Grenoble University – M2 SCCI Security Proofs - JL Roch

Chapter 4

Cryptographic hash functions

References:

 A. J. Menezes, P. C. van Oorschot, S. A. Vanstone: Handbook of Applied Cryptography –

Chapter 9 - Hash Functions and Data Integrity [pdf available]

- D Stinson: Cryprography Theory and Practice (3rd ed), Chapter 4 – Security of Hash Functions
- S Arora and B Barak. Computational Complexity: A Modern Approach (2009). Chap 9. Cryptography (draft available) <u>http://www.cs.princeton.edu/theory/complexity/</u> (see also Boaz Barak course http://www.cs.princeton.edu/courses/archive/spring10/cos433/)

Hash function

 Hash functions take a variable-length message and reduce it to a shorter *message digest* with fixed size (k bits)

h: {0,1}* →{0,1}k

- Many applications: "Swiss army knives" of cryptography:
 - Digital signatures (with public key algorithms)
 - Random number generation
 - Key update and derivation
 - One way function
 - Message authentication codes (with a secret key)
 - Integrity protection
 - code recognition (lists of the hashes of known good programs or malware)
 - User authentication (with a secret key)
 - Commitment schemes
- Cryptanalysis changing our understanding of hash functions
 - [eg Wang's analysis of MD5, SHA-0 and SHA-1 & others]

•	 Hash Function Properties Preimage resistant Given only a message digest, can't find any message (or preimage) that generates that digest. Roughly speaking, the hash function must
	be one-way.
•	Second preimage resistant
	 Given one message, can't find another message that has the same message digest. An attack that finds a second message with the same message digest is a second pre-image attack.
	 It would be easy to forge new digital signatures from old signatures if the hash function used weren't second preimage resistant
•	Collision resistant
	 Can't find any two different messages with the same message digest Collision resistance implies second preimage resistance Collisions, if we could find them, would give signatories a way to repudiate their signatures
	 Due to birthday paradox, k should be large enough !

- Collision_attack ≤_P 2nd-Preimage_attack
- Careful: Collision_resistance NOT≤_P Preimage_resistance
 - Let $g : \{0,1\}^* \rightarrow \{0,1\}^n$ be collision-resistant and preimage-resistant.
 - Let f: $\{0,1\}^*$ → $\{0,1\}^{n+1}$ defined by f(x):=if (|x|=n) then "0||x" else "1||g(x)".
 - Then f is collision resistant but not pre-image resistant.
- But :

(Collision_resistance and one way) \Rightarrow_P Preimage_resistance

Provable compression functions

- Example: Chaum-van Heijst Pfitzmann
 - two prime numbers q and p=2q+1.
 - α and β to primitive elements in F_p.
 - Compression function h_1

$$\begin{array}{rcccc} h_1 : & \mathbb{F}_q \times \mathbb{F}_q & \to & F_p \\ & & (x_1, x_2) & \mapsto & \alpha^{x_1}.\beta^{x_2} \mod p \end{array}$$

Theorem: If LOG_α(β) mod p is impossible to compute (i.e. to find x such that α^x=β mod p),

then h_1 is resistant to collision.

– Proof ?

-> Training exercises (Form 4 : on the web): building a provable secure compression function F and a provable secure parallel extension scheme.

Provable Extension schemes

- Example: Merkle-Damgard scheme:
 - Preprocessing step: add padding to injectively make that the size of the input is a multiple of r: Compute the hash of x || Pad(x).

- **Theorem**: If the compression function *F* is collision resistant then the hash function *h* is collision resistant .
 - Proof: by contradiction (reduction) and induction.
- Note: Drawback of Merkle-Damgard: pre-image and second preimage
 - There exist O(2^{k-t}) second-preimage attacks for 2^t-blocks messages [Biham&al. 2006]

NIST recommendations [april 2006, Bill Burr]

	n	k	r	Unclassified use		Suite B	
				Through 2010	After 2010	Secret	Top Secret
MD4	512	128	384				
MD5	512	128	384				
SHA1	512	160	352	\checkmark			
SHA2-224	512	224	288	\checkmark	\checkmark		
SHA2-256	512	256	256	\checkmark	\checkmark	√	
SHA2-384	1024	384	640	\checkmark	V	\checkmark	\checkmark
SHA2-512	1024	512	512	\checkmark	\checkmark		

MD5

- The message is divided into blocks of n = 512 bits
 - Padding: to obtain a message of length multiple of 512 bits
 - [B₁..B_k] => [B₁..B_k10..0k₀..k₆₃] where [k₀..k₆₃] is the length k of the source (in 32 bits words)
- One step: 4 rounds of 16 operations of this type:
 - M_i plaintext (32 bits): 16*32=512 bits
 - A,B,C,D: current hash -or IV-: 4*32=128bits
 - K_i: constants

– F: non linear box,

- + mod 2³²
- First collisions found in 2004 [Wang, Fei, Lai,Hu]
 - No more security guarantees
 - Easy to generate two texts with the same MD5 hash

Secure Hash Algorithms SHA

- SHA1: n=512, k=160; 80 rounds with 32 bits words:
 - W_t plaintext (32 bits; 16*32=512 bits)
 - A,B,C,D,E: current hash -or IV-: 5*32=160bits
 - Kt: constants
 - F: non linear box, + mod 2^{32}
 - Weaknesses found from 2005
 - 2³⁵ computations [BOINC...]

