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Hash function 
•  Hash functions take a variable-length message and reduce it 

to a shorter message digest with fixed size (k bits)  
    h: {0,1}* →{0,1}k  

•  Many applications: “Swiss army knives” of cryptography: 
–  Digital signatures (with public key algorithms) 
–  Random number generation 
–  Key update and derivation 
–  One way function 
–  Message authentication codes (with a secret key) 
–  Integrity protection 
–  code recognition (lists of the hashes of known good programs or 

malware) 
–  User authentication (with a secret key) 
–  Commitment schemes 

 
•  Cryptanalysis changing our understanding of hash functions 

–  [eg Wang’s analysis of MD5, SHA-0 and SHA-1 & others] 



Hash Function Properties 
•  Preimage resistant 

–  Given only a message digest, can’t find any message (or preimage) 
that generates that digest. Roughly speaking, the hash function must 
be one-way.    

•  Second preimage resistant  
–  Given one message, can’t find another message that has the same 

message digest.  An attack that finds a second message with the same 
message digest is a second pre-image attack. 

•  It would be easy to forge new digital signatures from old signatures if the 
hash function used weren’t second preimage resistant 

•  Collision resistant 
–  Can’t find any two different messages with the same message digest 

•  Collision resistance implies second preimage resistance 
•  Collisions, if we could find them, would give signatories a way to repudiate 

their signatures 
–  Due to birthday paradox, k should be large enough ! 

•  Collision_attack ≤P 2nd-Preimage_attack 

•  Careful: Collision_resistance NOT≤P Preimage_resistance 
–  Let g : {0,1}*→ {0,1}n be collision-resistant and preimage-resistant.  
–  Let f: {0,1}*→ {0,1}n+1 defined by f(x):=if (|x|=n) then “0||x” else “1||g(x)”. 
–  Then f is collision resistant but not pre-image resistant. 

•  But : 
(Collision_resistance and one way) �P Preimage_resistance  



 
•  Let F be a basic “compression function” that takes in input a block of fixed 

size (k+r bits) and delivers in ouptut a digest of size k bits :  
–  For some fixed k and n, F “compresses” a block of n bits to one of k=n-r bits  

  F: {0,1}k+r  → {0,1}k      (eg. for SHA2-384 k=384 bits and r=640 bits) 
   

•  One-to-one padding: M → M || pad(M) to have a bit length multiple of r : 
–  M || pad(M) = M1, M2, M3…,Ml     [one-to-one padding: M≠M’ ! M||pad(M) ≠ M”||pad(M’)] 

•  Ex.1: pad(M)=“0…0”||s,          where s=64 bits that encode the bitlength of M 
•  Ex.2: pad(M)=“0…0”||u||1||v,   where u=bitlength(M) and v=“0”log(u) 

•  F is extended to build h: {0,1}* →{0,1}k  
  based on a provable secure extension scheme. 

–  Eg: Merkle scheme: last output of compression function is the h-bit digest. 

Building hash functions: 
compression + extension 
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Provable compression functions 
•  Example: Chaum-van Heijst - Pfitzmann 

–  two prime numbers q and p=2q+1. 
�  α and β to primitive elements in Fp. 
–  Compression function h1  

•  Theorem: If  LOGα(β) mod p is impossible to compute  
  (i.e. to find x such that αx=β mod p),  

then h1 is resistant to collision.  
–  Proof ? 
-> Training exercises (Form 4 : on the web): building a 

provable secure compression function F and a provable 
secure parallel extension scheme. 



•  Example: Merkle-Damgard scheme: 
–  Preprocessing step: add padding to injectively make that the size of the input is a multiple of r: 

Compute the hash of   x || Pad(x).  

     hi = F ( hi-1 || xi  ) 

•  Theorem: If the compression function F is collision resistant then  
                  the hash function h is collision resistant . 

–  Proof: by contradiction (reduction) and induction. 

•  Note: Drawback of Merkle-Damgard: pre-image and second preimage 
–  There exist O(2k-t) second-preimage attacks for 2t-blocks messages [Biham&al. 2006] 
 

Provable Extension schemes 
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Other extension schemes 
•  Merkle tree: 

 
 

•  Variants: Truncated Merkle-tree, IV at each leave 

•  HAIFA :  hi = F ( hi-1 || xi || iencoded on 64 bits) 
•  where compression F: {0,1}k+r+64 → {0,1}k  
•  Lower bound W(2k) for 2nd-preimage[Bouillaguet&al2010]  

•  … 
 



 NIST recommendations  
[april 2006, Bill Burr] 

n k r Unclassified use Suite B 

Through
2010 

After 
2010 

Secret Top Secret 

MD4 512 128 384 

MD5 512 128 384 

SHA1 512 160 352 √ 

SHA2-224 512 224 288 √ √ 

SHA2-256 512 256 256 √ √ √ 

SHA2-384 1024 384 640 √ √ √ √ 

SHA2-512 1024 512 512 √ √ 

MD5 
•  The message is divided into blocks of n = 512 bits 

–  Padding: to obtain a message of length multiple of 512 bits 
•  [B1..Bk] =>  [B1..Bk10..0k0..k63]  

 where [k0..k63] is the length k of the source (in 32 bits words) 
 
 

•   One step: 4 rounds of 16 operations of this type: 
–  Mi plaintext (32 bits): 16*32=512 bits 
–  A,B,C,D: current hash -or IV-: 4*32=128bits 
–  Ki: constants 
–  F: non linear box,              + mod  232 

•  First collisions found in 2004 [Wang, Fei, Lai,Hu] 
–  No more security guarantees 
–  Easy to generate two texts with the same MD5 hash 



Secure Hash Algorithms SHA 
•  SHA1: n=512, k=160; 80 rounds with 32 bits words: 

–  Wt plaintext (32 bits; 16*32=512 bits) 
–  A,B,C,D,E: current hash -or IV-: 5*32=160bits 
–  Kt: constants 
–  F: non linear box,              + mod  232 

–  Weaknesses found from 2005 
•  235 computations [BOINC…] 

 

•  SHA2: 4 variants: k=224/384/256/512 
•  k=Size of the digest  
•  SHA-256: n=512, k=256  

–  64 rounds with 32 bits words 
–  Message length <264-1 
–  SHA-224: truncated version 

•  SHA-512: n=1024, k=512  
–  80 rounds with 64 bits words 
–  Message length <2128-1  
–  SHA-384: truncated version 

SHA-3 initial timeline 
(the Secure Hash Standard)  

•  April 1995 FIPS 180-1:  SHA-1   (revision of SHA, design similar to MD4) 
•  August 2002 FIPS 180-2  

specifies 4 algorithms for 160 to 512 bits digest 
  message size < 264: SHA-1, SHA-256  ;  < 2128 : SHA-384, and SHA-512.  

