

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2010 Society for Industrial and Applied Mathematics
Vol. 39, No. 5, pp. 1667–1713

ON THE COMPRESSIBILITY OF NP INSTANCES AND
CRYPTOGRAPHIC APPLICATIONS∗

DANNY HARNIK† AND MONI NAOR‡

Abstract. We study compression that preserves the solution to an instance of a problem rather
than preserving the instance itself. Our focus is on the compressibility of NP decision problems.
We consider NP problems that have long instances but relatively short witnesses. The question is
whether one can efficiently compress an instance and store a shorter representation that maintains
the information of whether the original input is in the language or not. We want the length of
the compressed instance to be polynomial in the length of the witness and polylog in the length of
original input. Such compression enables succinctly storing instances until a future setting will allow
solving them, either via a technological or algorithmic breakthrough or simply until enough time
has elapsed. In this paper, we first develop the basic complexity theory of compression, including
reducibility, completeness, and a stratification ofNP with respect to compression. We then show that
compressibility (say, of SAT) would have vast implications for cryptography, including constructions
of one-way functions and collision resistant hash functions from any hard-on-average problem in NP
and cryptanalysis of key agreement protocols in the “bounded storage model” when mixed with
(time) complexity-based cryptography.

Key words. compression, NP problems, witness length, cryptography, collision resistant hash,
bounded storage model

AMS subject classifications. 68Q15, 68Q17, 94A60

DOI. 10.1137/060668092

1. Introduction. In order to deal with difficult computational problems several
well-established options were developed, including approximation algorithms, subex-
ponential algorithms, parametric complexity, and average-case complexity. In this
paper we explore our favorite approach for dealing with problems: postpone them
(hopefully without cluttering our desk or disk). We initiate the study of the compress-
ibility of NP problems for their resolution in some future setting and in particular the
cryptographic significance of such compression. Rather than solving a given instance,
we ask whether a shorter instance with the same solution can be found efficiently. We
emphasize that we are not interested in maintaining the information about the origi-
nal instance (as is the case in typical notions of compression), but rather maintaining
the solution only. The solution can possibly be much shorter than the input (as short
as a yes/no answer); thus the potential of such a compression is high.

While the question of compressibility is interesting with respect to problems both
inside and out of NP , our focus is mostly on a special case, that of NP problems that
have long instances but relatively short witnesses. An NP language L is defined by
an efficiently computable relation RL such that an input (or instance) x is in L if and
only if there exists a witness w such that RL(x,w) = 1. Throughout the paper, an
NP instance is characterized by two parameters m and n: the length of the instance

∗Received by the editors August 23, 2006; accepted for publication (in revised form) August 19,
2009; published electronically January 15, 2010. This research was supported by a grant from the
Israel Science Foundation. A short version of this paper appeared in Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2006), 2006.

http://www.siam.org/journals/sicomp/39-5/66809.html
†IBM Research Labs, Haifa 31905, Israel (danny.harnik@gmail.com). This research was conducted

while at the Weizmann Institute of Science, Rehovot.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science,

Rehovot 76100, Israel (moni.naor@weizmann.ac.il).

1667

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1668 DANNY HARNIK AND MONI NAOR

x is denoted by m, and the length of the witness w is denoted by n. The problems
of interest are those having relatively short witnesses, i.e., n � m, but not too short
(m � 2n). Traditionally, the study of NP languages evolves around the ability or
inability to efficiently decide if an instance is in the language or not, or to find a
witness w for an instance x ∈ L within polynomial time. We introduce the question
of compressibility of such instances.

Example of compressing SAT instances. To illustrate the relevant setting, we use
the well-known example of SAT. An instance Φ for SAT consists of a conjunctive nor-
mal form (CNF) formula over n variables, and we define that Φ ∈ SAT if there exists
an assignment to the n variables that satisfies all the clauses of Φ. We begin with
compressibility with respect to decision and discuss the search variant of compress-
ibility later in the paper. In this example we consider the question of compressibility
of SAT instances to shorter SAT instances.1

Example 1.1 (compression of SAT instances). Does there exist an efficient algo-
rithm and a polynomial p(·, ·) with the following input and output?

Input : A CNF formula Φ with m clauses over n variables.
Output : A formula Ψ of size p(n, logm) such that Ψ is satisfiable if and only if Φ

is satisfiable.
The idea is that the length of Ψ should not be related to the original length m,

but rather to the number of variables (or, in other words, to the size of the witness).
Typically, we think of the parameters m and n as related by some function, and it is
instructive (but not essential) to think of m as larger than any polynomial in n. So
potentially, the length of Ψ can be significantly shorter than that of Φ.2

In general, one cannot expect to compress all the formulas, or else we would have
an efficient algorithm for all NP problems.3 However, once we restrict the attention
to the case of a shorter witness, then compression becomes plausible. Note that if
P = NP , then compression becomes trivial, simply by solving the satisfiability of Φ
and outputting 1 if Φ ∈ SAT and 0 otherwise.

Motivation for compression. Compressing for the future is an appealing notion
for various settings. There are numerous plausible scenarios that will give us more
power to solve problems in the future. We could potentially find out that P = NP
and solve all our NP problems then. We may have faster computers or better means
of computing such as quantum computers or some other physical method for solving
problems (see Aaronson [1] for a list of suggestions). Above all, the future entails lots
and lots of time, a resource that is usually scarce in the present. Saving the problems
of today as they are presented is wasteful, and compression of problems will allow us
to store a far greater number of problems for better days.

Our interest in studying the issue of compression stems from the vast crypto-
graphic implications of compressibility. We demonstrate three questions in cryptogra-
phy that compression algorithms would resolve (see section 1.3). We are confident that
the notion of compressibility will be found to have further applications both within
and outside of cryptography. For example, in subsequent works, Dubrov and Ishai
[26] show the relevance of the notion of compression to derandomization, and Dziem-
bowski [28] shows that compression is related to the study of forward-secure storage

1This example comes only as an illustration. We later consider the more general question of
compression to instances that are not necessarily of the same language.

2Note that since our requirement for compression is only relevant for problems where m � n,
an NP-complete problem such as 3-SAT (where all clauses have exactly 3 literals) is irrelevant for
compression, as m is already at most O(n3) in such formulas.

3Suppose that every formula can be compressed by a single bit; then sequentially reapplying
compression to the input will result in a very short formula that may be solved by brute enumeration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1669

(see section 1.4 on related work). We note that a notion similar to compression has
been useful (and well studied) in the context of parameterized complexity (see a com-
parison and discussion in section 1.4). The concept of compression of problems is also
interesting beyond the confines of NP problems and makes sense in any setting where
the compression requires fewer resources than the actual solution of the problem.

1.1. Compression of NP instances. We define the notion of compression
with respect to an NP language L. We associate with L a specific fixed NP relation
RL that defines it (as mentioned above) as well as a function n(x) that defines an
upper bound on the length of a potential witness for an instance x.4 At times,
for simplicity, we abuse notations and simply refer to the language L and omit the
reference to the underlying relation RL. In essence, a compression algorithm is a
specialized Karp-reduction that also reduces the length of the instance.

Definition 1.2 (compression algorithm for NP instances). Let L = (RL, n(·))
be an NP language. Denote by m and n the instance length and the witness length,
respectively. A compression algorithm for L is a polynomial-time machine Z along
with a language L′ and a polynomial p(·, ·) such that for all large enough m

1. for all x ∈ {0, 1}m with parameter n the length of Z(x) is at most p(n, logm).
2. Z(x) ∈ L′ if and only if x ∈ L.

The above definition is of an errorless compression. We also consider a probabilistic
variant called ε-compression for some real function ε : N → [0, 1]. The probabilistic
definition is identical to the errorless one except that Z is a probabilistic polynomial-
time machine and the second property is augmented to

2′. For large enough n, for all x ∈ {0, 1}m with parameter n it holds that

Pr[(Z(x) ∈ L′) ⇔ (x ∈ L)] ≥ 1− ε(n),

where probability is over the internal randomness of Z. By default we require ε(·) to
be negligible (i.e., ε(n) = n−ω(1)).5

The paper consists of two parts: Part I is a study of the concept of compression of
NP instances from a complexity point of view. Part II introduces the cryptographic
applications of compression algorithms.

How much to compress. Definition 1.2 (of compression algorithms) requires a
very strong compression, asking that the length of the compression be polynomial in
n and logm. For the purposes of Part I of the paper (the complexity study), it is
essential that the length of the compression be at least subpolynomial in m in order to
ensure that the reductions defined with respect to compressibility (see section 2.2) do
compose. For clarity we choose a polynomial in logm, although this may be replaced
by any subpolynomial function m′(.) (i.e., m′ = mo(1)). We note that in the case of
NP problems one can assume that n ≥ logm, and then one can replace the polynomial
p(n, logm) in Definition 1.2 by a polynomial in n alone (in sections 1.4 and 2.1 we
compare this definition to the notion of polynomial kernelization). However, we choose
not to restrict the scope of our discussion by making this assumption. Moreover, for
Part II (the applications) Definition 1.2 may be significantly relaxed, where even a
compression to length m1−ε for some constant ε suffices for some applications.

4Typically, the length n is part of the description of the problem (e.g., for Clique, SAT, Vertex
cover, and others).

5Note that we can equivalently ask that the error be, say, ε = 1
3
. This is because the error can be

reduced to negligible, albeit at the price of a worst compression rate (the polynomial p(·, ·) grows).
See Claim 2.24.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1670 DANNY HARNIK AND MONI NAOR

The complexity of L′. In Definition 1.2 there is no restriction on the complexity
of the language L′. All that is required is that there is enough information in Z(x) to
determine whether x ∈ L or not. However, it is worth noting that if the compression
is errorless, then the language L′ must be in a class of nondeterministic-time poly(m)
that we denote NP(poly(m)). That is, languages that are verifiable in time poly(m)
when given a nondeterministic hint (in order for poly(m) to be well defined we assume
that the parameter m is also encoded in the instance Z(x)). This fact follows simply
from the definition of compression.6 In some cases it is essential to restrict L′ to be
in NP(poly(m)), such as when defining the witness-retrievability property (Defini-
tion 6.1). Moreover, in some cases it is natural to further restrict L′ to actually be in
NP (that is, in NP(poly(n, logm)). For instance, this is the case in the example for
compression of SAT (Example 1.1).

Paper organization. In the rest of the introduction we survey the results of this
paper, including Part I (the complexity study) and Part II (the cryptographic applica-
tions). In section 1.4 we discuss related and subsequent works. The main complexity
study of the compressibility of NP problems appears in section 2. The cryptographic
applications are in sections 3.1, 5, and 6. In section 3.1 we describe the applica-
tion of compression to constructing collision resistant hash functions (CRH) from any
one-way function. Section 5 presents the implication to the hybrid bounded storage
model (BSM), while section 6 discusses witness-retrievable compression and its appli-
cation to the construction of oblivious transfer (OT) from any one-way function. We
conclude with a discussion and some open problems (section 7).

1.2. Part I: Classifying NP problems with respect to compression. In
the first part of the paper, we develop the basic complexity theory of compression,
including the following.

Examples of nontrivial compression. We demonstrate some nontrivial lan-
guages that do admit compression (section 2.1); however, these examples do not shed
light on the general compression of other NP problems. Moreover, it becomes clear
that the traditional notions of reductions and completeness in NP do not apply for
the case of compression.

Reducibility and completeness. We define W-reductions, suitable for the
study of compressibility, and define the corresponding notions of compression-complete
and compression-hard languages for a class.

The VC hierarchy. We introduce a classification of NP problems with respect
to compression. The classification presents a structured hierarchy of NP problems
that is quite different from the traditional view. We call this hierarchy VC, short
for “verification classes,” since the classification is closely related to the verification
algorithm of NP languages when allowed a preprocessing stage.

Compression of NP search problems. For an NP search problem, is there a
compression algorithm that also maintains all the information about a witness for the
problem? We show that the compression of a class of decision problems also implies
compression for the corresponding class of search problems.

1.3. Part II: Implications to cryptography. In the second part of the paper,
we show that compression has vast implications for cryptography. Specifically, various
forms of compressibility for SAT (or even easier languages) would yield what follows.

6Suppose that there exists an errorless compression algorithm Z for L; then define L′ to be the
language of all Z(x) such that x ∈ L. Then, for every y ∈ L′ a verification algorithm takes as a
nondeterministic witness a value x along with a witness to x ∈ L and verifies that indeed y = Z(x).
Thus L′ is in NP(poly(m)).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1671

One-way functions imply CRH. This construction requires compression that
is errorless. This implication (as well as the next implication) is known to be impos-
sible via “black-box” constructions, and thus our constructions necessarily make use
of the code of the one-way function.

Hard-on-average problems in NP imply one-way functions. More gen-
erally, given a language (not necessarily in NP) that is hard on the average for
nonuniform machines over a samplable distribution and a compression algorithm for
a related language, one can construct a one-way function.

Impossibility of everlasting security via the “hybrid BSM.” This hybrid
model mixes the standard “BSM” [62] with a (time) complexity-based assumption.
This result shows that under compressibility of SAT, the hybrid model is no more
powerful than the standard BSM.

OT from any one-way function. This requires a form of compression which
preserves witnesses, which we show is unlikely to exist for general SAT instances.