• SHA2: 4 variants: k=224/384/256/512

- k=Size of the digest
- SHA-256: n=512, k=256
 - 64 rounds with 32 bits words
 - Message length <264-1
 - SHA-224: truncated version
- SHA-512: n=1024, k=512
 - 80 rounds with 64 bits words
 - Message length <2¹²⁸-1
 - SHA-384: truncated version

SHA-3 initial timeline (the Secure Hash Standard)

- April 1995 FIPS 180-1: SHA-1 (revision of SHA, design similar to MD4)
- August 2002 FIPS 180-2 specifies 4 algorithms for 160 to 512 bits digest message size < 2⁶⁴: SHA-1, SHA-256 ; < 2¹²⁸ : SHA-384, and SHA-512.
- 2007 FIPS 180-2 scheduled for review
 - Q2-2009 First Hash Function Candidate Conference
 - Q2-2010 Second Hash Function Candidate Conference
- Oct 2008 FIPS 180-3 http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf specifies 5 algrithms for SHA-1, SHA-224, SHA-256, SHA-384, SHA-512.
- 2012: Final Hash Function Candidate Conference
- 2 October 2012 : SHA-3 is Keccak (pronounced "catch-ack").
 - Creators: Bertoni, Daemen, Van Assche (STMicroelectronics) & Peeters (NXP Semiconductors)

SHA-3 : Keccak

 Alternate, non similar hash function to MD5, SHA-0 and SHA-1:

- Design : block permutation + Sponge construction

- But not meant to replace SHA-2
- Performance 12.5 cycles per byte on Intel Core-2 cpu; efficient hardware implementation.
- Principle (sponge construction):
 - message blocks XORed with the state which is then permuted (one-way one-to-one mapping)
 - State = 5x5 matrix with 64 bits words = 1600 bits
 - Reduced versions with words of 32, 16, 8,4,2 or 1 bit

Keccak block permutation

- Defined for $w = 2^{\ell}$ bit (w=64, $\ell = 6$ for SHA-3)
- State = 5 x 5 x w bits array : notation: a[i, j, k] is the bit with index (*i*×5 + *j*)×w + k (arithmetic on *i*, *j* and k is performed mod 5, 5 and w)
- block permutation function = 12+2l iterations of 5 subrounds :
 - θ: xor each of the 5xw colums of 5 bits parity of its two neighbours :
 a[i][j][k] ⊕= parity(a[0..4][j−1][k]) ⊕ parity(a[0..4][j+1][k−1])
 - ρ : bitwise rotate each of the 25 words by a different number, except a[0][0] for all $0 \le t \le 24$, a[i][j][k] = a[i][j][k-(t+1)(t+2)/2] with

 $\binom{i}{j} = \binom{3}{1} \binom{2}{0}^{i} \binom{0}{1}$ - π : Permute the 25 words in a fixed pattern: a[3i+2j][i] = a[i][j]

- χ : Bitwise combine along rows: $a[i][j][k] \oplus = \neg a[i][j+1][k] \& a[i][j+2][k]$
- *i*: xor a round constant into one word of the state. In round *n*, for 0≤*m*≤*l*, a[0][0][2^m−1] ⊕= b[m+7n] where b is output of a degree-8 LFSR.

Sponge construction = absorption+squeeze

- To hash variable-length messages by r bits blocks (c = 25w r)
- Absorption:
 - The r input bits are XORed with the r leading bits of the state
 - Block function f is applied

• Squeeze:

- r first bits ot the states produced as outputs
- Block permutation applied if additional output required
- « Capacity » : c = 25w-r bits not touched by input/output
 - SHA-3 sets c=2n where n = size of output hash (1 step squeeze only)
- Initial state = 0. Input padding = 10*1

Provable secure hash functions

- Due to birthday paradox, the expected number of k-bit hashes that can be generated before getting a collision is 2^{k/2}
 - Security of a hash function with 128 bits digest cannot be more than 264
- Choose a provable secure compression function F : {0,1}^{k+r} -> {0,1}^k
 - eg Chaum-van Heijst-Pfitzmann (discrete logarithm, cf exrecise)
 - Or based on a (provably secure) symmetric block cipher E_K
 eg Matyas-Meyer-Oseas; Davies-Meyer; Miyaguchi-Preneel; Meyer-Shilling (MDC2)
 - Or ...
- Choose a provable secure extension scheme to build h_F from F
 - Eg: Merkle scheme: $h_F(x || b_1..b_r) = F(h(x) || b_1..b_r)$ [cf course]
 - Or (usually when k=r) : $h_F(x || y) = F(h_F(x) || h_F(y))$ [cf exercise]
 - And use an initial value IV of k bits to initialize the scheme $h_F(b_1..b_r)$ = F(IV || $b_1..b_r$)

Building a compression function from a symmetric block cipher (1/3)

Bloc cipher : [key K , plaintext P] -> ciphertext C with |C| = |P| < |C| + |P|-> Can be used as a compression function

- Expected number of operations to find a collision by brute force less than 2^{|P|/2}
- But: a hash function is public, so is IV => cannot be used as is !

Building a compression function from a symmetric block cipher (2/3)

Examples with a block cipher E with block size k and Merkle extension scheme :
 g is a function that extends the hash to match the key size (might be identity)

 Theorem: Under the black-box model for the underlying block cipher, the 3 schemes are proved secure.
 Expected number of operations to find

- a collision = $2^{k/2}$

MDC2:

```
- a pre-image: 2<sup>k</sup>
```

Building a compression function from a symmetric block cipher (3/3)

Use of a block cipher with block size k to built a compression function with 2k digest
 Examples: MDC-2 and MDC-4, based on Merkle extension scheme

- Theorem [Steinberger 2007]: Under the black-box model for the underlying block cipher, expected number of operations to find a collision ≥ 2^{3k/5}
 - Better than 2 pre-image: $2^{k/2}$, even if far from the upper bound 2^k

Building a Block-cipher from hash function

• Examples: SHACAL-1 (from SHA-1) SHACAL-2 (from SHA-256)