•  2007 FIPS 180-2  scheduled for review 
–  Q2- 2009 First Hash Function Candidate Conference 
–  Q2- 2010 Second Hash Function Candidate Conference 

 

•  Oct 2008 FIPS 180-3 http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf 

specifies  5 algrithms for SHA-1, SHA-224, SHA-256, SHA-384, SHA-512.  
 

•  2012: Final Hash Function Candidate Conference 
•  2 October 2012 : SHA-3 is Keccak (pronounced 
catch-ack�). 

–  Creators: Bertoni, Daemen, Van Assche (STMicroelectronics) & Peeters (NXP Semiconductors) 

 



The five SHA3 finalists 
•  BLAKE  

–   New extension scheme (HAIFA) + stream cipher (Chacha)  

•  Grøstl  
–  Compression function (two permutations)                    + 

 Merkle-Damgard extension + output transformation (Matyas-Meyer-Oseas) 

•   JH  
–  New extension scheme + AES/Serpent cipher 
 
 

 

•  Keccak 
–  Extension « sponge construction » + compression 

 

•  Skein   
–  Extension  « sponge construction » + Threefish block cipher 

SHA-3 : Keccak 
•  Alternate, non similar hash function to MD5, SHA-0 

and SHA-1:  
–  Design : block permutation + Sponge construction   

•  But not meant to replace SHA-2 
•  Performance 12.5 cycles per byte on Intel Core-2 cpu; 

efficient hardware implementation. 
 

•  Principle (sponge construction):  
–  message blocks XORed with the state which is then 

permuted (one-way one-to-one mapping) 
–  State = 5x5 matrix with 64 bits words = 1600 bits 
–  Reduced versions with words of 32, 16, 8,4,2 or 1 bit 



Keccak block permutation 
•  Defined for w = 2ℓ bit   (w=64, ℓ = 6 for SHA-3) 
•  State = 5 x 5 x w bits array : notation: a[i, j, k] is the bit with  

index (i×5 + j)×w + k (arithmetic on i, j and k is performed mod 5, 5 and w) 
•  block permutation function = 12+2ℓ iterations of 5 subrounds : 

–  θ: xor each of the 5xw colums of 5 bits parity of its two neighbours :  
 a[i][j][k] �= parity(a[0..4][j−1][k]) � parity(a[0..4][j+1][k−1])   

–  ρ: bitwise rotate each of the 25 words by a different number, except a[0][0] 
 for all 0≤t≤24, a[i][j][ k ] = a[i][j][ k−(t+1)(t+2)/2 ] with  

 
–  π: Permute the 25 words in a fixed pattern:  a[ 3i+2j ] [ i ] = a[i][j] 

 
–  χ: Bitwise combine along rows:  a[i][j][k] �= ¬a[i][j+1][k] & a[i][j+2][k] 

–  ι: xor a round constant into one word of the state. In round n, for 0≤m≤ℓ,  
 a[0][0][2m−1] �= b[m+7n] where b is output of a degree-8 LFSR. 

Sponge construction = absorption+squeeze 
•  To hash variable-length messages by r bits blocks (c = 25w – r)  
•  Absorption:  

–  The r input bits are XORed with the r leading bits of the state 
–  Block function f is applied 

•  Squeeze: 
–  r first bits ot the states produced as outputs 
–  Block permutation applied if additional output required 

•  « Capacity » : c = 25w-r bits not touched by input/output 
–  SHA-3 sets c=2n where n = size of output hash (1 step squeeze only) 

•  Initial state = 0.   Input padding = 10*1 



•  Due to birthday paradox, the expected number of k-bit hashes that can be generated 
before getting a collision is 2k/2  

–  Security of a hash function with 128 bits digest cannot be more than 264  

•  Choose a provable secure compression function F : {0,1}k+r -> {0,1}k  
–  eg Chaum-van Heijst-Pfitzmann (discrete logarithm, cf exrecise)  

–  Or based on a (provably secure) symmetric block cipher EK  
eg Matyas-Meyer-Oseas; Davies-Meyer; Miyaguchi-Preneel; Meyer-Shilling (MDC2)  

–  Or … 

•  Choose a provable secure extension scheme to build hF from F 
–  Eg: Merkle scheme:  hF(x || b1..br )=  F( h(x) || b1..br )  [cf course]   
–  Or (usually when k=r) :   hF (x || y) = F( hF(x) || hF(y) )  [cf exercise] 

–  And use an initial value IV of k bits to initialize the scheme 
   hF(b1..br )=  F( IV || b1..br ) 

Provable secure hash functions 

•  Bloc cipher :     [key K , plaintext P] -> ciphertext  C  with  |C| = |P| < |C| + |P| 
-> Can be used as a compression function 

•  Expected number of operations to find a collision by brute force less than 2|P|/2 

•  But: a hash function is public, so is IV =>  cannot be used as is !  
 

Building a compression function 
from a symmetric block cipher (1/3) 
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•  Examples with a block cipher E with block size k and Merkle extension scheme : 
–  g is a function that extends the hash to match the key size (might be identity) 

 
 
 

•  Theorem: Under the black-box model for the underlying block cipher, the 3 schemes 
are proved secure. 
Expected number of operations to find  

      - a collision = 2k/2    - a pre-image: 2k  

Building a compression function 
from a symmetric block cipher (2/3) 

•  Use of a block cipher with block size k to built a compression function with 2k digest 
–  Examples: MDC-2 and MDC-4, based on Merkle extension scheme 

•  MDC2 : 

 
 
 

•  Theorem [Steinberger 2007]: Under the black-box model for the underlying block cipher, 
expected number of operations to find  a collision ≥ 23k/5  
 

–  Better than 2 pre-image: 2k/2 , even if far from the upper bound 2k 

Building a compression function 
from a symmetric block cipher (3/3) 



Building a Block-cipher from 
hash function 

•  Building: 
Basic compression function     Block cipher 

•  Examples: SHACAL-1 (from SHA-1)  SHACAL-2 (from SHA-256) 
 
 
 

g 

Hi-1 (k bits) 

Hi (k bits) 

Mi (r  bits) g 

Pi (k bits block of the plaintext) 

Ci (k bits of the ciphered blocks) 

Ki (key = r  bits,  
       or less with padding) 

Other hash functions 
•  Based on modular arithmetic: 

–  Eg MASH [Modular Arithmetic Secure Hash] based on RSA 
[MASH1: 1025 bits modulus -> 1024 bits digest 

•  Keyed hash functions : 
–  Use a private key to build a hash  
–  MAC (Message Authentication Code) 

•  Based on a block cipher   - HMAC Based on a hash 
function 



Keyed hash functions 
•  Use a private key to build a hash  

–  MAC (Message Authentication Code) 

•  Examples: 
–  Based on a block cipher  - HMAC:based on a hash fn 

CBC-MAC: based on CBC 
 
 
 

What we have seen today   

•  Importance of hash function 
•  Hash function by compression + extension 

– Provable security 
– SHA1, SHA2 

•  SHA 3 : sponge construction 
•  Other hash functions : 

– Hash function built from sym. Cipher  (and reverse) 
– Keyed hash function / HMAC  

[detailed construction at next lecture] 



Hash functions :  
Security of MAC / HMAC 

Outline 
•  Message Authentication Codes (MAC) and 

Keyed-hash Message Authentication Codes (HMAC) 
  
•  Keyed hash family 

•  Unconditionally Secure MACs 

•  Ref: D Stinson: Cryprography – Theory and Practice  (3rd ed), 
Chap 4. 