1.4. Related work. The relationship between compression and complexity in
general is a topic that has been investigated since the early days of complexity theory
(i.e., Kolmogorov complexity [60]). However, the feature that we are studying in this
work is compressibility with respect to the solution (witness) rather than the instance.
This distinguishes our work from a line of seemingly related works about notions of
compression (see [27, 78, 81] to name a few), all of which aim at eventually retrieving
the input of the compression algorithm.

There are several examples of other relaxations of solving NP problems in poly-
nomial time. Each of these relaxations yields a corresponding classifications of NP .
These classifications, like ours, are subtle and usually turn out to be different than
the traditional NP classification. For example, Papadimitriou and Yannakakis [75]
introduce L-reductions and the classes MAX NP and MAX SNP, with respect to ap-
proximation algorithms. Impagliazzo, Paturi, and Zane [51] define reductions with
respect to the solution in subexponential time.

The classification most related to ours is that of parameterized complexity (see
the monographs on this subject by Downey and Fellows [24], Niedermeier [72], and
Flum and Grohe [34]). Parameterized complexity studies the tractability of prob-
lems when one of the parameters is considered to be fixed or very small (this is
called fixed parameter tractability). One of the basic techniques of acquiring efficient
algorithms in this context is the method of “kernelization” that may yield natural
compression algorithms (see examples in section 2.1). The kernelization method first
shrinks the instance to a smaller instance whose size is only a function of the param-
eter and then solves it in brute force. However, in spite of the similarities between
kernelization and compression, there are important differences. At a high level, ker-
nelization is geared toward getting closer to a solution of the original instance. Our
notion, on the other hand, requires compression per se, disregarding whether it is
much harder to solve the compressed instance than the original one (in fact, in our
main applications for constructing CRH and one-way functions in sections 3.1 and
4, the compressed instance never has to be solved). Indeed, we expect that new
methods of compression that would resolve the problems we raise in this paper will
utilize this property (that the compressed instance is harder to solve). That being
said, a version of kernelization, namely, polynomial kernelization, is equivalent to de-
terministic compression to size poly(n, logm) if the witness size n is chosen to be the
parameter. The question of polynomial kernelization has been raised independently
from our work in the parameterized complexity community (e.g., see [34, Definition

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1672 DANNY HARNIK AND MONI NAOR

9.1]). See a further discussion on kernelization in section 2.1. In addition, due to the
above-mentioned similarities, the Weft hierarchy of parameterized complexity is rem-
iniscent of the VC-hierarchy: both being defined by reductions to circuits of bounded
depth. However, as discussed above, our study of compression yields quite a different
classification.

A related notion to parameterized complexity that is reminiscent of our work is
limited nondeterminism, which started with the work of Kintala and Fischer [58]; see
the survey by Goldsmith, Levy, and Mundheck [40]. This was further studied by
Papadimitriou and Yannakakis [76], who defined a few syntactic classes within the
class of polylog nondeterminism (LOGNP and LOGSNP). The interesting point is
that several natural problems are complete for these classes. The notion of reduction
used is the usual polynomial reduction, and hence the classifications arising from
this study are very different from our VC hierarchy. A related classification is the
EW-hierarchy defined by Flum, Grohe, and Weyer [35]. This hierarchy is similar to
the Weft classification of parameterized complexity but limits the running time to
be only exponential in the witness length, thus being geared toward problems with
polylogarithmic size parameters (as in LOGNP).

Subsequent works. Dubrov and Ishai [26] discussed the compression of problems
and showed that a certain incompressibility assumption has an application to deran-
domization. Specifically they construct a pseudorandom generator that fools proce-
dures that use more randomness than their output length. Their work was mostly
conducted independently of ours, following conversations regarding an early phase of
our work. In addition, inspired by our CRH construction, they prove that any one-
way permutation can either be used for the above-mentioned derandomization or else
can be used to construct a weak version of CRH.

Dziembowski [28] shows the relevance of our notion of witness-retrievable com-
pression to achieving forward-secure storage. He shows a cryptanalytic result of such
compression. Furthermore, following our approach for construction of OT from one-
way functions, he shows that for every one-way function either a specific storage
scheme is forward-secure, or there exists an (infinitely often) OT protocol based on
this one-way function.

Recently some strong negative results about compression were shown. Fortnow
and Santhanam [36] show that an errorless compression algorithm for SAT (or even
for the class VCOR) entails the collapse of the polynomial hierarchy. Chen and Müller
[14] notice that this generalizes to compression with a one-sided error. These results
limit the application to constructing CRH functions (Theorem 3.1). The application
may still be valid given a relaxed compression algorithm. For example, it suffices if
the compression is successful only on instances that either have a witness to being
satisfiable or have a witness to not being satisfiable. Note that the applications in
sections 4 and 5 allow an error in the compression. Further results were found by Dell
and van Melkebeek [19] who very recently showed hardness of compression of d-SAT
beyond nd and vertex cover beyond k2.

2. Part I: On the compression of NP instances. Attempting to compress
NP instances requires a different approach than solving NP problems. Intuitively, a
solution for compression might arise while trying to solve the problem. While a full
solution of an NP problem may take exponential time, it is plausible that the first
polynomial number of steps leaves us without an explicit solution but with a smaller
instance. Indeed, some algorithms in the parameterized complexity world work like
this (see some examples in the next section). On the other hand, we allow the possibil-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1673

ity that the compressed version is actually harder to solve (computational timewise)
than the original one (and may require a somewhat longer witness altogether).

2.1. Examples of compression algorithms for some hard problems. We
start by showing several examples of compression algorithms for problems that are
conjectured not to be in P . Two of these example are NP-complete problems, while
the third is taken from cryptography.

Vertex cover. The well-studied NP-complete problem of vertex cover receives as
input a graph G = (V,E) and asks whether there exists a subset of vertices S ⊆ V
of size at most k such that for every edge (u, v) ∈ E either u or v are in S. The
parameters are the instance length m, which is at most O(|E| log |V |), and the witness
length n = k log |V |.

Claim 2.1. There exists a witness-retrievable compression algorithm for vertex
cover.

Proof. We are following the parameterized complexity algorithm for vertex cover
(presented in [24] and attributed to Buss). If a vertex cover S of size k exists, then any
vertex of degree greater than k must be inside the set S. The compression algorithm
simply identifies all such vertices and lists them in the cover, while removing all their
outgoing edges (that do not need to be covered by other vertices). The graph left after
this process has maximal degree k, and furthermore all edges have at least one end in
the cover. Thus, if the original graph has a k vertex cover, then the total number of
edges left is at most k2 (at most k vertices in the cover with at most k edges each).
If there are more than k2 edges, then the answer to the problem is NO; otherwise,
such a graph can be represented by the list of all edges, which takes k2 log k bits.
The compression can be made witness-retrievable, since if we use the original labels
of vertices to store the new graph, then the original cover is also a cover for the new
compressed graph.

It is in fact possible to get the compressed instance to be a graph with 2k nodes,
rather than k2 nodes, as shown in [13] and [15] (see [72, Chapter 7]). It is interesting
to note that we do not know of a compression algorithm for the Clique problem or
the dominating set problem, which are strongly linked to the vertex cover problem
in the traditional study of NP , and, in fact, in Theorems 3.1, 5.2, and 6.2 we show
strong implications of a compression algorithm for these languages.

On parameterized complexity and compression. The use of an algorithm from pa-
rameterized complexity for compression is not a coincidence, due to some similarities
between the issues. In a parameterized problem, the instance is coupled with a param-
eter which is independent of the instance size (and typically considered to be much
smaller). Recall that the objective is to solve such an instance in time that is an
arbitrary function of the parameter, yet only polynomial in the instance length. The
“problem kernel” method (see [24, Chapter 3] or [72, Chapter 7]) presents a two phase
scheme for solving parameterized problems. Loosely speaking, the first phase, called
“kernelization,” reduces the problem to a subinstance that is (i) small (a function of
the parameter alone); and (ii) like compression, contains the answer to the original
problem. Then the second phase solves the subinstance by brute force, running in
time that is a function only of the subinstance length, e.g., exponential in this small
instance size. Downey, Fellows, and Stege [25] (Lemma 4.7) show that kernelization
precisely captures the problems that are fixed-parameter tractable. A polynomial
kernelization (e.g., [34, Definition 9.1]) is a restriction of kernelization in which the
output size is bounded by a polynomial in the parameter. In cases where the parame-
ter is set to be the witness size, polynomial kernelization is equivalent to deterministic

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1674 DANNY HARNIK AND MONI NAOR

compression to size poly(n, logm). (Recall that we may assume that logm ≤ n, since
otherwise the instance can be solved by brute force in polynomial time.) Thus some
kernelization algorithms yield compression algorithms and vice versa.

We note that taking the parameter to equal the witness size n is not very natural
in the context of parameterized complexity, as the resulting parameterized problem is
trivially fixed-parameter tractable by brute force search. Nevertheless, the existence of
polynomial kernelizations for such problems has been considered in the parameterized
complexity literature (independent of our work); see, e.g., [34].

Chapter 7 of the monograph of Niedermeier [72] contains several examples of
polynomial size kernelizations (e.g., for the languages 3-hitting set and dominating set
on planar graphs). These algorithms yield compression algorithms for the respective
languages. We describe one additional example of a compression algorithm that is
derived in this manner.

Minimum fill-in. The minimum fill-in problem is an NP-hard problem that
takes as input a graph G and a parameter k and asks whether there exist at most k
edges that can be added to the graph that would turn it into a chordal graph, i.e.,
one with no induced cycles of length more than 3. This problem has applications in
ordering a Gaussian elimination of a matrix.

Claim 2.2. The minimum fill-in problem with parameter k has witness-retrievable
compression.

Proof. Kaplan, Shamir, and Tarjan [54] prove that this problem is fixed-parameter
tractable. Their algorithm partitions the graph into two sets of nodes A and B, where
A is of size k3 and there are no chordless cycles (i.e., an induced cycle of length
greater than three) in G that contain vertices in B. The complexity of this partition
is O(k2|V ||E|). They then prove that G has a k edge fill-in if and only if the graph
induced by A has a k edge fill-in.

Thus the compression algorithm follows the same partitioning and stores only the
graph induced by the small set A. The new graph has at most k3 vertices and thus
can be presented by only poly(k) log |k| bits. The fill-in for the new instance is exactly
that of the original instance, and thus the compression can be witness-retrievable if
the original labels of the vertices are used for the compressed graph as well.

2.1.1. Sparse languages. We call a language sparse if the language contains
only of a small fraction of the words of any given length.

Definition 2.3 (sparse language). Let L be an NP language with instance length
m and parameter n, and denote Lm,n = {x ∈ {0, 1}m | x ∈ L with witness of length ≤
n}; then L is sparse if there exists a polynomial p(·) such that for all sufficiently large
m (with corresponding n) it holds that |Lm,n| ≤ 2p(n).

We show that all sparse languages can be compressed to a size that is domi-
nated by the number of words that are actually in the language. This is shown by a
generic compression algorithm for any sparse language. The idea is to apply a random
(pairwise independent) hash function to the instance where the output of the hash is
of length 2p(n) and thus substantially smaller than m. The new language contains
all words that are hashed values of a word in the original language. We note that
the compressed language L′ lies in NP(poly(m)) (recall that NP(poly(m)) stands for
nondeterministic-time poly(m)). In particular, it is not necessarily witness-retrievable.

Rather than formally presenting the method for a general sparse language, we
describe the method via a sparse language that we call PRG-output. Note that for
this language the method is witness-retrievable.

Example 2.4 (PRG-output). Let G be a pseudorandom generator (PRG) stretch-
ing an n bit seed to an m bit output (with m an arbitrary polynomial in n). Define

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1675

the language PRG-output over inputs y ∈ {0, 1}m as

LG = {y| there exists an x such that (s.t.) G(x) = y}.

As long as the underlying PRG is secure, then it is hard to decide whether an
instance was taken randomly from L(G) or from {0, 1}m. Yet this language has a
simple compression algorithm. Note that simply saving, say, the first 2n bits of the
instance y is insufficient because if y differs only from G(x) in one bit, then this bit
may be anywhere in the m bits.

Claim 2.5. There exists a witness-retrievable compression algorithm for PRG-
output.

Proof. Let H be a family of almost pairwise independent hash functions from m
bits to 2n bits. The compression algorithm simply chooses a random h ∈ H and out-
puts (h(y), h). The new language is L′G = {(z, h)| there exists an x s.t. h(G(x)) = z}.

Naturally, if y ∈ LG, then also (h(y), h) ∈ L′G with the same witness (and thus
the witness-retrievability). On the other hand, if y /∈ LG, then by the properties
of H, for every seed x we have that Prh[h(G(x)) = h(y)] < O(2−2n), and by a
union bound over all x ∈ {0, 1}n, we get Prh[h(y) ∈ L′G] < O(2−n). Finally, since
there are almost pairwise independent hash functions whose description is of length
O(n) + logm (for example, see [66]), then the algorithm is indeed compressing. Note
that the compression algorithm described above is probabilistic and carries an error
probability of 2−Ω(n) and also that the compressed language L′ in this case is in
NP(poly(m)).

Sparse subset sum. We show another example of a compressible language called
sparse subset sum that is sparse in a different sense than that of Definition 2.3. While
the generic compression for sparse languages does not work for this language, it is
compressible in its own right. Moreover, the compression algorithm for sparse subset
sum is better than the generic algorithm in the sense that the compressed language
in the specialized algorithm is in NP(poly(n, logm)) (or actually in NP) rather than
in NP(poly(m)).