Other hash functions

- Based on modular arithmetic:
 - Eg MASH [Modular Arithmetic Secure Hash] based on RSA [MASH1: 1025 bits modulus -> 1024 bits digest
- Keyed hash functions :
 - Use a private key to build a hash
 - MAC (Message Authentication Code)
 - Based on a block cipher HMAC Based on a hash function

What we have seen today

- Importance of hash function
- Hash function by compression + extension
 - Provable security
 - SHA1, SHA2
- SHA 3 : sponge construction
- Other hash functions :
 - Hash function built from sym. Cipher (and reverse)
 - Keyed hash function / HMAC
 [detailed construction at next lecture]

Hash functions : Security of MAC / HMAC

Outline

- Message Authentication Codes (MAC) and Keyed-hash Message Authentication Codes (HMAC)
- · Keyed hash family
- Unconditionally Secure MACs
 - Ref: D Stinson: Cryprography Theory and Practice (3rd ed), Chap 4.

Universal hash family

• Notations:

- χ is a set of possible messages
- Υ is a finite set of possible message digests or authentication tags
- $\mathcal{F}^{\!\!\mathcal{X}\mathcal{Y}} is$ the set of all functions from $\mathcal{X} to \ \mathcal{Y}$
- Definition 4.1:

A **keyed** hash family is a four-tuple $\mathcal{F} = (X, Y, \mathcal{K}, \mathcal{H})$, where the following condition are satisfied:

- K the keyspace, is a finite set of possible keys
- \mathcal{H} , the **hash family**, a finite set of at most $|\mathcal{K}|$ hash functions. For each $K \in \mathcal{K}$, there is a hash function $h_K \in \mathcal{H}$. Each $h_k: \mathcal{X} \to \mathcal{Y}$
- Compression function:
 - χ is a finite set, N=| χ |. Eg χ = {0,1}^{k+r} N = 2^{k+r}
 - Υ is a finite set M=| Υ !. Eg Υ = {0,1}^r M=2^r
 - $|\mathcal{F}^{\chi,\gamma}| = \mathsf{M}^{\mathsf{N}}$
 - F is denoted (N,M)-hash family

Random Oracle Model

- Model to analyze the probability of computing preimage, second pre-image or collisions:
- In this model,
 - a hash function $h_{K}: X \rightarrow Y$ is chosen randomly from F
 - The only way to compute a value $h_{K}(x)$ is to query the oracle.

- THEOREM 4.1

Suppose that $h \in \mathcal{F}^{X,Y}$ is chosen randomly, and let $X_0 \subseteq X$. Suppose that the values h(x) have been determined (by querying an oracle for h) if and only if $x \in X_0$.

Then, for all $x \in X \setminus X_0$ and all $y \in Y$, Pr[h(x)=y] = 1/M

27

Algorithms in the Random Oracle Model

- Randomized algorithms make random choices during their execution.
- A Las Vegas algorithm is a randomized algorithm
 - may fail to give an answer
 - if the algorithm returns an answer, then the answer must be correct.
- A randomized algorithm has average-case success probability ϵ if the probability that the algorithm returns a correct answer, averaged over all problem instances of a specified size, is at least ϵ ($0 \le \epsilon < 1$).

For all x (randomly chosen among all inputs of size s): $Pr(Algo(x) \text{ is correct}) \ge \epsilon$

- (ϵ,q) -algorithm : terminology to design a Las Vegas algorithm such that:
 - the average-case success probability $\boldsymbol{\epsilon}$
 - the number of oracle queries made by algorithms is at most q.

Message Authentication Codes

- One common way of constructing a MAC is to incorporate a secret key into an unkeyed hash function.
- Suppose we construct a keyed hash function h_K from an unkeyed iterated hash function h, by defining IV=K and keeping this initial value secret.
- Attack: the adversary can easily compute hash without knowing K (so IV) with a (1-1)–algorithm:
 - Let r = size of the blocks in the iterated scheme
 - Choose x and compute y = h(x) (one oracle call)
 - Let x' = x || pad(x) || w, where w is any bitstring of length r
 Let x' || pad(x') = x || pad(x) || w || pad(x') (since padding is known)
 - Compute y' = IteratedScheme(y, w || pad(x')) (iterated scheme is known)
 - Return (x', y') which is a valid pair ; (we have y'=h(x'))

Hash functions : Security of MAC / HMAC

Outline

- Message Authentication Codes

 Intoduction. Choosing K=IV isn't a good idea.
- Keyed hash family

 Security proof for nested HMAC
- Unconditionally Secure MACs

Nested MACs and HMAC

- A nested MAC builds a MAC algorithm from the composition of two hash families
 - (*X*,*Y*,*K*,*G*), (*Y*,*Z*,*L*,*H*)
 - composition: (X,Z,M,G°H)
 - $\bullet \mathcal{M} = \mathcal{K} \times \mathcal{L}$
 - • $G^{\circ}\mathcal{H} = \{ g^{\circ}h: g \in G, h \in \mathcal{H} \}$
 - $(g^{\circ}h)_{(K,L)}(x) = g_{K}(h_{L}(x))$ for all $x \in X$

– Theorem: the nested MAC is secure if

- (Y,Z,L,H) is secure as a MAC, given a fixed key
- (X,Y,K,G) is collision-resistant, given a fixed key

33

Nested MACs and HMAC Security proof with 3 adversaries

- (1) a forger for the nested MAC (**big MAC attack**)
 - (K,L) is chosen and kept secret
 - The adversary chooses x and query a big (nested) MAC oracle for values of $g_{K}(h_{L}(x))$
 - output (x',z) such that $z = g_{\kappa}(h_{L}(x'))$ (x' was not query)
- (2) a forger for the little MAC (little MAC attack) (Y,Z,L,H)
 - L is chosen and kept secret
 - The adversary chooses y and query a little MAC oracle for values of $h_{\text{L}}(y)$
 - output (y',z) such that $z = h_L(y')$ (y' was not query)