�� 

Universal hash family 
•  Notations: 

–  X  is a set of possible messages   
–  Y  is a finite set of possible message digests or authentication tags 
–  FX,Y is the set of all functions from X to Y      

•  Definition 4.1:  
A keyed hash family is a four-tuple F =(X, Y, K,H), where the following 
condition are satisfied: 

– K, the keyspace, is a finite set of possible keys 
– H, the hash family, a finite set of at most |K| hash functions. 

For each K ∈ K, there is a hash function hK ∈ H.   Each hk: X  → Y  

•  Compression function:  
•  X is a finite set, N=|X|.    Eg X = {0,1}k+r    N = 2k+r    
•  Y is a finite set M=|Y|.  Eg Y = {0,1}r       M=2r    
•  |FX,Y| =  MN 
•  F is denoted (N,M)-hash family 



�	 

Random Oracle Model�
–  Model to analyze the probability of computing preimage, 

second pre-image or collisions: 
–  In this model,  

•  a hash function hK: X →Y  is chosen randomly from F 
•  The only way to compute a value hK(x) is to query the oracle. 

–  THEOREM 4.1  
Suppose that h ∈ FX,Y  is chosen randomly, and let X0  ⊆ X. 
Suppose that the values h(x) have been determined (by 
querying an oracle for h) if and only if x ∈X0.  
 
Then, for all x ∈X \ X0 and all y ∈Y,  
    Pr[h(x)=y] = 1/M   

�
 

Algorithms in the Random 
Oracle Model�

–  Randomized algorithms make random choices during their execution. 
 

–  A Las Vegas algorithm is a randomized algorithm 
•  may fail to give an answer 
•  if the algorithm returns an answer, then the answer must be correct. 

 
–  A randomized algorithm has average-case success probability ε if the 

probability that the algorithm returns a correct answer, averaged over all 
problem instances of a specified size , is at least ε (0≤ε<1).  
 
 For all x (randomly chosen among all inputs of size s): 
   Pr( Algo(x) is correct) ≥  ε 

–   (ε,q)-algorithm : terminology to design a Las Vegas algorithm such that: 
•  the average-case success probability ε 
•  the number of oracle queries made by algorithms is at most q. 
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Example of (ε,q)-algorithm�
•  Algorithm 4.1: FIND PREIMAGE (h, y, q) 

–  choose any X0  ⊆ X,|X0| = q 
–  for each x ∈X0 do { if h(x) = y then return (x) ; } 
–  return (failure) 

•  THEOREM 4.2 For any X0  ⊆ X  with |X0| = q, the average-case 
success probability of Algorithm 4.1 is ε=1 - (1-1/M)q. 
Algorithm 4.1 is a  (1 - (1-1/M)q  ; q ) – algorithm 

•  Proof  Let y ∈Y  be fixed. Let Χ0 = {x1,x2..,xq}.  
    The Algo is successful iff there exists i such that h(xi) = y. 

•  For 1 ≤ i ≤ q, let Ei denote the event “h(xi) = y”. 
The Ei’s are independent events; from Theo. 4.1, Pr[Ei] = 1/M for all 1≤i≤q.  
Therefore, 
 
The success probability of Algorithm 4.1, for any fixed y, is constant. 
Therefore, the success probability averaged over all y ∈Y  is identical, too.�
€ 

Pr[E1∨ E2 ∨ ...∨ Eq ] =1− 1− 1
M

$ 
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Message Authentication Codes�
•  One common way of constructing a MAC is to incorporate a 

secret key into an unkeyed hash function. 
 

•  Suppose we construct a keyed hash function hK from an 
unkeyed iterated hash function h,  
by defining IV=K and keeping  this initial value secret. 
 

•  Attack: the adversary can easily compute hash without  
knowing K (so IV) with a (1-1)–algorithm: 
–  Let r = size of the blocks in the iterated scheme 
–  Choose x and compute y = h (x)   (one oracle call) 
–  Let x’= x || pad(x) || w,    where w is any bitstring of length r 

Let x’ || pad(x’) = x || pad(x) || w || pad(x’)  (since padding is known) 
–  Compute y’ = IteratedScheme( y, w || pad(x’) )  (iterated scheme is 

known) 
–  Return (x’, y’) which is a valid pair ;  (we have y’=h( x’) )  

 



�� 

Message Authentication Codes 
(ε,q)-forger �

–  Assume MD iterated scheme is used, let zr = hK(x) 
 The adversary computes  zr+1←compress(hK(x)||yr+1) 
                                     zr+2 ← compress(zr+1 ||yr+2) 
                                         … 
                                     zr’  ← compress((zr’-1 || yr’) 
 and returns zr’  that verifies zr’=hK(x’). 
 

•  Def: an (ε,q)-forger is an adversary who 
–  queries message x1,…,xq,  
–  gets a valid (x, y), x !∈ {x1,…,xq} 
–  with a probability at least ε that the adversary outputs a 

 forgery (ie a correct couple (x, h(x)) 

Hash functions :  
Security of MAC / HMAC 

Outline 
•  Message Authentication Codes 

–  Intoduction. Choosing K=IV isn�t a good idea. 
•  Keyed hash family 

– Security proof for nested HMAC 
•  Unconditionally Secure MACs 
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Nested MACs and HMAC�
 

–  A nested MAC builds a MAC algorithm from the 
composition of two hash families 

•  (X,Y,K,G), (Y,Z,L,H) 
•  composition: (X,Z,M,G °H) 
• M = K × L 
• G°H  = { g°h: g ∈ G, h ∈ H  } 
•  (g°h)(K,L)(x) = gK( hL( x) ) for all x ∈ X 