Example 2.6 (sparse subset sum). The language sparse subset sum takes as input
n values x1, . . . xn each in {0, 1}m (with m >> n) and a target value T ∈ {0, 1}m. An
input is in the language if there is a subset S ⊆ [n], where

∑
i∈S xi = T (the sum is

taken modulo 2m).
Claim 2.7. There exists a witness-retrievable compression algorithm for sparse

subset sum.
Proof. To compress an instance of sparse subset sum, simply pick a large random

prime 2n < P < 22n+logm and store the numbers yi = xi mod P (for every i ∈ [n]),
the target TP = T mod P and P (the idea of picking a prime P and working mod-
ulo P has been useful various applications, e.g., in the Karp–Rabin string matching
algorithm [56]). The compressed instance is of length O(n(n+ logm)), and the com-
pressed language is also subset sum (modulo P). If there exists a set S for which∑

i∈S xi = T , then also
∑

i∈S yi = TP mod P (hence the witness-retrievability). On
the other hand, we want that if the original instance was not in the language, then
for any subset S it will hold that

∑
i∈S yi 	= TP . In order to get

∑
i∈S yi = TP , it is

required that P is a divisor of D =
∑

i∈S xi−T . However, D has at most m/n prime
divisors that are greater than 2n, while the prime P is taken from a range containing
O(22nm/n) primes (we assume n ≥ logm in the calculations). Therefore, for every S
it holds that PrP [

∑
i∈S yi = TP] ≤ 2−2n, and by a union bound over all sets S, the

probability of an error is bounded by 2−n.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1676 DANNY HARNIK AND MONI NAOR

2.2. W-reductions and compression-completeness. The few examples of
compression that we have showed clearly indicate that the study of NP problems
with respect to compression gives a distinct perspective, different from the traditional
study of NP . The reason is that the typical Karp-reduction between NP problems
does not distinguish between the length of the witness and the length of the instance.
For example, when reducing SAT to the Clique problem, one builds a large graph from
a CNF formula and asks whether or not it has a Clique of size k. However, in this
new instance, the witness size7 is a polynomial in m (the length of the SAT formula)
rather than n (the number of variables in the formula). Thus, it is not clear how to
use a compression algorithm for Clique to get a compression algorithm for SAT.

W-reductions and compression-completeness. In order to show that a compression
algorithm for L′ implies a compression algorithm for L, a more restricted type of
reduction is needed. We call this a W-reduction, and it is similar to a Karp-reduction
but imposes an extra property on the length of the witness.

Definition 2.8 (W-reduction). For two NP languages L and L′ we say that L
W-reduces to L′ if there exist polynomials p1 and p2 and a polynomial-time computable
function f that takes an instance x for L and outputs an instance f(x) for L′ such that

1. f(x) ∈ L′ if and only if x ∈ L.
2. if x is of length m with witness length n, then f(x) is of length at most p1(m)

with witness length at most p2(n, logm).
We first note that this reduction composes, namely what follows.
Claim 2.9. If L W-reduces to L′ and L′ W-reduces to L′′, then L W-reduces

to L′′.
We next claim that W-reduction indeed fulfills its goal with respect to compres-

sion.
Claim 2.10. Let L and L′ be NP languages such that L′ W-reduces to L. Then

given a compression algorithm for L, one can obtain a compression algorithm for L′.
Proof. Suppose that x is an instance for language L′ of length m with witness

length n. The compression algorithm for L′ runs as follows: First use the W-reduction
to L and get an instance f(x) for L, and then run the compression algorithm for L on
f(x). By the properties of the reduction, f(x) is of length m′ ≤ p1(n,m) with witness
length n′ ≤ p2(n, logm). The outcome Z(f(x)) of the compression is therefore of
length poly(n′, logm′) = poly(n, logm). Furthermore, if L′′ is the language that Z
compresses to, then Z(f(x)) ∈ L′′ if and only if f(x) ∈ L, which in turn happens
if and only if x ∈ L′. Thus the combined process gives a compression algorithm for
instances of L′.

We remark that in the complexity discussion of compression we choose to ig-
nore the issue of witness-retrievability. Nevertheless, in order for the W-reduction
to relay this property, the reduction itself must also have a witness-retrievability
property. That is, given a witness w for x ∈ L, one can efficiently compute w′ for
f(x) ∈ L′ (without the knowledge of x). We define complete problems with respect
to compression: these are defined similarly to the standard notion but with respect
to W-reductions.

Definition 2.11 (compression-complete). A problem L is compression-complete
for class C if

1. L ∈ C;
2. for every L′ ∈ C the language L′ W-reduces to L.

A language is called compression-hard for class C if requirement 2 holds (requirement
1 may or may not hold).

7The witness for Clique is a choice of k vertices from the graph.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1677

The relevance of compression-complete problems is stated in the following simple
claim.

Claim 2.12. Let L be compression-complete for class C; then given a compression
algorithm for L, one can obtain a compression algorithm for any L′ ∈ C.

The proof follows directly from the definition of completeness and Claim 2.10.

2.3. The VC classification. We now introduce the new classification arising
from the study of compressibility of NP problems. For this we define a series of NP
languages. Some notation: by a circuit of depth k, we mean a depth k alternating
AND-OR circuit where the fan-in of the gates is bounded only by the size of the
circuit and negations are only on the input variables (no NOT gates).

Definition 2.13 (DepthkCircuitSAT). For any k ≥ 2 consider the NP problem
called DepthkCircuitSAT.

Input: a circuit C of size m and depth at most k over n variables.
Membership: C ∈ DepthkCircuitSAT if there exists a satisfying assignment to C.
The next language, LocalCircuitSAT, is a less natural one. It is designed to

capture computations that do not need to access the whole input, but can rather
check only a sublinear fraction of the input (a good example is verifying that a set of
vertices in a graph is indeed a Clique). Let x be a string of length m. If I = (i1, . . . , in)
is a list of n locations in x, then we denote by x(I) the values of x at these locations.

Definition 2.14 (LocalCircuitSAT).
Input: A string x of length m and a circuit C over n+ n · logm variables and of

size (n+ n · logm).8

Membership: (x,C) ∈ LocalCircuitSAT if there exists a list I of n locations in x
such that C(x(I), I) = 1.

We can now introduce our classification of NP problems.
Definition 2.15 (The VC classification of NP problems). Consider NP prob-

lems, where m denotes the instance size and n denotes the witness size. We define
the class VCk for every k ≥ 0. The definition is divided into three cases:

• k = 0: The class VC0 is the class of all languages that admit compression
algorithms. There are two possible versions here, one considering errorless
compression and the other allowing probabilistic compression with errors. We
typically refer to the later, depending on the context.

• k = 1: The class VC1 is the class of all languages that W-reduce to LocalCir-
cuitSAT.

• k ≥ 2: The class VCk is the class of all languages that W-reduce to
DepthkCircuitSAT.

For any function k(m,n) (where k(m,n) ≤ m) also define VCk(m,n) as the class of all
languages that W-reduce to Depthk(m,n)CircuitSAT. Finally, define VC = VCm (the
class for k(m,n) = m).

A first observation is that simply by definition, the languages LocalCircuitSAT
and DepthkCircuitSAT are compression-complete for their respective classes. The
most notable example of a complete language is for the class VC = NP , where the
complete problem is CircuitSAT (satisfiability of a polynomial size circuit).

When discussing a W-reduction to a depth k circuit, we can actually assume
without loss of generality that the top gate of this circuit is an AND gate (as we
will show in the next claim). An immediate corollary is that SAT (that is, satisfi-
ability of CNF formulas) is compression-complete for the class VC2. Formally, let

8The choice of the circuit to be of size n′ (over n′ variables) is arbitrary, and other polynomial
functions suffice as well. Furthermore, such a circuit of small size may be meaningful, since not all
the variables have to be used and some might be just dummy variables.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1678 DANNY HARNIK AND MONI NAOR

DepthkCircuitSATAND denote the language DepthkCircuitSAT when restricted to
circuits where the top gate is an AND gate.

Claim 2.16. For any k ≥ 2, we have that a language L ∈ VCk if and only if L
W-reduces to the language DepthkCircuitSATAND.

Proof. We show that any instance that contains a circuit where the top gate is
an OR W-reduces to an instance with top gate AND. We prove this first for k ≥ 3.
Denote the input circuit by C =

∨
j

∧
t Cj,t, where each Cj,t is a top OR depth

(k − 2) circuit. If C is satisfiable, then
∧

t Cj,t is satisfiable for at least one choice
of j. Add to the witness the index i of this satisfiable subcircuit (i is given by the
boolean variables i1, . . . , i�, where � is logarithmic in poly(m,n)). For each j, denote

C′j,t = Cj,t ∨ ij̄11 ∨ · · · ∨ ij̄�� , where ij̄ denotes i⊕ j. Notice that C′j,t is always satisfied
for j 	= i, and for j = i it is satisfied if and only if Ci,t is satisfied. Thus the circuit can
now be written as C′ =

∧
j,t C

′
j,t that is satisfiable if and only if the original circuit

was. The top OR gate of C is therefore removed in the new instance C′ while adding
only a small number of variables; thus the input to the circuit witness remains of
order poly(n, logm) as required.

In the case k ≥ 3, the depth of the new instance becomes k − 1. In the case
where k = 2, the bottom level that included only variables is transformed into an OR
of variables; thus the new circuit is simply a CNF formula (and the depth remains
k = 2).

The VC hierarchy. The VC classification indeed defines a hierarchical structure.
That is,

VC0 ⊆ VC1 ⊆ VC2 ⊆ VC3 · · · ⊆ VC.
And, in general, for every two polynomially bounded functions k(n,m), �(n,m) such
that for all n,m we have k(n,m) ≤ �(n,m), then VCk(m,n) ⊆ VC�(m,n). Further-
more, VC = NP by the definition of NP . These observations follow trivially by the
definitions, the only nontrivial part being the fact that VC1 ⊆ VC2, that is proved next.

Lemma 2.17. VC1 ⊆ VC2.
Proof. We need to show a W-reduction from LocalCircuitSAT to SAT. The input

is therefore a long string x and small circuit C on n+ n logm variables. Let i1, . . . in
denote the potential locations in the string that the circuit C receives as inputs. Also
define the variables y1, . . . , yn to indicate the values of x in the corresponding locations
(that is, yt = xit for t ∈ [n]). Thus the circuit C runs on the variables y1, . . . , yn and
the bits of i1, . . . , in.

We first note that C is of size p(n, logm) = (n + n logm) and may be reduced
(via Cook’s theorem [16]) to a CNF formula ΦC over O(p(n, logm)) variables and of
size O(p(n, logm)) that is satisfiable if and only if C is satisfiable.

Thus we have a CNF formula over the variables y1, . . . , yn, i1, . . . in, and some
extra variables. This formula’s satisfiability will be equivalent to the membership of
the LocalCircuitSAT instance if we manage to force the variables of y to take the
values yt = xit . This is done by adding additional clauses to the CNF in the following
manner: For simplicity we describe this only for y1, where the same is repeated for
every other yt for t ∈ [n]. Define for each j ∈ [m] a formula Φj = (y1 = xj)∨ (i1 	= j).
Notice that Φi1 = 1 if and only if y1 = xi1 . Denote the bits of i1 by i1,1, . . . , i1,d,
where d = �logm. An alternative way to write Φj is as the following CNF (recall

that ij̄ denotes i⊕ j):

Φj =
(
yi ∨ xj ∨ ij̄11,1 ∨ · · · ∨ ij̄d1,d

)
∧
(
yi ∨ xj ∨ ij̄11,1 ∨ · · · ∨ ij̄d1,d

)
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1679

Finally, to force y1 = xi1 we simply take the new CNF to be ΦC ∧ ∧
j∈[m] Φj . The

same is repeated to force yt = xit for all t ∈ [n].

2.4. The VC classification and verification with preprocessing. We now
discuss the VC hierarchy from a different angle, that of the verification complexity of
a language. This approach, though slightly more cumbersome than the definition via
W-reductions, gives more intuition as to what it means to be in a class VCk. The
new view defines the VC hierarchy with respect to the verification algorithm for L,
that is, the efficient procedure that takes a witness w for x ∈ L and verifies that it is
indeed a true witness. We point out that the nature of verification algorithms may
vary when discussing different NP problems. For example, in the k-Clique problem
the verification algorithm needs to check only O(k2) edges in the graph and thus can
read only a sublinear part of the instance. In SAT, on the other hand, all the clauses
in the formula must be checked when verifying a witness.

Simply looking at the verification algorithm of a language is not sufficient. For
starters, classification according to verification does not distinguish between prob-
lems in P that are trivially compressible and NP-complete languages. Instead, we
consider the notion of verification with preprocessing. This is the process for verify-
ing that x ∈ L when given a witness, that also allows a preprocessing stage to the
instance.

Definition 2.18 (verification with preprocessing). Let L be an NP language
with instances of length m and witness length n. A pair of polynomial-time algorithms
(P, V) are called a verification with preprocessing for L if the following two-step ver-
ification holds:

1. Preprocessing: P gets an instance x and outputs a new instance P (x).
2. Verification: There exists a polynomial p(·, ·) such that x ∈ L if and only

if there exists a witness w of length at most p(n, logm) such that V (P (x),
w) = 1.