Nested MACs and HMAC Security proof with 3 adversaries

- (3) a collision-finder for the hash function (X,Y,K,G), when the key is secret (unknown-key collision attack) i.e. a collision finder for the hash function g_κ
 - K is secret
 - The adversary chooses x and query a hash oracle for values of $g_{\kappa}(x)$
 - output x', x'' such that $x' \neq x''$ and $g_{K}(x') = g_{K}(x'')$

35

Nested MACs and HMAC Security proof

• THEOREM 4.9 Suppose $(X, Z, \mathcal{M}, G^{\circ}\mathcal{H})$ is a nested MAC.

(3) Suppose there does not exist an $(\epsilon_1,q+1)$ -collision attack for a randomly chosen function $g_K \in G$, when the key K is secret.

(2) Further, suppose that there does not exist an (ϵ_2,q) -forger for a randomly chosen function $h_L \in \mathcal{H}$, where L is secret.

(1) Finally, suppose there exists an (ϵ,q) -forger for the nested MAC, for a randomly chosen function $(g^{\circ}h)_{(K,L)} \in \mathcal{G}^{\circ}\mathcal{H}$.

Then $\varepsilon \leq \varepsilon_1 + \varepsilon_2$

Proof

- From (1) Adversary queries x₁,..,x_q to a big MAC oracle and get (x₁, z₁)..(x_q, z_q). It outputs a [possibly] valid (x, z) with Prob [z=(g° h)_(K,L)(x)] = ε
- With previous x, $x_1, ..., x_q$ make q+1 queries to a hash oracle g_K : $y = g_K(x), y_1 = g_K(x_1), ..., y_q = g_K(x_q)$
- if $y \in \{y_1, ..., y_q\}$, say $y = y_i$, then x, x_i is solution to Collision; from (3), the probability of forging such a collision is ϵ_1 .
- else, output (y, z) which is a [possibly] forgery for h_{L} with probability $\geq \varepsilon \varepsilon_{1}$.
- Besides, q (indirect) little MAC queries have been performed for(y_1, z_1), ..., (y_q, z_q). From (2), (y,z) is a [possibly] forgery for h_L with probability $\leq \epsilon_2$.
- Finally, little MAC attack probability is $\geq \varepsilon \varepsilon_1$ and $\leq \varepsilon_2$: thus $\varepsilon - \varepsilon_1 \leq \varepsilon_2 \Rightarrow \varepsilon \leq \varepsilon_1 + \varepsilon_2$.

Nested	MACs	and	HMAC
--------	------	-----	------

HMAC is a nested MAC algorithm that is proposed by FIPS standard

- for MD5 and SHA1 : [RFC 2202]

- HMAC_K(x) = SHA-1((K ⊕ opad) || SHA-1((K ⊕ ipad) || x))
 - x is a message
 - K is a 512-bit key
 - ipad = 3636.....36 (512 bit)
 - opad = 5C5C....5C (512 bit)

CBC-MAC(x, K)

A popular way to construct a MAC using a block cipher $\mathbf{E}_{\mathbf{K}}$ with secret key K :

Cryptosystem 4.2: CBC-MAC (x, K)

• denote $x = x_1 || ... || x_n$, x_i is a bitstring of length t

39

- IV ← 00..0 (t zeroes)
- y₀ ← IV
- for i ← 1 to n
 - do $y_i \leftarrow \mathbf{E}_{\mathbf{K}}(y_{i-1} \oplus x_i)$
- return (y_n)

CBC-MAC(x, K)

- In the computation of MAC of each xⁱ, values
 y₀ⁱ ··· y_nⁱ are computed, and y_nⁱ is the resulting MAC.
 Now suppose that and xⁱ and x^j have identical MACs.
- $h_{K}(x^{i}) = h_{K}(x^{j})$ if and only if $y_{2}^{i} = y_{2}^{j}$, which happens if and only if $y_{1}^{i} \oplus x_{2}^{i} = y_{1}^{j} \oplus x_{2}^{j}$.
- Let x_{δ} be any bitstring of length t
 - $v = x_1^i || (x_2^i \oplus x_\delta) || ... || x_n^i$
 - $\mathbf{w} = \mathbf{x}_1^j || (\mathbf{x}_2^j \oplus \mathbf{x}_\delta) || \dots || \mathbf{x}_n^j$
- The adversary requests the MAC of v
- It is not difficult to see that v and w have identical MACs, so the adversary is successfully able to construct the MAC of w, i.e. $h_{\kappa}(w) = h_{\kappa}(v)!!!$

41

Hash functions : Security of MAC / HMAC

Outline

- Message Authentication Codes

 Intoduction. Choosing K=IV isn't a good idea.
- Keyed hash family

 Security proof for nested HMAC
- Unconditionally Secure MACs

Unconditionally secure MACs

- a key is used to produce only one authentication tag
- Thus, an adversary makes at most one query.