–  Theorem: the nested MAC is secure if 
•  (Y,Z,L,H) is secure as a MAC, given a fixed key 
•  (X,Y,K,G) is collision-resistant, given a fixed key 

�� 

 
•  (1) a forger for the nested MAC (big MAC attack) 

–  (K,L) is chosen and kept secret 
–  The adversary chooses x and query a big (nested) MAC 

oracle for values of gK( hL (x)) 
–  output (x’,z) such that z = gK( hL (x’))  (x’ was not query) 

 
•  (2) a forger for the little MAC (little MAC attack) (Y,Z,L,H) 

–  L is chosen and kept secret 
–  The adversary chooses y and query a little MAC oracle 

for values of hL(y) 
–  output (y’,z) such that z = hL(y’)  (y’ was not query) 

Nested MACs and HMAC 
Security proof with 3 adversaries 

�



�� 

•  (3) a collision-finder for the hash function (X,Y,K,G), 
when the key is secret (unknown-key collision attack)  
i.e. a collision finder for the hash function gK 

 
–  K is secret 
–  The adversary chooses x and query a hash oracle 

for values of gK(x) 
–  output x’, x’’ such that x’ ≠ x’’ and gK(x’) = gK(x’’) 

Nested MACs and HMAC 
Security proof with 3 adversaries 

�

�� 

Nested MACs and HMAC 
Security proof�

•  THEOREM 4.9 Suppose (X,Z,M,G °H) is a nested MAC. 
 
(3) Suppose there does not exist an (ε1,q+1)-collision attack for 
a randomly chosen function gK ∈ G, when the key K is secret. 
 
(2) Further, suppose that there does not exist an (ε2,q)-forger 
for a randomly chosen function hL∈H, where L is secret.  
 
(1) Finally, suppose there exists an (ε,q)-forger for the nested 
MAC, for a randomly chosen function (g°h)(K,L) ∈ G °H.  
 
Then ε ≤ ε1+ε2 



�	 

Proof�
•  From (1) Adversary queries x1,..,xq to a big MAC oracle and get 

(x1, z1)..(xq, zq). 
It outputs a [possibly] valid (x, z) with Prob [  z=(g°h)(K,L) (x) ] = ε 

•  With previous x, x1,.., xq make q+1 queries to a hash oracle gK : 
   y = gK(x), y1 = gK(x1),..., yq = gK(xq) 

•  if y ∈ {y1,..,yq}, say y = yi, then x, xi is solution to Collision;  
from (3), the probability of forging such a collision is ε1. 

•  else, output (y, z) which is a [possibly] forgery for hL with 
probability ≥ ε-ε1.  

 
•  Besides, q (indirect) little MAC queries have been performed 

for(y1,z1), ..., (yq,zq). From (2),  (y,z) is a [possibly] forgery for hL 
with probability ≤ε2. 

•  Finally, little MAC attack probability is ≥ ε-ε1and ≤ ε2 :  
thus ε-ε1 ≤ ε2 � ε≤ε1+ε2.  

�
 

Nested MACs and HMAC�
•  HMAC is a nested MAC algorithm that is proposed by FIPS 

standard  
–  for MD5 and SHA1 : [RFC 2202] 

•   HMACK(x) = SHA-1( (K ⊕ opad) || SHA-1( (K ⊕ ipad) || x ) ) 
 

–  x is a message 
–  K is a 512-bit key 
–  ipad = 3636…..36 (512 bit)  
–  opad = 5C5C….5C (512 bit)�



�� 

CBC-MAC(x, K)�

 
Cryptosystem 4.2: CBC-MAC (x, K) 

•  denote x = x1 ||…|| xn  ,xi  is a bitstring of length t 
•  IV ← 00..0  (t zeroes) 
•  y0 ← IV 
•  for i ← 1 to n 
    do yi ← EK(yi-1 ⊕ xi) 

•  return (yn) 

A popular way to construct a MAC using a 
block cipher EK with secret key K :  

�� 

CBC-MAC(x, K) 
Birthday collision attack�

•  (1/2, O(2t/2))-forger attack 
–  n ≥ 3, q ≈ 1.17 × 2t/2 

–  x3,…, xn are fixed bitstrings of length t. 
–  choose any q distinct bitstrings of length t,  

  x1
1, …, x1

q, and randomly choose x2
1, …, x2

q  

–  define xl
i = xl, for 1≤i≤q and 3≤l≤n  

–  define xi = x1
i ||…|| xn

i for 1 ≤ i ≤ q 
–  xi ≠ xj if i ≠ j , because  x1

i ≠ x1
j. 

–  The adversary requests the MACs of x1, x2,…, xq 
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CBC-MAC(x, K)�
–  In the computation of MAC of each xi, values 
   y0

i … yn
i  are computed, and yn

i  is the resulting MAC. 
   Now suppose that and xi and xj have identical MACs. 
–  hK(xi) = hK(xj) if and only if y2

i = y2
j, which happens if and 

only if y1
i ⊕ x2

i = y1
j ⊕ x2

j. 
–  Let xδ be any bitstring of length t 

•  v = x1
i || (x2

i ⊕ xδ) ||…||xn
i 

•  w = x1
j || (x2

j ⊕ xδ) ||…||xn
j 

–  The adversary requests the MAC of v 
–  It is not difficult to see that v and w have identical MACs, 

so the adversary is successfully able to construct the 
MAC of w, i.e. hK(w) = hK(v)!!!�

Hash functions :  
Security of MAC / HMAC 

Outline 
•  Message Authentication Codes 

–  Intoduction. Choosing K=IV isn�t a good idea. 
•  Keyed hash family 

– Security proof for nested HMAC 
•  Unconditionally Secure MACs 
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Unconditionally Secure MACs 
•  Unconditionally secure MACs 

–  a key is used to produce only one authentication tag 
–  Thus, an adversary makes at most one query. 

