = 1/M from Theorem 4.11.]

56

Conclusion

« Hash function :
— Compression + extension
— Provably secure compression (ex.) + extension
— Examples of hash functions (SHA-3)

« MAC and HMAC
— Hash family and oracle model (forger adversary)
— Security conditions

— Unconditionally secure MAC (key used once)
« Strongly universal hash families

ANNEX / Back slides

 Slides a réviser pour integration

4.2 Security of Hash
Functions

If a hash function is to be considered secure, these
three problems are difficult to solve

— Problem 4.1: Preimage

* Instance: A hash function h: X — ¢ and an
elementy €v.

* Find: x €x such that f(x) =y
— Problem 4.2: Second Preimage

* Instance: A hash function h; X — ¢ and an
element x €x

* Find: X’ €x'such that x’ # x and h(x’) = h(x)
— Problem 4.3: Collision
* Instance: A hash function h: x —=.
* Find: x, X’ €x'such that X’ # x and h(x’) = h(x) s

Security of Hash Functions

— A hash function for which Preimage cannot be
efficiently solved is often said to be one-way or
preimage resistant.

— A hash function for which Second Preimage cannot be
efficiently solved is often said to be second preimage
resistant.

— A hash function for which Collision cannot be efficiently
solved is often said to be collision resistant.

60

Security of Hash Functions

— The random oracle model provides a
mathematical model of an “ideal” hash function.

— In this model, a hash function h: X — is chosen

randomly from #7
* The only way to compute a value h(x) is to query the
oracle.

— THEOREM 4.1 Suppose that h € #°7 is chosen
randomly, and let x, C x. Suppose that the values
h(x) have been determined (by querying an oracle
for h) if and only if x €x,. Then Pr[h(x)=y] = 1/M for
allxex\ x,and ally €v.

61

Security of Hash Functions

— Randomized algorithms make random choices
during their execution.

— A Las Vegas algorithm is a randomized algorithm
* may fail to give an answer

« if the algorithm does return an answer, then the
answer must be correct.

— A randomized algorithm has average-case
success probability € if the probability that the
algorithm returns a correct answer, averaged over
all problem instances of a specified size , is at
least € (0<e<1).

62

Security of Hash Functions

+ We use the terminology (¢,q)-algorithm to denote a
Las Vegas algorithm with average-case success

probability €
— the number of oracle queries made by algorithms
is at most q.

« Algorithm 4.1: FIND PREIMAGE (h, vy, q)
— choose any x, C x|x| = q
— for each x €,
doifh(x) =y
then return (x)
— return (failure)

63

Security of Hash Functions

« THEOREM 4.2 For any x, € x with |.x;| = q, the
average-case success probability of Acigorithm 4.11is
e=1- (1-1/M)a.

— proof Lety &v be fixed. Let Xy = {x;,X...X.}-
For 1 <i=q, let E denote the event “h(x;) = y".
From Theorem 4.1 that the E;'s are independent
events, and Pr[E] = 1/M forall 1 <i<q. e
Therefore Pr[E, v E, v..v E 1=1 —?1 - ﬁ)
The success probability of Algorithm 4.1, for any
fixed y, is constant.

Therefore, the success probability averaged over
all y €7 is identical, too.

0
64

Security of Hash Functions

« Algorithm 4.2: FIND SECOND PREIMAGE (h,x,q)
-y 2 h(x)
— choose X, € x\{x}, [x,| =q- 1
— for each x, €,
do if h(xy) =y
then return (x,)
— return (failure)

« THEOREM 4.3 For any x, € x'\{x} with |x,| =q-1,
the success probability of Algorithm 4.2 ise=1-(1 -
1/M)a-1,

65

Security of Hash Functions

« Algorithm 4.3: FIND COLLISION (h,q)
— choose X, C X, |X,|=q
— for each x €,
doy, € h(x)
— ify, =y, for some x’ # x
then return (x, x’)
— else return (failure)

66

Security of Hash Functions

» Birthday paradox

— In a group of 23 randomly chosen people, at least
two will share a birthday with probability at least V%.

— Finding two people with the same birthday is the
same thing as finding a collision for this particular
hash function.

— ex: Algorithm 4.3 has success probability at least
Y2when g = 23 and M = 365

» Algorithm 4.3 is analogous to throwing q balls
randomly into M bins and then checking to see if
some bin contains at least two balls.