Notice that when allowing for preprocessing, all problems in P have a pair (P, V),
where P solves the problem and stores the answer while V simply relays this answer.
Thus when considering the complexity of V in this definition, easy problems indeed
have very low complexity.

The VC classification via verification with preprocessing. An alternative and equiv-
alent way to view the classes in the VC hierarchy is based on the verification algorithm
V in a verification with preprocessing pair (P, V). The problems are divided into two
families:

• The class VC1 is the set of the languages that have very efficient verification
(i.e., poly(n, logm) rather than poly(n,m)). We assume random access to
the instance (suppose that the verification algorithm is a RAM); thus such a
verification algorithm accesses only a sublinear fraction of the instance.

• The languages whose verification is not very efficient (run in time poly(n,m)).
This family is further classified into subcategories. The class VCk is the class
of languages where the verification algorithm V has a representation as a
depth k polynomial size circuit (polynomial in n and m).

This definition is equivalent to the definition via W-reductions, since the W-
reduction to the complete problem can simply be viewed as the preprocessing stage.
In the other direction, every preprocessing stage is actually a W-reduction to the
language defined by V .

It is interesting to note that Buss and Islam [8] give an alternative view with
similar flavor to theWeft hierarchy of parameterized complexity. They call it “prepare,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1680 DANNY HARNIK AND MONI NAOR

guess and check” in which they essentially add a preprocessing phase to a previous
approach of Cai and Chen [10].

2.5. Within VC1—the class VCOR. Arguably, the most interesting class in
the hierarchy is the bottom class VC1. It contains many natural problems, such as
Clique or small subset-sum,9 that test only local properties of the input. Furthermore,
it is presumably the easiest class to find compression algorithms for. We further refine
our hierarchy within the class VC1 by introducing another class, the class VCOR.
Consider the language OR(L) that takes a large OR of small instances of a language L.

Definition 2.19 (OR(L)). Let L be an NP language. Define the language
OR(L) as follows:

Input: m instances x1, . . . , xm to the language L, each of length n.
Membership: (x1, . . . , xm) ∈ OR(L) if there exists i ∈ [m] such that xi ∈ L.

Specifically the language OR(CircuitSAT) is defined as follows:
Input: m circuits C1, . . . , Cn where each circuit is of size n.
Membership: (C1, . . . , Cm) ∈ OR(CircuitSAT) if at least one of the m circuits

is satisfiable.
This language is used to define the following class.
Definition 2.20. The class VCOR is the class of all languages that W-reduce to

OR(CircuitSAT).
We first note that in each of them small instances, the instance length and witness

length are polynomially related. So unlike the general case where we focused only on
short witness languages, when talking about OR(L), any language L ∈ NP \ P is
interesting. For example, the language OR(3 − SAT) is not trivially compressible.
Moreover, it is compression-complete for VCOR.

Claim 2.21. Let L be any NP-complete language; then OR(L) is compression-
complete for VCOR.

Proof. The W-reduction from OR(CircuitSAT) to OR(L) simply runs the stan-
dard Karp reduction from CircuitSAT to L for each of the m circuits independently.
The witness for each circuit was of length at most n and is now of size p(n) for some
polynomial p. In addition the witness contains an index of the instance of L that is
satisfied; thus the total witness length is p(n) + logm.

For example, the problem OR(Clique) that gets m small graphs (over n vertices)
and asks whether at least one of the graphs has k sized clique (where k = O(n)) is
also compression-complete for VCOR.

Claim 2.22. VCOR ⊆ VC1.
Proof. This is best seen by W-reducing OR(Clique) to LocalCircuitSAT. Given

graphs G1, . . . , Gm for OR(Clique), generate the instance x = G1, . . . , Gm and a
circuit C that receives the locations of a clique in one of the graphs and checks
whether there are indeed edges in these locations and whether they form a clique
(all belong to the same graph and are the edges induced by k vertices). The size of
the circuit is p(n, logm) for some polynomial p, since it checks only locations in x
that belong to one graph (of size n). Finally, add p(n, logm) dummy variables to the
circuit so that the circuit C has size equal to the number of input variables (this is a
technical requirement in the definition of LocalCircuitSAT).

Furthermore, VC0 ⊆ VCOR, since any compressible language can be W-reduced
by the compression algorithm to a language with instance size p(n, logm), and this

9This problem takes m values and a target value and asks if there is a small (size n) subset of
the values that adds up to the target.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1681

instance can be reduced to CircuitSAT and viewed as an OR of a single small circuit
and hence is in VCOR. Note that here too, one may need to add dummy variables to
make the circuit of the same size as its input. Altogether we have that

VC0 ⊆ VCOR ⊆ VC1.

Finally, we show a language that is compression-hard for VCOR. This claim is
also relevant to our cryptographic applications (in sections 3.1, 4, 5, and 6).

Claim 2.23. Clique is compression-hard for VCOR.
Proof. The languageOR(Clique) W-reduces to Clique simply by taking one graph

that is the union of all the small graphs in the OR(Clique) instance. Clearly there is
a clique in the union if and only if there is a clique in at least one subgraph.

A similar claim is true for all problems involving searching for a connected sub-
graph of size n in a graph of size m as long as the problem of deciding whether a graph
of size p(n) contains such a subgraph is NP-hard for some polynomial p(·). This is
true, for instance, for the problem of whether there is a path of length n.10

2.6. The VC classification and some NP problems. In general, most of the
VC classification focuses on W-reductions to depth k circuits. The reasoning for this
is that there is a certain tradeoff between depth and the number of variables. More
precisely, we can reduce the depth of a verification circuit, but only at the price of
adding additional variables (this is done using methods from Cook’s theorem [16] and
requires adding a variable for each gate in one intermediate level of the circuit). Since
the number of variables is the focal point when discussing compression (as it coincides
with the witness size), then depth turns out to be central in our classification.

Given our current state of knowledge, there are a few plausible views of the
world. The two end point scenarios are (i) there is compression for every language in
NP (as would be implied by a compression algorithm for CircuitSAT), (ii) there is
only compression for a few select problems, such as the examples in section 2.1. A
third option is that there is a compression algorithm for some compression-complete
problem in the hierarchy (say, for VCk), which would imply the collapse of all the
classes below VCk to VC0.

We will briefly go over a few key classes in the hierarchy and a few examples of
natural NP problems and their classification (as we know it) within the VC hierarchy.
We note that all the statements in this section apply also to compression with possible
error (negligible in n).

The class VC0. Currently we know that this class contains all the languages
in P , languages that are already compressed by definition (such as 3-SAT), and the
languages that we showed compression algorithms to (vertex cover, PRG-output, and
minimum-fill-in).

The class VCOR. This class contains all languages OR(L) for an NP language
L. One natural example is the OR(SAT) problem, which is actually a depth 3 circuit
where the fan-in at the two bottom levels is bounded by n and only the top gate is
allowed to be of greater fan-in. Some important languages in this class are those that
need to be compressed in the cryptographic applications in sections 3.1, 5, and 6.

The class VC1. Since we are only interested in problems where the witness size
n is much smaller than the instance size m, then many natural problems with this

10It is interesting to note that whereas the problem of finding a path of length n is fixed parameter
tractable [2], Feige and Kilian [32] give indications that the Clique problem is hard for small n (via
subexponential simulations). This illustrates that such differences in parameterized complexity are
not necessarily preserved in the classification of compression.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1682 DANNY HARNIK AND MONI NAOR

restriction are in VC1. For example, graph problems that ask whether a small graph
can be embedded in a large graph are all in VC1. The Clique problem (with a clique
of size n) or long-path (a path of length n that does not hit any vertex twice) are
such small graph embedding problems. Small subset-sum is another natural language
in VC1. This language receives a set of m values and a target sum and asks whether
there is a small (size n) subset for which the values add up exactly to the target sum
(see also footnote in section 2.5).

Dominating Set. The problem asks, given a graph, whether there is a set of k
vertices such that all the graph is in its neighbor set. A dominating set is in the class
VC3, as implied by the following verification: the witness is a set S, and the algorithm
tests that ∀ vertex v ∃ vertex u ∈ S such that (u, v) is in the graph. The ∀ translates
to an AND gate and the ∃ translates to an OR gate. Finally, testing that an edge is
in the graph requires an AND over the O(logm) bits representing this edge. In total,
this is a depth 3 circuit. Note that a straightforward verification of vertex cover will
also yield a depth 3 circuit. However, while vertex cover is compressible and in VC0,
for a dominating set we are unaware of a better method. In addition, a dominating
set is compression-hard for VC2. This is seen by a standard reduction of SAT to a
dominating set in which a SAT formula with n variables and m clauses is transformed
into a graph with m+3n vertices with the property that the graph has a dominating
set of size n if and only if the SAT formula is satisfiable.11

Weighted-SAT. Given a CNF formula of length m, the problem asks if it has a
satisfying assignment of weight at most k (at most k variables are assigned the value 1).
Unlike our previous discussions of SAT, the number of variables here is only bounded
by m, and the short witness simply consists of the list of all variables that receive the
value 1 (that is, the witness is of length n = k logm). This problem, with constant
clause size, serves as the basic complete problem for the parameterized complexity
classW [2], which is at the bottom of the W-hierarchy (see [24]). However, with regard
to compressibility, we only know how to place it in the class VC4. This is shown by the
following verification procedure (using the same logic as with dominating-set): For
every witness (list) L, the algorithm tests that ∀ clauses C either ∃ a variable x ∈ C
such that x ∈ L or ∃ a negated variable x̄ ∈ C such that x 	∈ L. The verification of
x ∈ L adds up to total depth 3 by testing that ∃y ∈ L such that x = y (where x = y
is tested by an AND over the bits of x and y). On the other hand, verifying that
x 	∈ L requires total depth 4 as it runs ∀y ∈ L, we have x 	= y. The overall depth is
thus dominated by the negated variables and is thus 4.

OR of (large) instances. Consider the OR of CNF formulas over few variables
(each CNF formula may be large, unlike in the language OR(SAT), where the CNF
formulas are considerably smaller than the fan-in of the OR gate). In other words,
instances of this language are depth 3 circuits, where the top gate is an OR gate. Yet
the language is actually in VC2, as implied by Claim 2.16.

Integer programming (IP). An instance of IP consists of a list of m linear
constraints on n integer variables with the goal of maximizing a linear target function
over these n variables (under the list of constraints). Unlike its counterpart of linear
programming, where the variables may take real values and is polynomial-time solv-
able, IP is NP-hard even when the variables are restricted to taking only the values 0

11In a nutshell, the reduction creates a triangle for each variable xi of the formula. One of the
nodes of the triangle is identified with the positive variable and another with its negation, while
the third is connected only to the other two. In addition, a vertex is created for each clause in the
formula. Now, each literal is connected with all of the clauses that it appears in. The generated
graph has a dominating set of size n if and only if the formula is satisfiable.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1683

and 1 (one of Karp’s original problems [55]). Thus, the decision variant of IP, where
the number of constraints is much larger than the number of variables, is interesting
with respect to compression. First, compressing it is at least as hard as compressing
SAT: given an SAT instance with n variables and m constraints, it is simple to come
up with a corresponding IP instance with 2n variables and m constraints, i.e., IP
is VC2-hard. On the other hand, a straightforward verification of a witness for this
problem takes the proposed assignment for the n variables and checks if it satisfies
each of the constraints. The verification of a linear constraint can be achieved in
logarithmic depth (in n), placing IP in VCk(n) for k(n) = Ω(logn). We are unaware
of a (significantly) better classification (of lower depth) for IP.

2.7. On reducing the error in compression algorithms. The error of a
compression algorithm can be reduced substantially at the expense of a worse com-
pression rate (the output length of the compression algorithm will be longer). The
idea is simply to run and store the outcome of many executions of the compression,
each time with a fresh and independent randomness. For example, by storing n inde-
pendent executions and using a Chernoff bound we arrive at the following claim.

Claim 2.24. Let Z be a compression algorithm for language L with outcome
length p(n, logm) and q, δ > 0 be such that (i) if x ∈ L, then Z(x) ∈ L′ with probability
q, and (ii) if x /∈ L, then Z(x) /∈ L′ with probability q+δ. Then there is a compression

algorithm Z ′ with error 2−Ω(δ2n) and outcome length np(n, logm).
Note that this technique is limited by the growth of the output, and, in particular,

one cannot use this method to achieve an error that is exponentially small in m (rather
than n).

2.8. On compression of search problems. So far, the NP problems that
we discussed were all decision problems, that is, they ask if x ∈ L and are answered
by YES or NO. When considering a specific NP relation RL associated with L, the
above decision problem has a natural search problem associated with it, which is to
actually find a witness to x ∈ L with respect to the relation RL. A solution to such
a problem is an n bit string rather than just a single bit.

Loosely speaking, a compression algorithm for the search instance should produce
a shorter output that contains enough information about some witness for the original
problem.

Definition 2.25 (compression for search problem). A compression algorithm
for an NP search problem L (with respect to RL) is a pair of algorithms (Z,E) with
a polynomial p(·, ·), where Z is a polynomial-time compression algorithm and E is an
unbounded extraction algorithm. Given an instance x with witness parameter n, we
should have that

1. Z(x) is of length at most p(n, logm);
2. if x ∈ L and there is a witness of length n, then E(Z(x)) = w, where w is a

witness to x ∈ L with respect to RL.
It is natural to consider the relationship between the difficulty of decision and

search for a given problem, as was done in other settings, such as average-case com-
plexity by Ben-David et al. [7]. We show that for any problem a compression for the
decision variant also yields a compression for the search variant, without an increase
in the V C hierarchy.