 
•  Deception probability Pdq   

–  maximum value of ε such that (ε,q)-forger for q = 0, 1 

•  payoff (x, y) = probability of a vaild pair (x, y=hK0(x) ) : 
 

  Pr[y = hK0(x)]  
 
•  Impersonation attack ((ε,0)-forger) 

–  Pd0 = max{ payoff(x,y): x ∈ X, y ∈ Y }          (4.1) 

||
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K
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=
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Unconditionally Secure MACs�
•  Substitution attack ((ε,1)-forger) 

–  query x and y is reply, x ∈X, y ∈Y  
–  Probability(x’, y’) is valid = payoff(x’,y’;x,y), x’ ∈ X and x ≠ x’ 
–  payoff(x’,y’;x,y) = Pr[y’ = hK0(x’)) | y = hK0(x)] =  

 
 

 
–  Let V = {(x, y): | {K ∈K : hK(x) = y} | ≥1} 
 
–  Pd1 = max{ payoff(x’, y’; x, y): x, x’ ∈ X, y, y’ ∈Y ,    

     (x,y) ∈ V, x ≠ x’}                 (4.2) 

  

€ 

Pr[y '= hK 0(x')∧ y = hK 0(x)]
Pr[y = hK 0(x)]

=
|{K ∈K : hK (x ') = y',hK (x) = y} |

|{K ∈K : y = hK (x)} |
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Unconditionally Secure MACs�
•  Example 4.1 X = Y = Z3 and K = Z3×Z3 

 for each K = (a,b) ∈ K and each x ∈X, 
 h(a,b)(x) = ax + b mod 3 
 H  = {h(a,b): (a,b) ∈ Z3 × Z3}  

–  Pd0 = 1/3 
–  query x = 0 and answer y = 0 

 possible key K0 ∈ {(0,0),(1,0),(2,0)}. 
 The probability that K0 is key is 1/3 
  Pd1 = 1/3 

 
 But if (1,1) is valid then K0 = (1,0) 
  

Key / x 0 1 2 

(0,0) 0 0 0 

(0,1) 1 1 1 

(0,2) 2 2 2 

(1,0) 0 1 2 

(1,1)� 1 2 0 

(1,2)� 2 0 1 

(2,0)� 0 2 1 

(2,1)� 1 0 2 

(2,2)� 2 1 0 

Authentication matrix 
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Strongly Universal Hash 
Families 

–  Definition 4.2: Suppose that (X,Y,K,H) is an (N,M) hash 
family.  
This hash family is strongly universal provided that the 
following condition is satisfied : 
 
 for every x, x’ ∈X such that x ≠ x’, and for every y, y’ ∈Y : 
   |{K∈K : hK(x) = y, hK(x’) = y’}| = |K|/M2 
 

 

–   Example 4.1 is a strongly universal (3,3)-hash family. 
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Unconditionally Secure MACs�
•  LEMMA 4.10 Suppose that (X,Y,K,H) is a strongly 

universal (N,M)-hash family.  
Then for every x ∈X and for every y ∈Y 

  |{K∈K : hK(x) = y}| = |K|/M. 
 

•  Proof x, x’ ∈X and y ∈Y, where x ≠ x’ 
 |{K∈K : hK(x) = y}| = ∑

∈

==∈
Y

K
'

|}')'(,)(:{|
y

KK yxhyxhK

MMy

||||
'
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KK

Y

== ∑
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Unconditionally Secure MACs�
•  THEOREM 4.11 Suppose that (X,Y,K,H) is a strongly 

universal (N,M)-hash family. Then (X,Y,K,H) is an 
authentication code with Pd0 = Pd1 = 1/M 
 

•  Proof From Lemma 4.10  
payoff(x,y) = 1/M for every x ∈X and y ∈Y, and Pd0 = 1/M 
 x,x’ ∈X such that x ≠ x’ and y,y’ ∈Y, where (x,y) ∈ V 
 
 payoff(x’,y’;x,y)= 
       

 
 
 Therefore Pd1 = 1/M 
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Unconditionally Secure MACs�
•  THEOREM 4.12 Let p be prime.  

For a, b ∈ Zp, let fa,b: Zp → Zp with f(a,b)(x) = ax + b mod p. 
 Then (Zp, Zp, Zp × Zp, {fa,b: Zp → Zp}) is a strongly universal 
(p,p)-hash family. 
 

•  Proof x, x’, y, y’ ∈ Zp, where x ≠ x’. 
 ax + b ≡ y (mod p), and ax’ + b ≡ y’ (mod p) 
 a = (y-y’)(x’-x)-1 mod p , and 
 b = y - x(y’-y)(x’-x)-1 mod p 
 (note that (x’ - x)-1 mod p exists because x !≡ x’ (mod p) 
and p is prime) 

�� 

Unconditionally Secure MACs�
•  THEOREM 4.13 Let l be a positive integer and let p be 

prime. Define X = {0,1}l \ {(0,…,0)} 
 For every   r ∈ (Zp)l, define fr: X → Zp by : 
  fr(x) =  < r , x > =  Σi=1,…,l ri . Xi   mod p  
 

Then (X, Zp, (Zp)l, {fr  : r  ∈ (Zp)l}) is a strongly universal 
(2l - 1,p)-hash family. 
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Unconditionally Secure MACs�

•  Proof Let   x, x’ ∈ X,  x ≠ x’, and let y, y’ ∈ Zp. 
 Show that the number of vectors    r ∈(Zp)l such 
that     r.x ≡y (mod p) and    r.x’ ≡y’ (mod p) is pl-2. 
 The desired vector  r  are the solution of two linear 
equations in l unknowns over Zp.  
 The two equations are linearly independent, and so 
the number of solution to the linear system is pl-2.  
Then |{K∈K : hK(x) = y, hK(x’) = y’}| =pl-2.= |K|/M2. 

 

r
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Unconditionally Secure MACs�

•  4.5.2 Optimality of Deception Probabilities 
–  THEOREM 4.14 Suppose (X,Y,K,H) is an (N, M)-

hash family. Then Pd0 ≥ 1/M. Further, Pd0 = 1/M if 
and only if  
 |{K ∈ K : hK(x) = y}| = |K|/M               (4.3) 
 for every x ∈X, y ∈Y. 

1
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Unconditionally Secure MACs�
•  THEOREM 4.15 Suppose (X,Y,K,H) is an (N, M)-hash 

family. Then Pd1 ≥ 1/M. 
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Unconditionally Secure MACs�
•  THEOREM 4.16 Suppose (X,Y,K,H) is an (N, M)-hash 

family. Then Pd1 ≥ 1/M if and only if the hash family is 
strongly universal. 

•  proof " has already proved in Theorem 4.11. 
 First show V  = X ×Y 
 Let (x, y’) ∈ X ×Y ; We will show (x’, y’) ∈ V 
 Let x ∈ X, x ≠ x’. Choose y ∈ Y such that (x,y) ∈ V 
 From Theorem 4.15   

                                                                                         
            (4.4) 

 for every x, x’ ∈X, y, y’ ∈Y such that (x,y) ∈V. 
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Unconditionally Secure MACs�
�|{K ∈ K : hK(x’) = y’, hK(x) = y}|>0  
 => |{K ∈ K : hK(x’) = y’| > 0  
 This prove that (x’,y’) ∈V, and hence V  = X ×Y.�
 From (4.4) we know that (x,y) ∈V and (x’,y’) ∈V, so 
we can interchange the roles of (x, y) and (x’, y’). 
 |{K ∈ K : hK(x) = y}| = |{K ∈ K : hK(x’) = y’}| 
  for all x, x’, y, y’. 
 |{K ∈ K : hK(x) = y}| is a constant. 
 |{K ∈ K : hK(x’) = y’, hK(x) = y}| is a constant 

�� 

Unconditionally Secure MACs�
•  COROLLARY 4.17 Suppose (X,Y,K,H) is an (N, M)-

hash family such that Pd1 = 1/M. Then Pd0 = 1/M. 
•  Proof Under the stated hypotheses, Theorem 4.16 

says that (X,Y,K,H) is strongly universal.  
 Then Pd0 = 1/M from Theorem 4.11. 