Deception probability Pd_q maximum value of ε such that (ε,q)-forger for q = 0, 1

• **payoff** (x, y) = probability of a vaild pair $(x, y=h_{K0}(x))$:

$$\Pr[\mathbf{y} = \mathbf{h}_{\mathsf{K0}}(\mathbf{x})] = \frac{|\{K \in \mathcal{K} : h_K(x) = y\}|}{|\mathcal{K}|}$$

(4.1)

43

Impersonation attack ((ε,0)-forger)
 − Pd₀ = max{ payoff(x,y): x ∈ X, y ∈ Y}

Unconditionally Secure MACs

• Substitution attack ((ε,1)-forger)

- query x and y is reply, $x \in X$, $y \in Y$
- Probability(x', y') is valid = payoff(x',y';x,y), x' $\in X$ and x \neq x'
- payoff(x',y';x,y) = $Pr[y' = h_{K0}(x')) | y = h_{K0}(x)] =$

$$\frac{\Pr[y' = h_{K0}(x') \land y = h_{K0}(x)]}{\Pr[y = h_{K0}(x)]} = \frac{|\{K \in \mathcal{K} : h_K(x') = y', h_K(x) = y\}|}{|\{K \in \mathcal{K} : y = h_K(x)\}|}$$

- Let
$$\mathcal{V}$$
 = {(x, y): | {K ∈ \mathcal{K} : h_K(x) = y} | ≥1}

$$-\operatorname{Pd}_{1} = \max\{\operatorname{payoff}(x', y'; x, y): x, x' \in X, y, y' \in Y, (x,y) \in V, x \neq x'\}$$
(4.2) ⁴⁴

- Example 4.1 $\chi = \gamma = Z_3$ and $\mathcal{K} = Z_3 \times Z_3$ for each K = (a,b) $\in \mathcal{K}$ and each $x \in \mathcal{X}$, $h_{(a,b)}(x) = ax + b \mod 3$ $\mathcal{H} = \{h_{(a,b)}: (a,b) \in Z_3 \times Z_3\}$ $- Pd_0 = 1/3$
 - query x = 0 and answer y = 0 possible key $K_0 \in \{(0,0), (1,0), (2,0)\}$. The probability that K_0 is key is 1/3 $Pd_1 = 1/3$

But if (1,1) is valid then $K_0 = (1,0)$

Key / x	0	1	2
(0,0)	0	0	0
(0,1)	1	1	1
(0,2)	2	2	2
(1,0)	0	1	2
(1,1)	1	2	0
(1,2)	2	0	1
(2,0)	0	2	1
(2,1)	1	0	2
(2,2)	2	1	0

Authentication matrix

Strongly Universal Hash Families

Definition 4.2: Suppose that (X,Y,K,H) is an (N,M) hash family.

This hash family is **strongly universal** provided that the following condition is satisfied :

for every x, x' $\in X$ such that x \neq x', and for every y, y' $\in Y$: $|\{K \in \mathcal{K} : h_K(x) = y, h_K(x') = y'\}| = |K|/M^2$

- Example 4.1 is a strongly universal (3,3)-hash family.

- LEMMA 4.10 Suppose that (X,Y,K,H) is a strongly universal (N,M)-hash family. Then for every x ∈X and for every y ∈Y |{K∈K: h_K(x) = y}| = |K|/M.
- **Proof** x, x' $\in X$ and $y \in Y$, where $x \neq x'$ $|\{K \in \mathcal{K} : h_K(x) = y\}| = \sum_{y \in Y} |\{K \in \mathcal{K} : h_K(x) = y, h_K(x') = y'\}|$ $= \sum_{y \in Y} \frac{|\mathcal{K}|}{M^2} = \frac{|\mathcal{K}|}{M}$

47

Unconditionally Secure MACs

- THEOREM 4.11 Suppose that (X, Y, K, H) is a strongly universal (N,M)-hash family. Then (X, Y, K, H) is an authentication code with Pd₀ = Pd₁ = 1/M
- Proof From Lemma 4.10
 payoff(x,y) = 1/M for every x ∈ X and y ∈ Y, and Pd₀ = 1/M

 x,x' ∈ X such that x ≠ x' and y,y' ∈ Y, where (x,y) ∈ V

payoff(x',y';x,y)= $\frac{|\{K \in \mathcal{K} : h_{K}(x') = y', h_{K}(x) = y\}|}{|\{K \in \mathcal{K} : h_{K}(x) = y\}|}$ $= \frac{|\mathcal{K}|/M^{2}}{|\mathcal{K}|/M} = \frac{1}{M}$

Therefore $Pd_1 = 1/M$

- THEOREM 4.12 Let p be prime. For a, b ∈ Z_p, let f_{a,b}: Z_p → Z_p with f_(a,b)(x) = ax + b mod p. Then (Z_p, Z_p, Z_p × Z_p, {f_{a,b}: Z_p → Z_p}) is a strongly universal (p,p)-hash family.
- **Proof** x, x', y, y' $\in Z_p$, where $x \neq x'$. ax + b = y (mod p), and ax' + b = y' (mod p) a = (y-y')(x'-x)^{-1} mod p, and b = y - x(y'-y)(x'-x)^{-1} mod p (note that (x' - x)^{-1} mod p exists because x != x' (mod p) and p is prime)

Unconditionally Secure MACs

• THEOREM 4.13 Let I be a positive integer and let p be prime. Define $\mathcal{X} = \{0,1\}^{I} \setminus \{(0,...,0)\}$ For every $r \in (Z_p)^{I}$, define $f_r: \mathcal{X} \rightarrow Z_p$ by : $f_r(x) = \langle r, x \rangle = \Sigma_{i=1,...,I} r_i \cdot X_i \mod p$

Then $(X, Z_p, (Z_p)^l, \{f_r : r \in (Z_p)^l\})$ is a strongly universal $(2^l - 1, p)$ -hash family.

49

 Proof Let x, x' ∈ X, x ≠ x', and let y, y' ∈ Zp. Show that the number of vectors r ∈(Z_p)^I such that r.x ≡y (mod p) and r.x' ≡y' (mod p) is p^{I-2}. The desired vector r are the solution of two linear equations in I unknowns over Z_p. The two equations are linearly independent, and so

the number of solution to the linear system is p^{l-2} . Then $|\{K \in \mathcal{K} : h_K(x) = y, h_K(x') = y'\}| = p^{l-2} = |K|/M^2$.