Theorem 2.26. For any k ≤ 1, if the class VCk has a compression algorithm,
then there is a compression algorithm for the search problem of a relation RL of
L ∈ VCk. This is true also for VCOR.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1684 DANNY HARNIK AND MONI NAOR

Note that Theorem 2.26 holds also when a small error in the compression is
allowed. The error in the resulting compression for search algorithm grows by a poly-
nomial factor (by factor n3) with respect to the error of the underlying compression
for decision algorithm. This follows in a straightforward manner from the proof (by
a union bound).

The technique of the proof below also comes in handy in proving Theorem 5.4,
regarding the application of the ability to compress, say, SAT, to cryptanalysis in the
hybrid BSM. In the following proof, a witness to x ∈ L refers to a witness according
to the specific relation RL associated with L.

Proof. Given an instance x to a language L, for any i ∈ [n], consider the NP
problem Li that asks whether there exists an n bit witness w to x ∈ L such that wi = 1
(the ith bit of w is 1). The language Li is also in VCk, since its verification circuit is
the same as the one for L with an additional AND to the variable wi (this AND gate
is incorporated into the top level AND of the circuit; thus the depth remains k).

Our first attempt is to compress the instance x for every i ∈ [n] with respect to
the language Li (denote such a compression by ZLi(x)). Thus we store ZLi(x) for all
i ∈ [n], which amounts to n · p(n, logm) bits for some polynomial p(n, logm) (this is
also in poly(n, logm)). Now suppose that there is only a single witness w to x; then
one can extract w bit by bit, by solving the compressed instance of each bit. However,
this fails when w is not the only witness, and we might obtain inconsistent answers
for the different bits.

The natural idea now is to use the reduction of Valiant and Vazirani [80] to a
unique witness, as was done by Ben-David et al. [7] for showing that average NP
being in BPP implies also a randomized search algorithm for average NP. The idea is
to choose a pairwise-independent hash function h that is appropriately shrinking and
add to the language the requirement that h(w) = 0. We use the following lemma.

Lemma 2.27 (see [80]). Let L be an NP language, and for every x denote by
Wx the set of all witnesses to x ∈ L. Let � be such that 2� ≤ |W | ≤ 2�+1. Let H�+2

be a family of pairwise independent hash functions with h : {0, 1}n → {0, 1}�+2 for all
h ∈ H�+2. Then

Prh∈H�+2
[|{w : w ∈ Wx and h(w) = 0}| = 1] ≥ 1

8
.

Let H be a family of pairwise independent hash functions. Consider the NP
language LH whose elements are of the form (x, h), where h ∈ H maps strings of
length n to some shorter length. We have that (x, h) ∈ LH if there is a witness
w for x ∈ L and h(w) = 0. We note that this language is also in VCk, since the
additional requirement that h(w) = 0 can be verified efficiently over n variables (the
hash function h computation is efficient). By Cook’s theorem this computation may
be represented as a CNF formula φh over these variables plus only poly(n) additional
variables. Thus adding the requirement of the hash does not add to the depth of the
verification circuit for L. This is easy too for VCk, and for VCOR note that we can
add (conjunction) the CNF formula φh to each instance of CircuitSAT, while keeping
the problem in VCOR.

Now, if we enumerate on all values of �, then with probability at least 1
8 , for the

correct � we will get that LH has a unique witness; storing ZLH
i
(x, h) for all i suffices to

maintain the information about this witness. This can be repeated sufficiently many
times (say, O(n) times) so that with overwhelming probability one of the attempts will
indeed give a unique witness. However, this solution is also insufficient, since we have
stored a list of O(n2) compressed values (O(n) repetitions for each value of � ∈ [n])

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1685

with the guarantee that with overwhelming probability one of them is a witness for
x, but we do not known which one (recall that we cannot store the original instance
and thus cannot verify that a witness is correct).

Our final attempt succeeds in reducing the list of potential witnesses into a unique
and true witness. This compression is as follows: Denote by Lī the language that asks
whether there exists an n bit witness w to x ∈ L such that wi = 0 (similar to Li but
with wi negated). The compression of an instance x to the search problem L goes as
follows.

For every � ∈ [n], repeat the following n times:
• Choose h ∈R H�+2.
• For all i ∈ [n] store ZLH

i
(x, h) and ZLH̄

i
(x, h).

The extraction procedure is as follows: For all � and h ∈ H�+2, solve all the com-
pressed instance pairs. For every pair ZLH

i
(x, h) and ZLH̄

i
(x, h), if both are negative

or both are positive, then ignore all values that are compressed with this h. Only if
for all i we have that exactly one of the instances being correct, then output the ith
bit of w according to the result.

The above algorithm indeed compresses, since it adds only a factor of n3 to the
overall storage. With probability at least 1− 2−Ω(n), at least one of the chosen h’s is
successful in leaving exactly one witness to x ∈ Lh, and this witness will be extracted.
Finally, if h did not leave exactly one witness, then this will be identified: If there are
no witnesses, then ZLH

i
(x, h) and ZLH̄

i
(x, h) will both be negative for all i. If there is

more than one witness, then for at least one choice of i, both ZLH
i
(x, h) and ZLH̄

i
(x,h)

will be positive.

2.9. On maintaining other information. We have seen that compression may
maintain much more than just a yes/no answer. A natural question to ask is, What
other types of information may be maintained through compression algorithms? The
following are some examples.

Number of witnesses. The compression described above actually maintains an
approximation of the number of witnesses to x ∈ L (with respect to RL). Once the
chosen k is too large, there will be a sharp drop in the probability of having a witness,
and this can be observed when extracting the witnesses and indicate what is the right
k.

An almost random witness. The compression above also outputs a witness
that is almost uniformly distributed over Wx. Or, more accurately, the probability of
getting each witness is bounded by a constant times 1/|Wx|.

On maintaining all witnesses. As opposed to maintaining a single witness or
the number of witnesses, a compressed instance cannot always maintain the informa-
tion about all of the witnesses of an input instance. This is shown by the following
simple information theoretic argument: encode an m bit string s with a disjunctive
normal form (DNF) circuit C by constructing for each position j ∈ [m] a formula Cj

on logm variables. If s[j] = 1, then take Cj to be a circuit that is satisfied if and only
if the variables encode the index j. If s[j] = 0, then Cj is the nonsatisfiable circuit
Cj = 0. The circuit C is formed by taking an OR of all these circuits (C =

∨
j∈[m] Cj).

The satisfying assignments of C correspond exactly to the 1’s in s. Consider C as
an input to the language as CircuitSAT.12 Suppose that there exists a compression
algorithm that maintains all of the witnesses of a circuit C. In particular, this means
that the m bit string s may also be extracted from the compressed instance. But

12The circuit C is actually an instance for the language OR(CircuitSAT).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1686 DANNY HARNIK AND MONI NAOR

this is clearly impossible information theoretically, since m random bits may not be
represented by poly(n, logm) < m bits. So we conclude that if our goal is to come up
with a compression algorithm for SAT, then we must come up with a way of losing
information about the witnesses.

In the examples of compression that we have seen in section 2.1, the compression
algorithms for vertex cover, PRG-output, and minimum fill-in actually maintain all
the witnesses. On the other hand, the compression for GapSAT (which we will see in
section 2.10) does not necessarily maintain this information, as it is based on sampling.

2.10. Speculation on compression. We give two arguments that may be
viewed as evidence to the existence and nonexistence of compression, respectively.

An optimistic view—compression of a promise problem and the PCP theorem.
Consider the promise problem GapSAT that takes as input a CNF formula Φ of size
m over n variables and the guarantee that either Φ is satisfiable or it is at most
(1 − 1

2n)-satisfiable (no assignment satisfies more than (1 − 1
2n) of its clauses). The

task is to decide if Φ is satisfiable or far from satisfiable.
Such a problem has a simple and witness-retrievable compression. The idea is to

choose O(n2) random clauses from Φ and take the AND of these clauses to be the
compressed formula Ψ. This compression works because if Φ is far from satisfiable,
then for every assignment the formula Ψ is satisfied with probability at most 2−2n (Ψ
does not contain one of the 1

2nm unsatisfied clauses). Taking a union bound over all
assignments, we get that with probability (1 − 2−n) the formula Ψ has no satisfying
assignment. On the other hand, if Φ is satisfiable, then the same assignment also
satisfies Ψ (and hence the witness-retrievability). Note that our definition of GapSAT
is robust in the sense that GapSAT is compressible whenever the gap is (1− 1

p(n)) for

every choice of a polynomial p(·).
The above simple compression algorithm is especially interesting in light of the

PCP theorem. One way to view the PCP theorem is as an efficient reduction from
an instance of SAT to an instance of GapSAT. Thus one can hope to combine the
PCP reduction with the above compression and get a compression for general SAT.
However, reducing general SAT to GapSAT via the PCP is not a W-reduction, as the
witness size grows to the order of the instance size. For starters, the PCP theorem is
typically defined over 3-CNF formulas, and the reduction of a general size m CNF to
a 3-CNF adds O(m) variables. In order for this approach to achieve compression for
SAT, we require a new PCP theorem that is actually a W-reduction.

GapSAT is just one example of a gap problem that admits compression. For
instance, one can consider the promise problem GapClique, where a graph of size
m either has a Clique of size m/n or contains no Clique of size n. As in the case
of GapSAT, GapClique is compressible by sampling a subset of its vertices. Thus,
coming up with a W-reduction from a general (n′,m′)-Clique problem (the graph of
size m′ either contains a clique of size n′ or not) to (n,m)-GapClique would enable the
compression of Clique. We view finding PCPs that are also W-reductions as a major
research direction, especially in light of the recent new proof to the PCP theorem of
Dinur [23].

This connection to succinct PCPs was subsequently studied by Fortnow and San-
thanam [36]. They derive negative results on PCPs from the negative results on
compression.

A pessimistic view—on oblivious compression. We have seen in section 2.9 that
it is impossible to maintain all of the information in an instance when compressing it,
and some information is necessarily lost (for example, the list of all witnesses cannot

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1687

be kept). On the other hand, we show that if compression exists, then it is not likely
to lose too much information about the original instance. Such a result would entail
the collapse of the polynomial hierarchy to its second level.

More formally, let Z be a compression algorithm for SAT. We consider it as a
two-input algorithm taking a formula Φ and local randomness r ∈ {0, 1}�. Denote
by Z(Φ, U�) the random variable taking the output of Z with fixed input Φ and
random r ∈R {0, 1}�. Let X be a distribution over formulas. The random variable
Z(X, U�) denotes the output of Z under a choice of random r and a random Φ from
the distribution X.

The compression Z is said to be ε-oblivious if for every m,n, there exists a sam-
plable distribution X over satisfiable formulas of length m and with n variables such
that for every satisfiable instance Φ (with parameters m and n) the distribution
Z(Φ, U�) and the distribution Z(X, U�) are ε-statistically close.

Claim 2.28. If there exists an ε-oblivious compression for SAT (with ε ≤ 1
3),

then the polynomial hierarchy collapses to its second level.
Proof. We show that if oblivious compression of SAT instances exists, then Co-

SAT ∈ AM. Consider the following interactive proof that an instance Φ 	∈ SAT. The
verifier chooses a random satisfiable formula Ψ ∈ X randomness r ∈ U� and flips a
random coin c. If c = 0, then the verifier sends ξ = Z(Φ, r) to the prover; if c = 1, he
sends ξ = Z(Ψ, r). The prover then answers 1 if the compressed instance is satisfiable
and 0 otherwise. The verifier accepts if the prover’s answer equals his bit c and rejects
otherwise.

Completeness: If indeed Φ 	∈ SAT, then the prover will be able to tell whether
the verifier used a coin c = 0 or c = 1, simply by testing the satisfiability of ξ and
replying correctly.

Soundness: Suppose that Φ ∈ SAT; then by the obliviousness property of Z the
message ξ is from nearly the same distribution whether c = 0 or c = 1, and the prover
is bound to error with probability 1

2 + ε.
It should be noted also that the above impossibility result does not rely on

the fact that the algorithm Z actually compresses but rather on the obliviousness
property.

We note that the negative result of Fortnow and Santhanam [36] regarding deter-
ministic compression of SAT can be viewed as a further development of these ideas.

3. Part II: Cryptographic applications.

3.1. Basing CRH functions on any one-way function. CRH functions are
important cryptographic primitives with a wide range of applications, e.g., [70, 17, 57,
18, 65, 5]. Loosely speaking, a family of length-reducing functions H is called CRH
functions if no efficient algorithm can find collisions induced by a random member of
the family. That is, no probabilistic polynomial-time Turing machine (PPTM) can
find for a randomly chosen h ∈R H a pair of input strings x and x′ such that x 	= x′

but h(x) = h(x′). In addition we want (i) an efficient algorithm for sampling from
H using (possibly secret) randomness (the secret coins approach is potentially more
powerful than when only public coins are used [48]) and (ii) an efficient evaluation
algorithm that given the description of h ∈ H and x produces h(x). As mentioned
in the introduction, CRHs have wide cryptographic applications; see discussion and
formal definitions in, for example, [53]. We are interested in basing CRH on as general
an assumption as possible. There is no known construction of CRH from general one-
way functions or one-way permutations. Moreover, Simon [77] showed that basing

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1688 DANNY HARNIK AND MONI NAOR

CRH on one-way permutations cannot be achieved using black-box reductions13. We
show that compression can be used to bridge this gap.