Conclusion 
•  Hash function : 

– Compression + extension  
– Provably secure compression (ex.) + extension 
– Examples of hash functions (SHA-3) 

•  MAC and HMAC  
– Hash family and oracle model (forger adversary) 
– Security conditions 
– Unconditionally secure MAC (key used once) 

•  Strongly universal hash families 

ANNEX / Back slides 

•  Slides à réviser pour integration 
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4.2 Security of Hash 
Functions 

•  If a hash function is to be considered secure, these 
three problems are difficult to solve 
–  Problem 4.1: Preimage 

•  Instance: A hash function h: X  → Y  and an 
element y ∈Y. 

•  Find: x ∈X  such that f(x) = y 
–  Problem 4.2: Second Preimage 

•  Instance: A hash function h: X  → Y  and an 
element x ∈X  

•  Find: x’ ∈X such that x’ ≠ x and h(x’) = h(x) 
–  Problem 4.3: Collision 

•  Instance: A hash function h: X →Y . 
•  Find: x, x’ ∈X such that x’ ≠ x and h(x’) = h(x) 

�� 

Security of Hash Functions�

–  A hash function for which Preimage cannot be 
efficiently solved is often said to be one-way or 
preimage resistant. 

–  A hash function for which Second Preimage cannot be 
efficiently solved is often said to be second preimage 
resistant. 

–  A hash function for which Collision cannot be efficiently 
solved is often said to be collision resistant. 

  



�� 

Security of Hash Functions�
•  4.2.1 The Random Oracle Model 

–  The random oracle model provides a 
mathematical model of an “ideal” hash function. 

–  In this model, a hash function h: X →Y  is chosen 
randomly from FX,Y 

•  The only way to compute a value h(x) is to query the 
oracle. 

–  THEOREM 4.1 Suppose that h ∈ FX,Y  is chosen 
randomly, and let X0  ⊆ X. Suppose that the values 
h(x) have been determined (by querying an oracle 
for h) if and only if x ∈X0. Then Pr[h(x)=y] = 1/M for 
all x ∈X \ X0 and all y ∈Y.  

�� 

Security of Hash Functions�
•  4.2.2 Algorithms in the Random Oracle Model 

–  Randomized algorithms make random choices 
during their execution. 

–  A Las Vegas algorithm is a randomized algorithm 
•  may fail to give an answer 
•  if the algorithm does return an answer, then the 

answer must be correct. 
–  A randomized algorithm has average-case 

success probability ε if the probability that the 
algorithm returns a correct answer, averaged over 
all problem instances of a specified size , is at 
least ε (0≤ε<1).  
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Security of Hash Functions�
•  We use the terminology (ε,q)-algorithm to denote a 

Las Vegas algorithm with average-case success 
probability ε 
–  the number of oracle queries made by algorithms 

is at most q. 
•  Algorithm 4.1: FIND PREIMAGE (h, y, q) 

–  choose any X0  ⊆ X,|X0| = q 
–  for each x ∈X0 

    do if h(x) = y 
    then return (x) 

–  return (failure) 

�� 

Security of Hash Functions�
•  THEOREM 4.2 For any X0  ⊆ X  with |X0| = q, the 

average-case success probability of Algorithm 4.1 is 
ε=1 - (1-1/M)q. 
–  proof  Let y ∈Y  be fixed. Let Χ0 = {x1,x..,xq}.  

 For 1 ≤ i ≤ q, let Ei denote the event “h(xi) = y”. 
 From Theorem 4.1 that the Ei’s are independent 
events, and Pr[Ei] = 1/M for all 1 ≤ i ≤ q.  
 Therefore   
 The success probability of Algorithm 4.1, for any 
fixed y, is constant. 
 Therefore, the success probability averaged over 
all y ∈Y  is identical, too.�
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Security of Hash Functions�
•  Algorithm 4.2: FIND SECOND PREIMAGE (h,x,q) 

–  y # h(x) 
–  choose X0  ⊆ X \{x}, |X0| = q - 1 
–  for each x0 ∈X0 

    do if h(x0) = y 
           then return (x0) 

–  return (failure)�
•  THEOREM 4.3 For any X0  ⊆  X \{x} with |X0| = q - 1, 

the success probability of Algorithm 4.2 is ε= 1 - (1 - 
1/M)q-1.�

�� 

Security of Hash Functions�
•  Algorithm 4.3: FIND COLLISION (h,q) 

–  choose X0  ⊆  X , |X0 | = q 
–  for each x ∈X0 

    do yx $ h(x) 
–  if yx = yx’ for some x’ ≠ x 

   then return (x, x’) 
–  else return (failure)�
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Security of Hash Functions�
•  Birthday paradox 

–  In a group of 23 randomly chosen people, at least 
two will share a birthday with probability at least ½.  

–  Finding two people with the same birthday is the 
same thing as finding a collision for this particular 
hash function. 

–  ex: Algorithm 4.3 has success probability at least 
½ when q = 23 and M = 365 

•  Algorithm 4.3 is analogous to throwing q balls 
randomly into M bins and then checking to see if 
some bin contains at least two balls.�

�
 

Security of Hash Functions�
•  THEOREM 4.4 For any X0  ⊆ X  with |X0| = q, the 

success probability of Algorithm 4.3 is  
 

 
–  proof  Let X0 = {x1,..,xq}.  

 Ei : the event “h(xi) ∉ {h(x1),..,h(xi-1)}.” , 2 ≤ i ≤ q 
 Using induction, from Theorem 4.1 that Pr[E1] = 1 
and  
           for 2 ≤ i ≤ q.  
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Security of Hash Functions�
•  The probability of finding no collision is 
 
 
•  ε denotes the probability of finding at least one 

collision 
  

 
 
–  Ignore –q, 
–  ε= 0.5,  q ≈ 1.17  
–  Take M = 365, we get q ≈ 22.3 
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Security of Hash Functions�

•  This says that hashing just over         random 
elements of X yields a collision with a prob. of 
50%. 

•  A different choice of εleads to a different 
constant factor, but q will still be proportional 
to       .  So this algorithm is a (1/2, O(    ))-
algorithm.  