Unconditionally Secure MACs

4.5.2 Optimality of Deception Probabilities

- THEOREM 4.14 Suppose $(\chi, \Upsilon, \mathcal{K}, \mathcal{H})$ is an (N, M)hash family. Then $Pd_0 \ge 1/M$. Further, $Pd_0 = 1/M$ if and only if $|\{K \in \mathcal{K} : h_{\kappa}(x) = y\}| = |\mathcal{K}|/M$ (4.3)

 $|\{K \in \mathcal{K} : n_{K}(x) = y\}| = |\mathcal{K}|/N|$ (4.3) for every $x \in \mathcal{X}$, $y \in \mathcal{Y}$.

$$\sum_{y \in Y} payoff(x, y) = \sum_{y \in Y} \frac{|\{K \in \mathcal{K} : h_K(x) = y\}|}{|\mathcal{K}|} = \frac{|\mathcal{K}|}{|\mathcal{K}|} = 1$$

52

 \vec{r}

51

THEOREM 4.15 Suppose (X,Y,K,H) is an (N, M)-hash family. Then Pd₁ ≥ 1/M.

$$\sum_{y \in Y} payoff(x', y'; x, y) = \sum_{y \in Y} \frac{|\{K \in \mathcal{K} : h_K(x') = y', h_K(x) = y\}|}{|\{K \in \mathcal{K} : h_K(x) = y\}|}$$
$$= \frac{|\{K \in \mathcal{K} : h_K(x) = y\}|}{|\{K \in \mathcal{K} : h_K(x) = y\}|} = 1$$

53

Unconditionally Secure MACs

THEOREM 4.16 Suppose (X,Y,K,H) is an (N, M)-hash family. Then Pd₁ ≥ 1/M if and only if the hash family is strongly universal.

• **proof** \Rightarrow has already proved in Theorem 4.11. First show $\mathcal{V} = X \times \mathcal{Y}$ Let $(x, y') \in X \times \mathcal{Y}$; We will show $(x', y') \in \mathcal{V}$ Let $x \in X, x \neq x'$. Choose $y \in \mathcal{Y}$ such that $(x,y) \in \mathcal{V}$ From Theorem 4.15 $\frac{|\{K \in \mathcal{K} : h_K(x') = y', h_K(x) = y\}|}{|\{K \in \mathcal{K} : h_K(x) = y\}|} = \frac{1}{M} \quad (4.4)$

for every x, x' $\in X$, y, y' $\in Y$ such that (x,y) $\in V$.

$$\begin{split} |\{K \in \mathcal{K}: h_{K}(x') = y', h_{K}(x) = y\}| > 0 \\ => |\{K \in \mathcal{K}: h_{K}(x') = y'| > 0 \\ \text{This prove that } (x',y') \in \mathcal{V} \text{ and hence } \mathcal{V} = \mathcal{X} \times \mathcal{Y}. \\ \text{From (4.4) we know that } (x,y) \in \mathcal{V} \text{ and } (x',y') \in \mathcal{V} \text{ so we can interchange the roles of } (x, y) \text{ and } (x', y'). \\ |\{K \in \mathcal{K}: h_{K}(x) = y\}| = |\{K \in \mathcal{K}: h_{K}(x') = y'\}| \\ \text{ for all } x, x', y, y'. \\ |\{K \in \mathcal{K}: h_{K}(x) = y\}| \text{ is a constant.} \\ |\{K \in \mathcal{K}: h_{K}(x') = y', h_{K}(x) = y\}| \text{ is a constant.} \end{split}$$

Unconditionally Secure MACs

- COROLLARY 4.17 Suppose (X, Y, K, H) is an (N, M)hash family such that Pd₁ = 1/M. Then Pd₀ = 1/M.
- Proof Under the stated hypotheses, Theorem 4.16 says that (X,Y,K,H) is strongly universal. Then Pd₀ = 1/M from Theorem 4.11.

55

Conclusion

- Hash function :
 - Compression + extension
 - Provably secure compression (ex.) + extension
 - Examples of hash functions (SHA-3)
- MAC and HMAC
 - Hash family and oracle model (forger adversary)
 - Security conditions
 - Unconditionally secure MAC (key used once)
 - Strongly universal hash families

ANNEX / Back slides

Slides à réviser pour integration

- If a hash function is to be considered secure, these three problems are difficult to solve
 - Problem 4.1: Preimage
 - Instance: A hash function h: $X \rightarrow Y$ and an element $y \in Y$.
 - Find: $x \in X$ such that f(x) = y
 - Problem 4.2: Second Preimage
 - Instance: A hash function h: $X \rightarrow Y$ and an element $x \in X$
 - Find: $x' \in X$ such that $x' \neq x$ and h(x') = h(x)
 - Problem 4.3: Collision
 - **Instance:** A hash function h: $X \rightarrow Y$.
 - Find: x, $x' \in X$ such that $x' \neq x$ and $h(x') = h(x)_{59}$

Security of Hash Functions

- A hash function for which Preimage cannot be efficiently solved is often said to be one-way or preimage resistant.
- A hash function for which Second Preimage cannot be efficiently solved is often said to be second preimage resistant.
- A hash function for which Collision cannot be efficiently solved is often said to be collision resistant.