67

Security of Hash Functions

« THEOREM 4.4 For any x, € x with |x,| = q, the
success probability of Algorithm 4.3 is

5=1_(M_1)(MA;2)---(M;\JQ+1

7)

— proof Let x;= {x;,...x }.
E. : the event “h(x)) & {h(x,),...h(x.4)}.” ,2=<i=<q
Using induction, from Theorem 4.1 that Pr[E,] = 1

and M-i+1
PtlE | E, AE, AN E] = Y, for2<i<q.

M-1 M-2 M-qg+l1
PrlE\AE, AN NE]=(pY;)(pY;)..(Y

)
T

Security of Hash Functions

The probability of finding no collision is
' g-1 L —a(qg=1

qg—1 - qg—1 —1
z ey - i-1 7,
(1__)z eMzeEIM=e 2AM
Ii=1 M I,-=1

« ¢ denotes the probability of finding at least one
collision

~q(g-1) -q(q-1)) 1
A ~In(l-¢ _a~2MIn——
e M g oy Chd-0 g -g n—

— Ignore —q, q =~ ,/2M1n1 !
— &

—¢=0.5, q=1.17 Nivi
— Take M = 365, we get q = 22.3

69

Security of Hash Functions

» This says that hashing just over YM random
elements of X yields a collision with a prob. of
50%.

A different choice of €leads to a different
constant factor, but q will still be proportional
to VM . So this algorithm is a (1/2, O(V)-
algorithm.

70

Security of Hash Functions

* The birthday attack imposes a lower bound on the size
of secure message digests. A 40-bit message digest
would be very in secure, since a collision could be found
with prob. 72 with just over 2220 (about a million)
random hashes.

« Itis usually suggested that the minimum acceptable
size of a message digest is 128 bits (the birthday attack
will require over 2264 hashes in this case). In fact, a
160-bit message digest (or larger) is usually
recommended.

Il

Security of Hash Functions

— In the random oracle model, solving Collision is
easier than solving Preimage of Second
Preimage.

— Whether there exist reductions among these three
problems which could be applied to arbitrary hash
functions? (Yes.)

— Reduce Collision to Second Preimage using
Algorithm 4 .4.

— Reduce Collision to Preimage using Algorithm 4.5.

72

Security of Hash Functions

— ,(Ar\]l?orithm 4.4: COLLISION TO SECOND PREIMAGE

» external ORACLE2NDPREIMAGE
» choose x Ex uniformly at random

* if (ORACLE2NDPREIMAGE(h,x) = x’) (lerror here
in the text)

then return (x, xX)
« else return (failure)

73

Security of Hash Functions

— Suppose that ORACLE2NDPREIMAGE is an

(€, q)-algorithm that solves Second Preimage for a
particular, fixed hash function h.

Then COLLISIONTOSECONDPREIMAGE is an

(¢, g)-algorithm(lerror here in text) that solves Collision
for the same hash function h.

— As a consequence of this reduction, collision
resistance implies second preimage resistance.

74

Security of Hash Functions

. ,(AF]Iggorithm 4.5: COLLISION TO PREIMAGE
— external ORACLEPREIMAGE
— choose x € x'uniformly at random
—y < h(x)
— if (ORACLEPREIMAGE(h,y) = x’) and (X’ =
X)
then return (x, x)
— else return (failure)

75

Security of Hash Functions

« THEOREM 4.5 Suppose h: X — 7" is a hash
function where | x| and |Y| are finite and |X] =
2|7|. Suppose ORACLEPREIMAGE is a (1,9)
algorithm for Preimage, for the fixed hash
function h.(and so h is surjective(onto)) Then
COLLISION TO PREIMAGE is a (1/2, g+1)
algorithm for Collision, for the fixed hash
function h.

76

Security of Hash Functions

« proof For any x €x, define equivalence class (:
IX]= {X; €X: h(x) = h(x4)}
(see text for detailed notation)

Given the element x €., the probability of
success is (|[x]| - 1)/ |[x]| in
ORACLEPREIMAGE.

The probability of success of algorithm

COLLISION TORR E]MlAGEfja erage)

| x1&, | x| |C]

=m;<| -1)=m(;|0|-;1>

L=l Lxl=lxl2 1
¥ X 2 M

4.3 lterated Hash Function

» Compression function: hash function with a finite
domain

* A hash function with an infinite domain can be
constructed by the mapping method of a compression
function is called an iterated hash function.