 

M

M

M
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Security of Hash Functions�
•  The birthday attack imposes a lower bound on the size 

of secure message digests.  A 40-bit message digest 
would be very in secure, since a collision could be found 
with prob. ½ with just over 2^20 (about a million) 
random hashes. 

•  It is usually suggested that the minimum acceptable 
size of a message digest is 128 bits (the birthday attack 
will require over 2^64 hashes in this case).  In fact, a 
160-bit message digest (or larger) is usually 
recommended. 
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Security of Hash Functions�
•  4.2.3 Comparison of Security Criteria 
 

–  In the random oracle model, solving Collision is 
easier than solving Preimage of Second 
Preimage. 

–  Whether there exist reductions among these three 
problems which could be applied to arbitrary hash 
functions? (Yes.) 

–  Reduce Collision to Second Preimage using 
Algorithm 4.4. 

–  Reduce Collision to Preimage using Algorithm 4.5.   
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Security of Hash Functions�
–  Algorithm 4.4: COLLISION TO SECOND PREIMAGE 

(h) 
 

•  external ORACLE2NDPREIMAGE 
•  choose x ∈X uniformly at random 
•  if (ORACLE2NDPREIMAGE(h,x) = x’) (!error here 

in the text) 
  then return (x, x’) 

•  else return (failure) 

	� 

Security of Hash Functions�

–  Suppose that ORACLE2NDPREIMAGE is an  
   (ε, q)-algorithm that solves Second Preimage for a 

particular, fixed hash function h.   
   Then COLLISIONTOSECONDPREIMAGE  is an  
   (ε, q)-algorithm(!error here in text) that solves Collision 

for the same hash function h. 
 
–  As a consequence of this reduction, collision 

resistance implies second preimage resistance. 
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Security of Hash Functions�
•  Algorithm 4.5: COLLISION TO PREIMAGE 

(h) 
– external ORACLEPREIMAGE 
– choose x ∈ X uniformly at random 
– y ← h(x)  
–  if (ORACLEPREIMAGE(h,y) = x’) and (x’ ≠ 

x) 
     then return (x, x’) 

– else return (failure) 

	� 

Security of Hash Functions�
•  THEOREM 4.5 Suppose h: X  → Y  is a hash 

function where |X| and |Y | are finite and |X| ≥ 
2|Y |. Suppose ORACLEPREIMAGE is a (1,q) 
algorithm for Preimage, for the fixed hash 
function h.(and so h is surjective(onto)) Then 
COLLISION TO PREIMAGE is a (1/2, q+1) 
algorithm for Collision, for the fixed hash 
function h. 



		 

Security of Hash Functions�
•  proof For any x ∈X, define equivalence class C : 

[x]= {x1 ∈X : h(x) = h(x1)}   
     (see text for detailed notation) 

 Given the element x ∈X, the probability of 
success is (|[x]| - 1) / |[x]| in 
ORACLEPREIMAGE. 
 The probability of success of algorithm 
COLLISION TO PREIMAGE is (average) 
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4.3 Iterated Hash Function�
•  Compression function: hash function with a finite 

domain 
•  A hash function with an infinite domain can be 

constructed by the mapping method of a compression 
function is called an iterated hash function. 

•  We restrict our attention to hash functions whose 
inputs and outputs are bitstrings (i.e., strings formed of 
0s and 1s). 
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4.3 Iterated Hash Function�
•  Iterated hash function h:      
      
   Suppose that compress: {0,1}m+t → {0,1}m  is a 

compression function ( where t ≥ 1). 
        

–  Preprocessing 
•  given x (|x| ≥ m + t + 1)  
•  construct y = x || pad(x)  
  such that  |y| ≡ 0 (mod t)  
  y = y1 || y2 ||…|| yr, where |yi| = t for 1 ≤ i ≤ r 
•  pad(x) is constructed from x using a padding 

function. 
•  the mapping x -> y  must be an injection (1 to 1) 

l

tmi

i }1,0{}1,0{
1

→
∞

++=

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Iterated Hash Function�
–  Processing 

•  IV is a public initial value which is a bitstring of 
length m. 

•  z0 ← IV 
•  z1 ← compress(z0 || y1) 
• …. 
•  zr ← compress(zr-1 || yr) 

–  Optional output transformation 
•  g: {0,1}m → {0,1}l 

•  h(x) = g(zr)�

compress function:  
{0,1}m+t → {0,1}m (t ≥ 1)�
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Iterated Hash Function�

•  4.3.1 The Merkle-Damgard Construction 
–  Algorithm 4.6: MERKLE-DAMGARD(x) 

•  external compress 
•  comment: compress: {0,1}m+t → {0,1}m,    

where t ≥ 2 
•  n ← |x| 
•  k ← 2n/(t - 1)3 
•  d ← n - k(t - 1) 
•  for i ← 1 to k - 1 
      do yi ← xi 
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Iterated Hash Function�
•  yk ← xk || 0d 

•  yk+1 ← the binary representation of d 
•  z1 ← 0m+1

 || y1 

•  g1 ← compress(z1) 
•  for i ← 1 to k 
      do zi+1 ← gi || 1 || yi+1 

      gi+1 ← compress(zi+1)   
•  h(x) ← gk+1 

•  return (h(x)) �
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Iterated Hash Function�
•  THEOREM 4.6 Suppose compress : {0,1}m+t → {0,1}m 

is a collision resistant compression function, where t 
≥ 2. Then the function                                             

 
 as constructed in Algorithm 4.6, is a collision resistant 
hash function. 

•  proof  
 Suppose that we can find x ≠ x’ such that h(x)= h(x’). 
 y(x) = y1 || y2 ||..|| yk+1,         x is padded with d  0’s 
 y(x’) = y’1 || y’2 ||..|| y’l+1 ,      x’ is padded with d’ 0’s 
�g-values : g1,.., gk+1 or g’1,.., g’l+1 

m

tmi

ih }1,0{}1,0{:
1

→
∞
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
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Iterated Hash Function�
•  case 1:|x| !≡ |x’| (mod t - 1) 

 d ≠ d’ and yk+1 ≠ y’l+1 
 compress(gk || 1 || yk+1) = gk+1= h(x) = h(x’) = g’l+1    

                 = compress (g’l || 1 || y’l+1),                                     
which is a collision for compress because yk+1 ≠ y’l+1 

•  case2: |x| ≡ |x’| (mod t - 1) 
•  case2.a: |x| = |x’| 

 k = l and yk+1 = y’k+1 
 compress(gk || 1 || yk+1) = gk+1 = h(x) = h(x’) = g’k+1  

    = compress (g’k || 1 || y’k+1) 
 If gk ≠ g’k, then we find a collision for compress, so 
assume gk = g’k.�
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Iterated Hash Function�
 compress(gk-1 || 1 ||yk) = gk = g’k  
  = compress (g’k-1 || 1 || y’k) 
 Either we find a collision for compress, or gk-1 = g’k-1 

 and yk = y’k. 
 Assuming we do not find a collision, we continue 
work backwards, until finally we obtain 
 compress(0m+1 || y1) = g1 = g’1 = compress (0m+1||y’1) 
 If yk ≠ y’k, then we find a collision for compress, so we 

 assume y1 = y’1. 
 But then yi = y’i for 1 ≤ i ≤ k+1, so y(x) = y(x’). 
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Iterated Hash Function�

•  This implies x = x’, because the mapping x → y(x) is 
an injection. 
 We assume x ≠ x’, so we have a contradiction. 