• 4.2.1 The Random Oracle Model

- The random oracle model provides a mathematical model of an "ideal" hash function.
- In this model, a hash function h: $X \rightarrow Y$ is chosen randomly from $\mathcal{F}^{X,Y}$
 - The only way to compute a value h(x) is to query the oracle.
- THEOREM 4.1 Suppose that $h \in \mathcal{P}^{X,Y}$ is chosen randomly, and let $\mathcal{X}_0 \subseteq \mathcal{X}$. Suppose that the values h(x) have been determined (by querying an oracle for h) if and only if $x \in \mathcal{X}_0$. Then $\Pr[h(x)=y] = 1/M$ for all $x \in \mathcal{X} \setminus \mathcal{X}_0$ and all $y \in \mathcal{Y}$.

61

Security of Hash Functions

- 4.2.2 Algorithms in the Random Oracle Model
 - Randomized algorithms make random choices during their execution.
 - A Las Vegas algorithm is a randomized algorithm
 - may fail to give an answer
 - if the algorithm does return an answer, then the answer must be correct.
 - A randomized algorithm has average-case success probability ε if the probability that the algorithm returns a correct answer, averaged over all problem instances of a specified size , is at least ε (0≤ε<1).

- We use the terminology (ε,q)-algorithm to denote a Las Vegas algorithm with average-case success probability ε
 - the number of oracle queries made by algorithms is at most q.
- Algorithm 4.1: FIND PREIMAGE (h, y, q)
 - choose any $X_0 \subseteq X, |X_0| = q$
 - for each $\mathbf{x} \in X_0$
 - **do if** h(x) = y

then return (x)

– **return** (failure)

Security of Hash Functions

- THEOREM 4.2 For any X₀ ⊆ X with |X₀| = q, the average-case success probability of Algorithm 4.1 is ε=1 (1-1/M)^q.
 - **proof** Let $y \in Y$ be fixed. Let $X_0 = \{x_1, x_.., x_q\}$. For $1 \le i \le q$, let E_i denote the event " $h(x_i) = y$ ". From Theorem 4.1 that the E_i 's are independent events, and $\Pr[E_i] = 1/M$ for all $1 \le i \le q$. Therefore $\Pr[E_1 \lor E_1 \lor ... \lor E_q] = 1 - \left(1 - \frac{1}{M}\right)^q$ The success probability of Algorithm 4.1, for any fixed y, is constant.

Therefore, the success probability averaged over all $y \in \mathcal{Y}$ is identical, too.

63

- Algorithm 4.3: FIND COLLISION (h,q)
 - choose $X_0 \subseteq X$, $|X_0| = q$
 - for each $x \in X_0$
 - do $y_x \leftarrow h(x)$
 - if $y_x = y_{x'}$ for some $x' \neq x$
 - then return (x, x')
 - else return (failure)

THEOREM 4.4 For any $X_0 \subseteq X$ with $|X_0| = q$, the success probability of Algorithm 4.3 is $\varepsilon = 1 - (\frac{M-1}{M})(\frac{M-2}{M})...(\frac{M-q+1}{M})$ - **proof** Let $\chi_0 = \{x_1, ..., x_n\}$. E_i : the event "h(x_i) \notin {h(x₁),..,h(x_{i-1})}.", 2 ≤ i ≤ q Using induction, from Theorem 4.1 that $Pr[E_1] = 1$ $\Pr[E_i \mid E_1 \land E_2 \land .. \land E_{i-1}] = \frac{M - i + 1}{M} \quad \text{for } 2 \le i \le q.$ and $\Pr[E_1 \land E_2 \land ... \land E_q] = (\frac{M-1}{M})(\frac{M-2}{M})..(\frac{M-q+1}{M})$ 68

67

- This says that hashing just over \sqrt{M} random elements of X yields a collision with a prob. of 50%.
- A different choice of εleads to a different constant factor, but q will still be proportional to √M. So this algorithm is a (1/2, O(√M)-algorithm.

- The birthday attack imposes a lower bound on the size of secure message digests. A 40-bit message digest would be very in secure, since a collision could be found with prob. ¹/₂ with just over 2²0 (about a million) random hashes.
- It is usually suggested that the minimum acceptable size of a message digest is 128 bits (the birthday attack will require over 2^64 hashes in this case). In fact, a 160-bit message digest (or larger) is usually recommended.

Security of Hash Functions

• 4.2.3 Comparison of Security Criteria

- In the random oracle model, solving Collision is easier than solving Preimage of Second Preimage.
- Whether there exist reductions among these three problems which could be applied to arbitrary hash functions? (Yes.)
- Reduce Collision to Second Preimage using Algorithm 4.4.
- Reduce Collision to Preimage using Algorithm 4.5.

 As a consequence of this reduction, collision resistance implies second preimage resistance.

• THEOREM 4.5 Suppose h: $X \rightarrow Y$ is a hash function where |X| and |Y| are finite and $|X| \ge 2|Y|$. Suppose ORACLEPREIMAGE is a (1,q) algorithm for Preimage, for the fixed hash function h.(and so h is surjective(onto)) Then COLLISION TO PREIMAGE is a (1/2, q+1) algorithm for **Collision**, for the fixed hash function h.

- Compression function: hash function with a finite domain
- A hash function with an infinite domain can be constructed by the mapping method of a compression function is called an iterated hash function.
- We restrict our attention to hash functions whose inputs and outputs are bitstrings (i.e., strings formed of 0s and 1s).