Theorem 3.1. If there exists an errorless compression algorithm for SAT or for
any problem that is compression-hard for VCOR, then there exists a construction of a
family of CRH functions based on any one-way function.

Proof. Let (Commit,Verify) be a statistically binding computationally hiding
commitment scheme based on the one-way function f (see, for instance, [37] for formal
definitions of commitments). Recall that the protocol Commit takes from the sender
a string S and randomness r, and after an interaction the receiver gets a commitment
σ. The polynomial-time algorithm Verify takes the commitment σ and a possible
opening to value S′ with randomness r′ and verifies that S′, r′ are consistent with
σ. One could take, for example, the commitment scheme of Naor [67] based on the
one-way function f .14 In our setting we can work under the assumption that the
sender (in the commitment) is honest, and in such a case, the commitment may be
achieved without interaction at all.15

The CRH construction is inspired by the approach of Ishai, Kushilevitz, and Os-
trovsky [53] for constructing CRH functions from private information retrieval (PIR).
A high-level description is as follows: Choose a hash function from a naive hash fam-
ily with no computational hardness guarantees; in the construction below we use the
selection function, i.e., a random position i. The new hash function is defined by a
computationally hiding commitment to the naive hash function, and the output of
the new hash function is a compression maintaining the information of the committed
naive hash function when applied to the input (i.e., compression of the formula that
checks that the value is what it claimed to be). Intuitively, finding a collision would
require guessing with nonnegligible advantage the naive hash function (the position
i). The actual construction is given in Figure 1.

By the compressing properties of Z we get that hσ,rZ indeed shrinks its input
(note that shrinkage by a single bit allows further shrinking by composition). We also
have that sampling hσ,rZ from H can be done efficiently (with secret coins).

As for collisions, let x 	= x′ be two strings in {0, 1}m that form a collision, i.e.,
hσ,rZ (x) = hσ,rZ (x

′). This equality implies, by the property of the compression, that
Φσ,x is satisfiable if and only if Φσ,x′ is satisfiable (here we use the fact that the
compression is errorless). Due to the binding property of the commitment, we have
that any assignment satisfying Φσ must have y = i (recall that i is the index that σ
is a commitment to). Thus the first part of Φσ,x is only satisfied when y = i. But the
second part is only satisfied if xy = 1; thus Φσ,x is satisfied if and only if xi = 1. We
get that Φσ,x is satisfiable if and only if xi = 1, and Φσ,x′ is satisfiable if and only if
x′i = 1. Therefore it must be the case that xi = x′i, since otherwise one of them is 0
and the other one is 1, and the satisfiability of Φσ,x is different than that of Φσ,x′ . But
for some j we have xj 	= x′j , and for that j we deduce that σ is not a commitment to j.

Suppose now that we have an efficient procedure that finds a collision x and x′ for
a given (σ, rZ) with relatively high probability (an inverse polynomial in n). Whenever

13Simon’s black-box impossibility result [77] is actually stated for the public coins version of CRH
rather than the secret coins variant that we discuss. However, this separation also holds for the case
of secret coins (as pointed out in [48]).

14To be more exact, the commitment of [67] can be based on the pseudorandom generator of
H̊astad et al. [47], which in turn can be based on the function f .

15In the scheme of Naor [67], the receiver is required to provide the sender with a (public) random
string. Certainly, an honest sender can generate this string by himself without harming the properties
of the commitment. Thus in such a setting, the sender can generate the commitment without
interaction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1689

CRH family Hf :

Description of the hash function: Let Z be a compression algorithm for SAT.
A function in the CRH collection is denoted hσ,rZ and defined by a com-
mitment σ to a value i ∈ [m] and randomness rZ for Z. The commitment
uses security parameter n.

Input to hσ,rZ : a string x ∈ {0, 1}m
The CNF formula Φσ,x is defined as follows:

• Denote by Verifyσ the algorithm Verify with the input σ fixed.
That is, Verifyσ takes as inputs y and r and accepts if and only if
they form a legal opening of the commitment σ (and in particular
this means that y = i).

• Translate Verifyσ into a CNF formula Φσ (using Cook’s reduction)
over the variables y1, . . . , y� of y, the bits of r, and dummy variables
added in the reduction.

• For every j ∈ [m] define the clause Cj,x = (yj̄11 ∨ yj̄22 ∨ · · · ∨ yj̄��) if
xj = 0 (where y0 denotes ȳ and y1 denotes y) and Cj,x = 1 if xj = 1.

• Set

Φσ,x = Φσ ∧
∧

j∈[m]

Cj,x.

The hash function:

hσ,rZ (x) = Z(Φσ,x, rZ).

Fig. 1. The construction of CRH from any one-way function.

the procedure indeed finds a collision, pick any j such that xj 	= x′j . For this j we
can deduce that σ is not a commitment to j. This procedure can be used to break
the hiding properties of the commitment scheme, since it yields an efficient method
that distinguishes the commitment value from random with advantage 1/m: Given
(the real) i and a random one i′ ∈ [m] in a random order, run the above procedure to
obtain j. If j equals one of the two values i or i′, then guess this one as the random
one, and otherwise flip a coin. This contradicts our assumptions on building blocks
(namely, the one-way function).

To prove the result when using compression for any language that is compression-
hard for VCOR, a similar construction is defined based on the OR of small circuits
rather than CNF formulas: For every j ∈ [m] let Cσ,j be the circuit that outputs one
if and only if there exists randomness r such that σ is consistent with (j, r) (that is, σ
is a possible commitment to the value j using randomness r). Let Cσ,x be the circuit
that takes the OR of all Cσ,j such that xj = 1, and let Z be a compression algorithm
for the language OR(CircuitSAT). We define hσ,rZ (x) = Z(Cσ,x, rZ). The proof is
identical to the case of SAT.

Note that instead of an errorless compression, we can do away with an error
probability slightly smaller than 2−m. That is, for all x we want the probability that
Z(Φσ,x, rZ) preserves the satisfiability of Φσ,x to be at least 1 − 2−m+u, where the
probability is over σ and rZ and u ≈ logm. In this case we can argue (using a union
bound) that with probability at least 1 − 2−u, no x exists violating the preservation
of satisfiability.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1690 DANNY HARNIK AND MONI NAOR

We also note that the construction is inherently nonblack box, as it uses the code of
the one-way function (via the commitment) in the application of Cook’s theorem. This
is essential for the validity of the whole approach in light of the black-box impossibility
of Simon [77]. Theorem 3.1 implies the following corollary.

Corollary 3.2. If there exists an errorless compression algorithm for SAT or for
any problem that is compression-hard for VCOR, then there exist statistically hiding,
computationally binding commitment schemes based on any one-way function. The
scheme requires two rounds of interaction.

The corollary follows, since CRH imply statistically hiding bit commitment; see
Naor and Yung [70] (and Damg̊ard, Pedereson, and Pfitzmann [18] for commitment
to many bits). Until recently, the known minimal assumptions for constructing statis-
tically hiding bit commitments were the existence of one-way permutations [69] and
the more general one-way functions with known preimage size [43]. Since the publi-
cation of the earlier version of this paper, statistically hiding bit commitments based
on any one-way function were shown to exist [71, 44]. However, all of these protocols
[69, 43, 44] require many rounds of interaction—at least linear in the security pa-
rameter (this was shown to be an inherent limitation of the technique [33, 42]). The
commitments based on CRHs, on the other hand, are noninteractive, at least after
the initial phase where the function h ∈ H is chosen. Such a noninteractive CRH also
allows for commitment schemes with very low communication [57].

4. Basing one-way functions on hard instances. The next application shows
that compression may be used in order to prove, in the terminology of [49], that
Pessiland does not exist. Impagliazzo [49] summarizes five possibilities for how
the world may look based on different computational assumptions. Pessiland is the
option where it is easy to generate hard on the average instances, yet no one-way func-
tions exist (or in other words one cannot efficiently generate solved hard instances).
We show that compression may be used to overrule this possibility and place us in
the setting of Minicrypt in which one-way functions do exist. More precisely, given a
language (not necessarily in NP) that is hard on the average for nonuniform machines
over a samplable distribution and a compression algorithm for a related language, one
can construct a one-way function. This result also employs nonblack-box techniques
which are essential, as it was shown that there is no black box construction of a one-way
function from any hard on the average language (over a samplable distribution). This
was shown initially by Impagliazzo and Rudich (in unpublished work) and formally
by Wee [83].

We start by defining the notion of hardness that we discuss. Denote by (x ∈ L)
the boolean value which corresponds to whether x is in L or not.

Definition 4.1. A language L is hard for polynomial size circuits over a dis-
tribution D if for every family of polynomial size circuits {Cn}, for every polynomial
p(·), and for all large enough n, it holds that

Prx←D(1n)[Cn(x) = (x ∈ L)] ≤ 1

2
+

1

p(n)
.

Let L be a language (not necessarily in NP). Recall that the language OR(L)
with parameters m and n is defined as follows:

OR(L)m,n = {(x1, . . . , xm) | ∀i|xi| ≤ n and ∃i such that xi ∈ L}.
The following theorem demonstrates how compression of OR(L) can be used to

construct one-way functions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1691

Theorem 4.2. Given a language L that is hard for polynomial size circuits over
a samplable distribution D and a compression algorithm Z for OR(L),

1. if Z is errorless, then there is a construction of CRH functions.
2. if Z allows a negligible error (negligible in n), there is a construction of a

one-way function.
Note that there is no restriction on the complexity of recognizing L, other than

it being hard for circuits over a samplable distribution. In particular L need not be
in NP at all. If L does happen to be in NP , then the above statement can use a
general compression of a VCOR-complete language.

Corollary 4.3. Let L ∈ NP be hard for polynomial size circuits over a sam-
plable distribution D (as in Definition 4.1). If there exists a compression algorithm
for SAT or for any problem that is compression-hard for VCOR, then there is a con-
struction of a one-way function. If the compression is errorless, then there is also a
construction of CRH functions.

Proof of Theorem 4.2. The proof follows by defining a family of hash functions
hS based on a compression algorithm. The claim is that, in the errorless case, hS

is a family of CRH functions (see section 3.1). If Z is error prone then we define a
modified hash h′S and prove that it is a family of distributional CRH functions. That
is, it is hard to find a random collision for h′S. This implies that h′S naturally defines
a distributional one-way function, which, in turn, implies the existence of one-way
functions.

We begin by proving the statement in the case of errorless compression. Define
a family of hash functions hS as follows. Each hash function is defined by S =
(σ0

1 , σ
1
1 , . . . , σ

0
m, σ1

m), a 2m-tuple of instances of length n from the domain of the
distribution D. Let Z be a compression algorithm for the language OR(L). Define the
hash function hS(x) = Z(σx1

1 , . . . , σxn
n). Suppose there exists an efficient procedure

A that finds collisions for hS over random S ∈ D2m. More precisely, there exists a
polynomial p(·) such that for infinitely many n,

PrS∈D2m [A(S) = (x, x′) such that x 	= x′ and hS(x) = hS(x
′)] ≥ 1

p(n)
.

Denote by D0 the restriction of the distribution D to instances σ 	∈ L. Note that
D0 is not necessarily samplable. We show that if there exists a procedure A that finds
collisions over S ∈ D2m

0 (rather than D2m), then A can be used to break the hardness
of the language L over D. To complete the proof we then show that if A is successful
over D2m, then it is also successful over D2m

0 .
Lemma 4.4. Let A be an efficient algorithm and p(·) be a polynomial such that

for infinitely many n,

PrS∈D2m
0

[A(S) = (x, x′) such that x 	= x′ and hS(x) = hS(x
′)] ≥ 1

p(n)
;

then there exists a family of polynomial size circuits CA such that for infinitely
many n,

Prσ∈D[CA(σ) = (σ ∈ L)] ≥ 1

2
+

1

2np(n)
.

Proof of Lemma 4.4. By the assumption, the procedure A finds a collision with
probability at least 1

p(n) (over D2m
0). Therefore, there exists an index i ∈ [m] such

that A finds a collision x, x′ such that xi 	= x′i (x and x′ differed on the ith bit) with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1692 DANNY HARNIK AND MONI NAOR

probability at least 1
np(n) (since every collision must differ in at least one bit). This

index i is used in the reduction described next.
The strategy of CA for determining membership in L is as follows: Given an input

σ drawn from the distribution D, create a 2m-tuple S by putting σ in the ith pair
in S (for example, define σ1

i = σ) and fill the other entries by random instances from
the distribution D0. The nonuniform hint is used to determine i and to supply the
random samples from D0. Now run the algorithm A on the tuple S and retrieve a
collision x, x′ (if A was successful). If xi 	= x′i, then answer σ /∈ L. Otherwise, answer
according to a random coin flip.