» We restrict our attention to hash functions whose
inputs and outputs are bitstrings (i.e., strings formed of
Os and 1s).

78

4.3 lterated Hash Function

» lterated hash functionh: | J{0,1}' — {0,1}/

i=m+t+1

Suppose that compress: {0,1}™"t— {0,1}™ is a
compression function (where t = 1).

— Preprocessing
sgiven X (x| zm+t+ 1)
 construct y = x || pad(x)
such that |y| =0 (mod t)
Y=Yl Y2ll---1l Y, where |y| =tfor1 <i<r

» pad(x) is constructed from x using a padding
function.

 the mapping x ->y must be an injection (1 toy1)

lterated Hash Function

— Processing

* |V is a public initial value which is a bitstring of
length m.

i\

©Z, < compreSS(Zo I y1) -

* L= Compress(ZM ” yr)

— Optional output transformation
* 9:{0,1}— {0,1}
* h(x) =9(z,)

80

lterated Hash Function

— Algorithm 4.6: MERKLE-DAMGARD(x)
« external compress

« comment: compress: {0,1}™*t— {0,1}™,
where t = 2

* n < |X]|

s k< [n/(t-1)]

ed<n-k(t-1)

e fori<—1tok-1
doy; <X

81

lterated Hash Function

* Y < X || 0°
* Vi+1 < the binary representation of d
*Zy<— om+1 | Y1
* g4 < compress(z,)
e fori<— 1tok

do z,; <= gl 1] Yisq

0i.4 < compress(z;,4)

* h(x) < Ok+1
* return (h(x))

82

lterated Hash Function

» THEOREM 4.6 Suppose compress : {0,1}™t— {0,1}™
is a collision resistant compreSS|on function, where t

= 2. Then the function 7 - U 0.1} — {01}

=m+z+1

as constructed in Algorithm 4. 6 is a collision resistant
hash function.

* proof
Suppose that we can find x = X’ such that h(x)= h(x).
y¥) =y [l Y2 Il Yiesrs x is padded with d 0’s

y<) =y 1 Y2l Yis, X is padded with d' 0's
g-values : gq,.-; Oxsq OF 9'15-+, 911

83

lterated Hash Function

« case 1:|x| != [X| (mod t- 1)
d=d and Ykt # y’l+1

compress(gy || 1 | Y1) = Gke1= h(X) = h(X') = 9’44
= compress (3 || 1 1] Y1),

which is a collision for compress because y, ., = Y'.1
« case2: |x| = |X| (modt-1)
» case2.a: |x| = |X|

kK=land Yy, = Y

compress(gy || 1| Yie1) = Gt = h(X) = h(X') = G'ys4
= compress (g [| 1| V)

If g, = g'y, then we find a collision for compress, so

assume g, = d',.

84

lterated Hash Function

compress(gi. || 1 [lyx) = 9« = 9’k
= compress (@' || 111 Y')
Either we find a collision for compress, or g, 1= g’
and y, = y',.
Assuming we do not find a collision, we continue
work backwards, until finally we obtain

compress(0™'|| y,) = g, = gy = compress (0™||y’,)

If y, = ¥\, then we find a collision for compress, so we
assume y,=vy,.

But then y, =y’ for 1 =i < k+1, so y(x) = y(X').

85

lterated Hash Function

* This implies x = x’, because the mapping x — y(X) is
an injection.

We assume x = X', so we have a contradiction.
« case 2b: |x| = [X]|
Assume |X’| > |x|, so | >k

Assuming we find no collisions for compress, we
reach the situation where

compress(0™"|| y4) = 94 = @' 1 =
compress (9 || 1| Y'ike1)-
But the (m+1)st bit of 0™ ||y, isa 0
and the (m+1)stbitof @', [| 1 || Y'\x+1 1S 2@ 1.
So we find a collision for compress. |

lterated Hash Function

« Algorithm 4.7: MERKLE-DAMGARD2(x) (t = 1)
— external compress
— comment: compress: {0,1}™1 — {0,1}™

— n < x|
=y < T 1xq) [1(x0)][] f(xp) -

denote y =y, ||y [|.-.I| yx, where y,& {0,1},
1<i=<Kk
~ g, < compress(0™ || y,)
—fori<— 1tok-1
do g;,, <= compress(g; || Yi+1)
— return (g,)