•  case 2b: |x| ≠ |x’|  
 Assume |x’| > |x|, so l > k 
 Assuming we find no collisions for compress, we 
reach the situation where 
 compress(0m+1 || y1) = g1 = g’l-k+1 =  
  compress (g’l-k || 1 || y’l-k+1). 
 But the (m+1)st bit of 0m+1 || y1 is a 0  
 and the (m+1)st bit of g’l-k || 1 || y’l-k+1 is a 1. 
 So we find a collision for compress. 




	 

Iterated Hash Function�
•  Algorithm 4.7: MERKLE-DAMGARD2(x) (t = 1) 

–  external compress 
–  comment: compress: {0,1}m+1 → {0,1}m 

–  n ← |x| 
–  y ← 11 || f(x1) || f(x2) ||… || f(xn) 

 denote y = y1 || y2 ||…|| yk, where yi ∈ {0,1},  
  1 ≤ i ≤ k 

–  g1 ← compress(0m || y1) 
–  for i ← 1 to k - 1 

do gi+1 ← compress(gi || yi+1) 
–  return (gk) 

f(0)=0 
f(1)=01 
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•  The encoding x → y = y(x), as defined algorithm 4.7 

satisfies two important properties: 
–  If x ≠ x’, then y(x) ≠ y(x’) (i.e. x → y = y(x) is an 

injection) 
–  There do not exist two strings x ≠ x’ and a string z 

such that y(x) = z || y(x’) (i.e. no encoding is a 
postfix of another encoding) 




� 
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•  THEOREM 4.7 Suppose compress : {0,1}m+1 → : {0,1}

m is a collision resistant compression function. Then 
the function                              

 
   as constructed in Algorithm 4.7, is a collision resistant 

hash function. 
•  proof  Suppose that we can find x ≠ x’ such that 

    h(x) = h(x’). 
 Denote y(x) = y1y2…yk and y(x’) = y’1y’2…y’l 
 case1: k = l 
 As in Theorem 4.6, either we find a collision for      
compress, or we obtain y = y’.  
 But this implies x = x’, a contradiction. 
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�case 2: k ≠ l 
 Without loss of generality, assume l > k 
 Assuming we find no collision for compress, we have 
following sequence of equalities:  
  yk = y’l 
   yk-1 = y’l-1 
   … … 
   y1 = y’l-k+1 
 But this contradicts the “postfix-free” property We 
conclude that h is collision resistant. 
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•  THEOREM 4.8 Suppose compress: {0,1}m+t  → {0,1}m 

is a collision resistant compression function, where t 
≥ 1. Then there exists a collision resistant hash 
function    
                    
 The number of times compress is computed in the 
evaluation of h is at most   
    if t ≥ 2 
   2n+2  if t = 1 

  where |x| = n. 
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•  4.3.2 The Secure Hash algorithm 

–  SHA-1(Secure Hash Algorithm) 
•  iterated hash function 
•  160-bit message digest 
•  word-oriented (32 bit) operation on bitstrings 

–  Operations used in SHA-1 
•  X ∧ Y  bitwise “and” of X and Y 
•  X ∨ Y  bitwise “or” of X and Y 
•  X ⊕ Y  bitwise “xor” of X and Y 
•  ¬X   bitwise complement of X 
•  X + Y  integer addition modulo 232 

•  ROTLs(X)  circular left shift of X by s position 
     (0 ≤ s ≤ 31) 
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•  Algorithm 4.8 SHA-1-PAD(x) 

–  comment: |x| ≤ 264 - 1 
–  d ← (447-|x|) mod 512 
–  l ← the binary representation of |x|, where |l| = 64 
–  y ← x || 1 || 0d || l   (|y| is multiple of 512) 

•  ft(B,C,D) =  
–  (B ∧ C) ∨ ((¬B) ∧ D)    if 0 ≤ t ≤ 19 
–  B ⊕ C ⊕ D     if 20 ≤ t ≤ 39 
–  (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)   if 40 ≤ t ≤ 59 
–  B ⊕ C ⊕ D     if 60 ≤ t ≤ 79 
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•  Kt =  

–  5A827999    if 0 ≤ t ≤ 19 
–  6ED9EBA1    if 20 ≤ t ≤ 39 
–  8F1BBCDC    if 40 ≤ t ≤ 59 
–  CA62C1D6    if 60 ≤ t ≤ 79 

•  Cryptosystem 4.1: SHA-1(x) 
–  extern SHA-1-PAD 
–  global K0,…,K79 
–  y ← SHA-1-PAD(x) denote y = M1 || M2 ||..|| Mn, 

where each Mi is a 512 block 
–  H0 ← 67452301,  H1 ← EFCDAB89,  H2 ← 

98BADCFE,   H3 ← 10325476,  H4 ← C3D2E1F0�
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–  for i ← 1 to n 

•  denote Mi = W0 || W1 ||..|| W15, where each Wi is 
a word 

•  for t ← 16 to 79 
     do Wt ← ROTL1(Wt-3  ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) 

•  A ← H0,  ,B ← H1,  C ← H2,  D ← H3,  E ← H4  
•  for t ← 0 to 79 
        temp ← ROTL5(A) + ft(B,C,D) + E +Wt + Kt 
       E←D, D←C, C←ROTL30(B), B←A, 
A←temp 

•  H0 ← H0 + A,  H1 ← H1 + B,  H2 ← H2 + C,   
 H3 ← H3 + D,  H4 ← H4 + E 

–  Return (H0 || H1 || H2 || H3 || H4) 

�� 

Iterated Hash Function�

 
–  MD4 proposed by Rivest in 1990 
–  MD5 modified in 1992 
–  SHA proposed as a standard by NIST in 1993, 

and was adopted as FIPS 180 
–  SHA-1 minor variation, FIPS 180-1 
–  SHA-256 
–  SHA-384 
–  SHA-512 
  