Under the restriction that σ /∈ L, the tuple S is distributed precisely as the
distribution D2m

0 . Therefore, with probability at least 1
np(n) the algorithm A returns

a collision with xi 	= x′i, and CA answers correctly that σ /∈ L.
On the other hand, under the restriction that σ ∈ L, the algorithm A cannot

return a collision with xi 	= x′i. This is due to the fact that the outcome of hS(x)
corresponds to whether (σx1

1 , . . . σxn
n) is in OR(L) or not (by the correctness of the

compression algorithm). But membership in OR(L) is determined solely by the ith
pair (all of the other pairs are not in L) and more precisely by the value of the bit xi.
Therefore, a collision can only occur if the ith bit is the same in x and x′. Thus, in
this case the procedure CA answers “not in L” with probability exactly 1

2 .
Altogether, the procedure CA answers correctly whenever xi 	= x′i (happens with

probability 1
np(n)) and with probability 1

2 otherwise. This amounts to a success prob-

ability of 1
2 + 1

2np(n) .

It is left to show that A is as successful on D2m as it is on D2m
0 . For this we define

an event under which A is considered successful. In our case it is the cases where A
running on S returns a collision under hS (i.e., A(S) = (x, x′) such that x 	= x′ and
hS(x) = hS(x

′)). We say that an algorithm’s success can be efficiently verified if there
exists a polynomial-time computable relation R such that R(A(S), S) = 1 if and only
if A was successful on S. This is clearly the case with collision finding, since one can
verify efficiently whether the two outputs of A are distinct and collide under hS . We
conclude the first part of the theorem using the following claim.

Claim 4.5. Let A be a polynomial time algorithm whose success can be verified
efficiently, and let D and D0 be defined as above. Then for every polynomial p(·) and
all large enough n,

|PrS←D2m [A succeeds on S]− PrS←D2m
0

[A succeeds on S]| < 1

p(n)
.

Proof sketch. Claim 4.5 is proved by a standard hybrid argument (see, e.g., [37,
section 3.2.3]). Namely, one can use a distinguisher between D2m and D2m

0 in order
to distinguish between D and D0. This in turn is enough to break the hardness
of L over D. Note that nonuniformity is used in the reduction (for constructing
hybrid distributions), and so this achieves only a contradiction if L is hard against
nonuniform adversaries (circuits), even if the distinguisher between D2m and D2m

0 is
actually uniform.

This concludes the proof for the errorless case. We now turn to the case of error-
prone compression. In this case we also incorporate the string r of random coins used
by Z into the hash. Define

h′S(x, r) = (Zr(σ
x1
1 , . . . , σxn

n), r).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1693

Unlike the errorless case, we do not know that h′S forms a CRH family (since
the errors may form collisions that are easy to find). Rather, we first show that h′S
is a amily of distributional CRH functions (DCRH) (a similar primitive was defined
in [26]). Loosely speaking, this is a family such that for a randomly chosen hash in
the family, no efficient algorithm can find a random collision of the hash. A DCRH
is useful, since such a family translates to a collection of distributional one-way func-
tions which in turn imply the existence of standard full-fledged one-way functions. A
distributional one-way function is a function for which it is hard to find a random in-
verse of an output element (rather than just a single preimage as in standard one-way
functions). This notion was defined by Impagliazzo and Luby [50], who showed that
the existence of distributional one-way functions implies the existence of standard
one-way functions. We use a straightforward generalization of distributional one-way
functions to collections rather than a single function.

Note, however, that we show only that h′S is a DCRH when S is sampled according
to the distribution D2m

0 . In particular, the key to the hash function cannot necessarily
be sampled in an efficient manner. This eventually translates to a one-way function
over a domain that might not be efficiently samplable. Unfortunately, one cannot
apply Claim 4.5 to show that h′S forms a DCRH also when S is taken from D2m, since
the property of finding a random collision is not efficiently verifiable. Instead, we first
construct a collection of one-way functions (via distributional one-way functions) in
which the keys are chosen from D2m

0 , and then apply Claim 4.5 to show that the
one-wayness holds also for a collection chosen from D2m (using the fact that finding
a single inverse is an efficiently verifiable property).

More formally, as in the case of CRH, a collection of functions consists of algo-
rithms for sampling a key S and evaluating a hash function h′S over the generated
key (in our context we require only that the evaluation algorithm be efficient). For
a fixed key S, suppose that h′S takes inputs of length �. For every such key S define
the distribution CS over pairs (y, y′) such that y ∈ U�(n) and y′ is taken uniformly
from the collection of the siblings of y (that is, from the set {y′ | h′S(y) = h′S(y

′)}). A
collection is said to be a DCRH if for every efficient algorithm A and every negligible
function ε(·), the probability over the keys PrS [A(S) is ε(n)-close to CS] is negligibly
small (i.e., n−o(1)). We will first show that h′S as defined above is a DCRH when S is
sampled from D2m

0 . This is implied directly from the following lemma (proof appears
after the proof of Theorem 4.2).

Lemma 4.6. Let A be an efficient algorithm, εA(·) be a negligible function, and
p(·) be a polynomial such that for infinitely many n

PrS∈D2m
0

[A(S) is εA(n)-close to CS] ≥ 1

p(n)
;

then there exists an efficient circuit CA such that for infinitely many n,

Prσ∈D[CA(σ) = (σ ∈ L)] ≥ 1

2
+

1

3np(n)
.

We now show that a DCRH implies a collection of distributional one-way func-
tions and start by defining this notion. As before, a collection of functions consists
of algorithms for sampling a key S (given security parameter) and evaluating a keyed
function fS over the generated key (where the sampling algorithm is not necessarily
efficient in our case). A collection is said to be distributional one-way if the proba-
bility PrS [(A(fS(U�), S), fS(U�)) is ε(n)-close to (U�, fS(U�))] is negligibly small (i.e.,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1694 DANNY HARNIK AND MONI NAOR

n−o(1)). The distributions are taken over the choice of the input in U� and the random
coins of A.

Claim 4.7. Any DCRH also forms a collection of distributional one-way func-
tions.

Proof sketch. This is shown by demonstrating that a procedure A for breaking
the distributional one-wayness of fS can be used to break the distributional colli-
sion resistance of this function. Define the procedure BA as follows: (i) choose a
random x ∈ U�, (ii) compute x′ = A(fS(x), S), and (iii) if x 	= x′, then output
(x, x′); otherwise repeat from (i). If, for a given S, the procedure A is such that
(A(fS(U�), S), fS(U�)) is ε-close to (U�, fS(U�)), then the output of BA is ε-close to
CS .

We now use the result of [50] that constructs a standard one-way function from a
distributional one-way function. The same transformation holds also for collections of
functions (the notion that we use), since the proof holds separately for each function
in the family. Thus we derive standard collections of one-way functions (for definition,
see, e.g., [37]).

Lemma 4.8 (from [50, Lemma 1]). If there is a collection of distributional one-
way functions, then there is a collection of one-way functions.

At this point we have a collection of one-way functions fS in which the key S is
sampled from the distribution D2m

0 (which is not necessary efficiently samplable). We
can now apply Claim 4.5 to show that this holds also when S is sampled from the
distribution D2m (which is efficiently samplable). We use the fact that the success of
an adversary in finding an inverse of fS(x) is efficiently verifiable (unlike the success
in finding a random inverse). The final step is a standard transformation from a
collection of a one-way function to a single one-way function (e.g., see [37, section 2.7.4,
Exercise 18]). This concludes the proof of Theorem 4.2.

Proof of Lemma 4.6. The proof resembles that of the errorless case (Lemma 4.4),
and in fact the circuit CA is essentially the same circuit (barring the minor technicality
of ignoring the r part of the inputs).

Recall that the construction in Lemma 4.4 identifies an index i for which a collision
with xi 	= x′i is found with probability at least 1

np(n) . Given an instance σ ∈ D,

it generates a 2m-tuple S with σ in the ith pair and the rest filled with random
instances from D0. In Lemma 4.4 when one was given a collision with xi 	= x′i, we
could immediately deduce that σ /∈ L. This is not the case when an error is allowed,
since for all we know, the algorithm A might always return an x, x′, r such that Z
with randomness r errs on either x or x′. What we show is that if A returns a collision
according to the required distribution CS, then with all but negligible probability this
collision is a “good” collision (good in the sense that Zr errs on neither), in which
case we can safely deduce that if xi 	= x′i, then σ /∈ L.

Claim 4.9. Let Z be a compression algorithm for OR(L) with error probability
εZ ; then for any S ∈ D2m, Pr(x,x′,r)←CS [Zr errs on either x or x′] < 2εZ.

By the assumption on A we get that with probability at least 1
np(n) , the algorithm

A returns a collision with xi 	= x′i, and by Claim 4.9 we have that with all but
probability 2εZ +εA (a negligible probability), this collision implies that σ /∈ L (recall
εA is the statistical distance of the output of a successful A from CS). Thus the
circuit CA distinguishes between σ ∈ L and σ /∈ L with advantage at least 1

2np(n) −
εZ − εA

2 (and in particular with advantage 1
3np(n)). This concludes the proof of

Lemma 4.6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1695

Proof of Claim 4.9. When sampling from CS , the first value (x, r) in the collision
is simply taken according to the uniform distribution. In particular r is sampled
independently of x, and by the definition of compression, for every x, at most an εZ
fraction of the r’s yield an error. Moreover, when ignoring the first pair, the second
value (x′, r) is also uniformly distributed. This is because the probability of getting a
value (x′, r) as the second element in a collision is the probability of hitting a sibling
of (x′, r) (according to h′S) as the first element and then the probability of choosing
it out of all siblings. Denote the sibling set of (x′, r) by Sib(x′,r) and the combined

length |x′| + |r| by �. Then the probability of getting (x′, r) is
|Sib(x′,r)|

2�
for hitting

Sib(x′,r) times 1
|Sib(x′,r)| for hitting (x′, r) within the set. Thus each element appears

as the second element with probability 1
2�
. Therefore, the probability of Zr having

an error on at least one of the values in the collision is at most 2εZ (by a union
bound).

5. On everlasting security and the hybrid BSM. The BSM, introduced by
Maurer [62], bounds the space (memory size) of dishonest players rather than their
running time. The model is based on a long random string R of length m that is
publicly transmitted and accessible to all parties. Security relies on the assumption
that an adversary cannot possibly store all of the string R in his memory. The
requirement is that the honest parties Alice and Bob can interact using a small local
storage of size n (where n is significantly smaller than m), while security is guaranteed
against an eavesdropper Eve with a much larger, yet bounded storage space.

This model has enjoyed much success for the task of private key encryption. It
has been shown that Alice and Bob who share a short private key can exchange
messages secretly using only a very small amount of storage,16 while an eavesdropper
who can store up to a constant fraction of R (e.g., 1

2m bits) learns essentially nothing
about the messages (this was shown initially by Aumann and Rabin [4] and improved
in [3, 22, 30, 61] and ultimately in Vadhan [79]). These encryption schemes have
the important property called everlasting security (put forward in [3, 22]). Once the
broadcast is over and R is no longer accessible, then the message remains secure even
if the private key is exposed and Eve gains larger storage capacity.

In contrast, the situation is less desirable when Alice and Bob do not share any
secret information in advance. The solution of Cachin and Maurer [9] for this task
requires Alice and Bob to use storage of size at least n = Ω(

√
m), which is not so

appealing in this setting. Dziembowski and Maurer [29] proved that this is also the
best one can do.

The hybrid BSM. The inability to achieve secure encryption in the BSM with
memory requirements smaller than n =

√
m has led to the following suggestion that

we call the hybrid BSM: Let Alice and Bob agree on their secret key using a com-
putationally secure key agreement protocol (e.g., the Diffie–Hellman protocol [21]).
The rationale being that while an unbounded eavesdropper will eventually break the
key, if this happens after the broadcast had already occurred, then the knowledge of
the shared key would be useless by then (this should be expected from the everlast-
ing security property, where getting the shared key after the broadcast has ended is
useless). This hybrid model is very appealing, as it attempts to achieve everlasting
security by adding assumptions on the ability of an adversary that has a strict time

16Alice and Bob require only n = O(�+logm+log 1
ε
) bits of memory to exchange an � bit message

with error ε.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1696 DANNY HARNIK AND MONI NAOR

limit. Assumptions of this sort are generally very reasonable, since all that we require
is that the computational protocol is not broken in the short time period between
its execution and the transmission of R. For instance, an assumption such as the
Diffie–Hellman key agreement [21] cannot be broken within half an hour and can be
made with far greater degree of trust than actually assuming the long-term security
of this protocol.

Somewhat surprisingly, Dziembowski and Maurer [29] showed that this rationale
may fail. They introduce a specific computationally secure key agreement protocol
(containing a nonnatural modification based on PIR protocols). If this key agreement
protocol is used in the hybrid BSM setting with a specific private key scheme, then the
eavesdropper can completely decrypt the encrypted message. However, their result
does not rule out the possibility that the hybrid idea will work with some other key
agreement protocol. For instance, using the plain Diffie–Hellman key agreement may
still work.

In this work we show that if compression of SAT exists, then there exists an attack
on the everlasting security of any hybrid BSM scheme.

5.1. Two possible models. The notation we use for the storage bounds of the
honest parties is nA and nB (respectively) and for Eve’s bound is mE . For simplicity
we take nA = nB = n and use an abuse of notation by setting mE = m (where
actually it should be that mE = 1

2m).
We define the hybrid BSM17 as a setting, where the running time of the eaves-

dropper Eve is polynomially bounded up until and during the broadcast of R and
unbounded after that. We discuss two variants of a BSM scheme. We first discuss
these in the standard BSM where the eavesdropper is unbounded over time, and then
we compare them to the hybrid setting where computational restrictions are imposed.