87

lterated Hash Function

« The encoding x — y = y(x), as defined algorithm 4.7
satisfies two important properties:
— If x = X', then y(x) = y(X') (i.e. x =y = y(x) is an
injection)
— There do not exist two strings x = X’ and a string z
such that y(x) = z || y(X’) (i.e. no encoding is a
postfix of another encoding)

88

lterated Hash Function

« THEOREM 4.7 Suppose compress : {0,1}™*1 — :{0,1}
M is a collision resistant compression function. Then

the function n:)01} — 10,137,

as constructed in Algoritﬁm 4.7, is a collision resistant
hash function.

« proof Suppose that we can find x = x’ such that
h(x) = h(x’).
Denote y(x) = yqy,...yx and y(X) = y'4y'5...Y}
casel: k=1

As in Theorem 4.6, either we find a collision for
compress, or we obtainy =y’.

But this implies x = x’, a contradiction. "

lterated Hash lterated Hash
Function Function

case 2: k = |
Without loss of generality, assume | > k

Assuming we find no collision for compress, we have
following sequence of equalities:

Y=Y
Y1 = Y11
V1= Y ke

But this contradicts the “postfix-free” property We
conclude that h is collision resistant. O

90

lterated Hash Function

THEOREM 4.8 Suppose compress: {0,1}™t — {0,1}™
is a collision resistant compression function, where t
> 1. Then there exists a collision resistant hash

function 7, - U{O,l}" e f0.137,
i=m—+1r+1

The number of times compress is computed in the
evaluation of h is at most

1+2[—'ﬁ} > 2
t—1
2n+2 ift=1
where |x| = n.

91

lterated Hash Function

— SHA-1(Secure Hash Algorithm)

» iterated hash function

* 160-bit message digest

» word-oriented (32 bit) operation on bitstrings
— Operations used in SHA-1

* XAY bitwise “and” of X and Y

e XVvY bitwise “or” of X and Y

 X®Y bitwise “xor” of X and Y

e =X bitwise complement of X

e X+Y integer addition modulo 232

* ROTLS(X) circular left shift of X by s position
(O=ss < 31¥

lterated Hash Function

« Algorithm 4.8 SHA-1-PAD(x)
— comment: |x| < 264- 1
— d < (447-|x|) mod 512
— | < the binary representation of |x|, where || = 64
—y<x]||1[]0¢||1 (]y]is multiple of 512)
- f(B,C,D) =

—(BAC)v ((-B) A D) if0<t=<19
~B®C®D if 20 < t < 39
~(BAC)v(BAD)v(CAD) if40=<t=59
~B®Ca®D if60 <t<79

93

lterated Hash Function

. Kt=
— 5A827999 ifO<t<19
— 6ED9EBA1 if20=<t=<39
— 8F1BBCDC if40 <t <59
— CA62C1D6 if60<t<79

* Cryptosystem 4.1: SHA-1(x)
— extern SHA-1-PAD
— global K,,...,K,4
— y < SHA-1-PAD(x) denote y = M, || M, ||..]| M,,,
where each M, is a 512 block

_ H, < 67452301, H, < EFCDAB89, H,<
98BADCFE, H,< 10325476, H, < C3D2E1F0

94

lterated Hash Function

—fori<— 1ton

* denote M, =W, || W, ||..|| W45, where each W, is
a word

» fort<— 16 to 79
do W, <~ ROTLY (W, ; ®W, g ® W, 1, ®W,_,¢)
*A<H, B<H;, C<H, D<H; E<H,
« fort <~ 0to 79
temp < ROTL®(A) + f(B,C,D) + E +W, + K,
E<D, D<-C, C<~ROTL3(B), B<—A,
A<-temp
*Hy< Hy+A, Hj<H,+B, H,< H,+C,
Hy< H;+ D, H < H,+E »

PaAadtssww /L1 11 L1 11 L1 11 LT I LT N

lterated Hash Function

— MD4 proposed by Rivest in 1990
— MD5 modified in 1992

— SHA proposed as a standard by NIST in 1993,
and was adopted as FIPS 180

— SHA-1 minor variation, FIPS 180-1
— SHA-256
— SHA-384
— SHA-512

96