- y_k ← x_k || 0^d
- $y_{k+1} \leftarrow$ the binary representation of d
- z₁ ← 0^{m+1} || y₁
- $g_1 \leftarrow compress(z_1)$
- for i ← 1 to k

do
$$z_{i+1} \leftarrow g_i \parallel 1 \parallel y_{i+1}$$

- $g_{i+1} \leftarrow compress(z_{i+1})$
- h(x) ← g_{k+1}
- return (h(x))

• THEOREM 4.6 Suppose compress : $\{0,1\}^{m+t} \rightarrow \{0,1\}^m$ is a collision resistant compression function, where t ≥ 2 . Then the function $h: [\overset{\infty}{}] \{0,1\}^i \rightarrow \{0,1\}^m$

as constructed in Algorithm 4.6, is a collision resistant hash function.

proof

Suppose that we can find $x \neq x'$ such that h(x)=h(x'). $y(x) = y_1 || y_2 || || y_{k+1}, \quad x \text{ is padded with d 0's}$ $y(x') = y'_1 || y'_2 || || y'_{l+1}, \quad x' \text{ is padded with d' 0's}$ g-values : $g_1, ..., g_{k+1}$ or $g'_1, ..., g'_{l+1}$

83

Iterated Hash Function

case 1: |x| != |x'| (mod t - 1) d ≠ d' and y_{k+1} ≠ y'_{l+1} compress(g_k || 1 || y_{k+1}) = g_{k+1} = h(x) = h(x') = g'_{l+1} = compress (g'₁ || 1 || y'_{l+1}), which is a collision for compress because y_{k+1} ≠ y'_{l+1}
case2: |x| = |x'| (mod t - 1)
case2.a: |x| = |x'| k = l and y_{k+1} = y'_{k+1} compress(g_k || 1 || y_{k+1}) = g_{k+1} = h(x) = h(x') = g'_{k+1} = compress (g'_k || 1 || y'_{k+1}) If g_k ≠ g'_k, then we find a collision for compress, so assume g_k = g'_k.

84

compress $(g_{k-1} || 1 || y_k) = g_k = g'_k$ = compress $(g'_{k-1} || 1 || y'_k)$ Either we find a collision for compress, or $g_{k-1} = g'_{k-1}$ and $y_k = y'_k$. Assuming we do not find a collision, we continue work backwards, until finally we obtain compress $(0^{m+1} || y_1) = g_1 = g'_1 = \text{compress} (0^{m+1} || y'_1)$ If $y_k \neq y'_k$, then we find a collision for compress, so we assume $y_1 = y'_1$. But then $y_i = y'_i$ for $1 \le i \le k+1$, so y(x) = y(x').

85

Iterated Hash Function

 This implies x = x', because the mapping x → y(x) is an injection.

We assume $x \neq x'$, so we have a contradiction.

```
case 2b: |x| ≠ |x'|
Assume |x'| > |x|, so I > k
Assuming we find no collisions for compress, we reach the situation where
compress(0<sup>m+1</sup> || y<sub>1</sub>) = g<sub>1</sub> = g'<sub>1-k+1</sub> =
compress (g'<sub>1-k</sub> || 1 || y'<sub>1-k+1</sub>).
But the (m+1)st bit of 0<sup>m+1</sup> || y<sub>1</sub> is a 0
and the (m+1)st bit of g'<sub>1-k</sub> || 1 || y'<sub>1-k+1</sub> is a 1.
So we find a collision for compress.
```


- The encoding x → y = y(x), as defined algorithm 4.7 satisfies two important properties:
 - If $x \neq x'$, then $y(x) \neq y(x')$ (i.e. $x \rightarrow y = y(x)$ is an injection)
 - There do not exist two strings x ≠ x' and a string z such that y(x) = z || y(x') (i.e. no encoding is a postfix of another encoding)

THEOREM 4.7 Suppose compress : $\{0,1\}^{m+1} \rightarrow : \{0,1\}$ ^m is a collision resistant compression function. Then $h: \bigcup_{i=1}^{\infty} \{0,1\}^{i} \rightarrow \{0,1\}^{m},$ the function as constructed in Algorithm 4.7, is a collision resistant hash function. • **proof** Suppose that we can find $x \neq x'$ such that h(x) = h(x').Denote $y(x) = y_1y_2...y_k$ and $y(x') = y'_1y'_2...y'_1$ case1: k = | As in Theorem 4.6, either we find a collision for compress, or we obtain y = y'. But this implies x = x', a contradiction.

89

Iterated Hash Iterated Hash **Function Function**

case 2: k ≠ l Without loss of generality, assume l > kAssuming we find no collision for compress, we have following sequence of equalities: $y_{k} = y'_{1}$ $y_{k-1} = y'_{l-1}$ $y_1 = y'_{1-k+1}$ But this contradicts the "postfix-free" property We conclude that h is collision resistant.

• THEOREM 4.8 Suppose compress:
$$\{0,1\}^{m+t} \rightarrow \{0,1\}^m$$

is a collision resistant compression function, where t
 ≥ 1 . Then there exists a collision resistant hash
function
 $h: \bigcup_{i=m+t+1}^{\infty} \{0,1\}^i \rightarrow \{0,1\}^m$,
The number of times compress is computed in the
evaluation of h is at most
 $1+\left[\frac{-nt}{t-1}\right] \ge 2$
 $2n+2$ if $t=1$
where $|x| = n$.

Itaratad Llach Eurotian

n	1
э	
~	

Iterated Hash Function

4.3.2 The Secure Hash algorithm

- SHA-1(Secure Hash Algorithm)
 - iterated hash function
 - 160-bit message digest
 - word-oriented (32 bit) operation on bitstrings
- Operations used in SHA-1
 - X ^ Y bitwise "and" of X and Y
 - X v Y bitwise "or" of X and Y
 - X ⊕ Y bitwise "xor" of X and Y
 - ¬X bitwise complement of X
 - X + Y integer addition modulo 2³²
 - ROTL^s(X) circular left shift of X by s position $(0 \le s \le 31)^2$

Iterated Hash Function

- MD4 proposed by Rivest in 1990
- MD5 modified in 1992
- SHA proposed as a standard by NIST in 1993, and was adopted as FIPS 180
- SHA-1 minor variation, FIPS 180-1
- SHA-256
- SHA-384
- SHA-512