• The basic BSM scheme. The basic scheme allows interaction only up to the
start of the broadcast of R (after that only the encrypted message is sent).
Thus the key is fully determined by the time the broadcast has ended. Such
a scheme is fully breakable in the standard (nonhybrid) BSM (without an
initial secret key), since the unbounded adversary can find some randomness
consistent with Alice’s view and simulates Alice’s actions and thus recover
the encryption key.18 Basic schemes in the hybrid BSM are interesting, as
they include any combination of a key agreement protocol with a private
key scheme (such as the one described by [29] and [45]). We show that if
sufficiently strong compression exists, then there exist attacks on any such
scheme.

• The general BSM scheme. Alice and Bob interact both before and after the
broadcast of R. Dziembowski and Maurer [29] show that such a scheme is
breakable unless n > Ω(

√
m) (without initial secret keys). For the hybrid

BSM, we show that if compression exists, then there exists an attack on
any such scheme as long as n > Ω(

√
m/p(n, logm)) for some polynomial p

(related to the polynomial of the compression algorithm and to the running
time of the protocol that Alice and Bob use).

Thus we prove that if compression of SAT (or of any VCOR-hard language) is feasible,
then the hybrid BSM is essentially no more powerful than the standard BSM.

17The hybrid BSM model and notions of everlasting security in this model are formally defined
in [45].

18Since Alice must be able to decrypt the message, simulating Alice with any randomness that is
consistent with the transcript must output the same key.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1697

On random oracles. The authors of this paper show in [45] that if all parties are
given access to a random oracle, then there actually exists everlasting security in the
hybrid BSM without an initial key and with low storage requirements from Alice and
Bob.19 Therefore, finding a compression algorithm for SAT would show an example
of a task that is achievable with random oracles but altogether impossible without
them.20 This would constitute an argument against relying (blindly) on random
oracles to determine whether a task is feasible at all. This is different than previous
results such as [5, 11, 41, 64, 6], which show specific protocols that becomes insecure
if the random oracle is replaced by a function with a small representation. Model
separation results were discussed by Nielsen [73, 74] (for noninteractive noncommitting
encryption) and Wee [82] (for obfuscating point functions), but the separations there
are between the programmable and nonprogrammable random oracle models. In
contrast, the hybrid BSM result in [45] holds also if the oracle is nonprogrammable.

5.2. The basic hybrid BSM.
Definition 5.1 (basic hybrid BSM scheme). A basic hybrid BSM scheme con-

sists of the following: Alice and Bob with storage bound n run a protocol Π that is
polynomial in n (this could be a key agreement scheme with security parameter n).
Denote by T the transcript of this protocol. Alice and Bob use their respective views
of the protocol Π (i.e., the transcript T and their local randomness) to agree on at
most n locations of bits from the broadcast string R that they should store. They store
these bits and then use the stored bits to generate an encryption key K (the scheme
requires that they agree on the same key).21

We show that sufficiently strong compression of SAT can be used to break any
hybrid BSM scheme. For such a scheme to be secure it is required that the key K
remains secret in the presence of an eavesdropper that runs in polynomial time up
until and during the broadcast, but is unbounded after it. We refer the reader to [46]
for rigorous definitions of security (the attack presented below is not sensitive to the
actual definition).

For the discussion here, take K to be a one bit key. The general idea is that
while the eavesdropper may not figure out in time what locations to store, he can
use this transcript to save a relatively short (compressed) CNF formula whose satis-
fiability coincides with the value of the key K. Later, when he is given unbounded
computational power, he will be able to extract this bit from the compressed formula.

Theorem 5.2. If there exists a compression algorithm for SAT or for any
compression-hard language for VCOR, with polynomial p1, then any basic hybrid BSM
scheme can be broken using memory p2(n, logm) (where p2 is a polynomial related to
p1 and the running time of the protocol Π).

Proof. Denote the locations of the bits that Alice and Bob store by i1, . . . , in.
Consider the algorithm V that takes the transcript TΠ and the broadcast string R as
inputs and Alice’s local randomness, and locations i1, . . . , in as a witness. The algo-
rithm should check if the witness and inputs are indeed consistent with one another
(for example, V should verify that a key agreement with the randomness of Alice, the

19This does not contradict the compressibility of SAT, since the cryptanalytic result in the hybrid
BSM model is not black-box and thus is not preserved in the presence of a random oracle.

20Note that finding an algorithm that actually solves SAT would render more natural tasks (e.g.,
symmetric encryption) possible in the random oracle model and impossible without it. Of course,
finding a compression algorithm seems more likely and does not rule out (most of) cryptography.

21The discussion is also valid if the parties are required to reach an agreement with all but
negligible probability.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1698 DANNY HARNIK AND MONI NAOR

transcript T indeed chooses the indices i1, . . . , in to store) and output 1 if and only
if they are consistent and generate an encryption key K = 1. The main observation
is that the NP language defined by this relation V is in VC1. Thus, if SAT has a
compression algorithm, then there is also a compression algorithm for all of VC1 (from
Lemma 2.17), including the language defined by V .

The attack of the eavesdropper Eve is as follows: Eve generates the verification
program V and feeds the instance (T,R) to the compression algorithm for the lan-
guage V . By the properties of the compression, the output is a CNF formula that
is satisfiable if and only if K = 1. The length of the output is of some polynomial
length p2(n, logm). If the polynomial p2 is sufficiently small, then the compressed
instance is shorter than Eve’s space bound 1

2m, and she stores this output. Finally,
at a later stage, Eve can use her unbounded powers to solve the compressed problem
and retrieve the bit K.

We note that a slightly more involved argument works also with compression for
VCOR. The idea is to use independent compression for the bit R(ij) for every j ∈ [n].
Every such R(ij) may be presented as the OR of m circuits of size p(n) each for some
polynomial p.

5.3. The general hybrid BSM. The general scheme is like the basic one, but
the encryption key K is not necessarily fully defined by the end of the broadcast. In
addition, the parties are allowed to interact after the broadcast is over. We note that
the bounded storage key exchange scheme of Cachin and Maurer [9] requires such late
interaction.

Definition 5.3 (general hybrid BSM scheme). The general hybrid BSM scheme
consists of the following: Alice and Bob with storage bound n engage in a protocol
Π1 that runs in time polynomial in n. Denote by T1 the transcript of this protocol.
Each of the two parties, Alice and Bob, uses its respective view of the protocol Π1 to
determine at most n locations in the broadcast string R and stores the bits in these
locations. After the broadcast they interact in a second protocol Π2 (with transcript
T2), at the end of which they both agree on encryption key K (with all but negligible
error probability).

Theorem 5.4. If there exists a compression algorithm for SAT or for any
compression-hard language for VCOR with compression p1(n, logm), then there ex-
ists an attack on any general hybrid BSM scheme where n2 > m/p2(n, logm) (where
p2 is a polynomial related to p1 and the running time of the protocol Π1).

Proof. Denote by AT1 the set of all possible random strings rA of Alice that are
consistent with the transcript T1 (recall that T1 is executed in full before the string
R is broadcast, and therefore AT1 is fully determined by T1). Let sA = SA(T1,R, rA)
denote the bits that Alice stores at the end of the broadcast when running with
randomness rA, transcript T1, and broadcast string R. Finally, denote by SA(T1,R)
the random variable that is SA(T1,R, rA) for a uniform choice of rA ∈ AT1 . That
is, SA(T1,R) is distributed over all possible sA’s that Alice may store when running
with transcript T1 and broadcast string R. Similarly we denote by SB(T1,R) the
corresponding possible view of Bob.

The proposed strategy for Eve is to store n independent samples from the random
variable SA(T1,R). For this purpose we denote by SE(T1,R) (for any R and T1) the
random variable that consists of n independent samples of SA(T1,R). An important
observation due to Maurer [63] is that the uncertainty of Eve regarding the underlying
key is upper bounded by the mutual information between the views of Alice and
Bob given Eve’s view. Formally, the relevant quantity is I(SA(T1,R);SB(T1,R) |

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1699

SE(T1,R)). The success of Eve’s strategy follows from the two lemmata below, the
first due to Dziembowski and Maurer [29] and the second due to Maurer [63].

Lemma 5.5 (see [29]). Let SA(T1,R), SB(T1,R), and SE(T1,R) be defined as
above. Then

I(SA(T1,R);SB(T1,R) | SE(T1,R)) ≤ n2/m.

Lemma 5.6 (see [63, Theorem 3]). Let VA, VB, and VE be random variables
denoting the respective views of Alice, Bob, and Eve. Let KA = KA(VA) and KB =
KB(VB) be procedures of Alice and Bob to extract a mutual secret key from their
respective views such that K = KA = KB with all but negligible probability. Then
H(K) ≤ I(VA;VB | VE).

A strategy for an eavesdropper is therefore to store n independent samples of
the random variable SA(T1,R). Lemmata 5.5 and 5.6 assert that Eve’s entropy of
the encryption key K is at most n2/m in such a case. A crucial point is that an
encryption key that has entropy significantly lower than 1 (from Eve’s point of view)
can be predicted with high probability by an unbounded Eve, rendering the scheme
insecure. Thus if an eavesdropper has O(m) storage capacity, then the scheme is
insecure as long as n2 = O(m).22

Lemma 5.5 was used in [29] in a setting where the eavesdropper is unbounded
and can hence sample the random variable SA(T1,R). However, in our setting the
eavesdropper is computationally bounded and does not have the power to generate
this distribution. Instead, we use compression to store information about samples
of SA(T1,R) to be extracted after the broadcast is over (when the eavesdropper is
computationally unbounded).

The main idea is to use compression for search problems, as was discussed in
section 2.8. Define the NP language LA as follows:

LA = {(T1,R)|∃ witness w = (rA, sA) such that rA ∈ AT1 and sA = SA(T1,R, rA)}.

The first thing to note is that LA is in VCOR. This is shown once more by the
same argument as in Theorems 5.2 or 3.1 and based on the fact that the protocol Π1 is
polynomial-time in n. Once this is established, then given a compression algorithm for
VCOR we invoke Theorem 2.26 to get a compression algorithm to the search problem
associated with LA. Running this compression once allows us to extract a witness to
LA and in particular to get one sample sA of a consistent view of Alice. Running this
n times supposedly gives n samples of such a view, which suffices to break the scheme
by Lemma 5.5.

However, in order to invoke Lemma 5.5, we need the samples to be taken according
to the distribution SA(T1,R), which is defined by a uniform distribution over rA ∈
AT1 . We will show that while sampling via the compression of search problems does
not give the desired distribution exactly, it is still sufficiently close to be useful.

A closer inspection of our compression for search technique from section 2.8 shows
that we do not necessarily sample uniformly from AT1 . However, we do sample close to
uniformly, in the sense that no element in AT1 gets more than double the probability
of another element in AT1 . We then show that taking a constant times many samples
as was originally needed guarantees that amongst the stored bits we have n random

22When considering nA and nB that are not necessarily identical, the actual requirement is for
Eve to store nB samples of SA(T1,R) (each sample is of length nA). Subsequently the scheme is
insecure as long as nA · nB < O(mE).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1700 DANNY HARNIK AND MONI NAOR

samples of the random variable SA(T1,R), and thus we have stored enough bits from
R to break the scheme.

Recall from section 2.8 that the compression algorithm for search problems chooses
a random pairwise-independent hash function h and saves only a witness (rA, sA) that
is uniquely hashed to the value 0 by h. Since rA fully determines sA (when given T1

and R), then without loss of generality we view the witness simply as rA. Fur-
thermore, assume without loss of generality that rA is of length n. Suppose that
� ∈ [n] is such that 2� < |AT1 | ≤ 2�+1. Let H�+2 be a family of pairwise inde-
pendent hash functions with h : {0, 1}n → {0, 1}�+2 for all h ∈ H�+2. Then for
every rA ∈ AT1 the probability that a random h ∈ H�+2 uniquely maps rA to zero
is at most 2−(�+2) (since Prh∈H�+2

[h(rA) = 0] = 2−(�+2)). By the pairwise inde-
pendence of H, it holds that for all other r′A ∈ AT1 with r′A 	= rA we have that
Prh∈H�+2

[h(r′A) 	= 0|h(rA) = 0] = 1 − 2−(�+2). By a union bound over all r′A ∈ AT1

with r′A 	= rA, combined with the probability that h(rA) = 0, we get

Prh∈H�+2
[h uniquely maps rA to 0] ≥ 2−(�+2) · 1

2
= 2−(�+3).

Altogether, for all rA ∈ AT1 it holds that

2−(�+2) ≥ Prh∈H�+2
[h uniquely maps rA to 0] ≥ 2−(�+3).

Thus whenever the output of h is indeed of length �+ 2, the probability of sampling
rA ∈ AT1 is almost uniform (up to a factor of 2 for each element).23 Since we repeat
the compression for every choice of � ∈ [n], then in particular samples are stored for
the correct �.

By Lemma 2.27 we know that at least 1
8 of the repeated compressions indeed

store information about a valid witness (a sample of rA ∈ AT1). Thus, choosing, say,
9n independent h ∈ H�+2 guarantees at least n samples (by a Chernoff bound, as
the choices are independent). But as mentioned above, these samples are just close
to uniform over AT1 rather than truly uniform. The solution is to simply run more
instances of this process, say, for 25n independent choices of h ∈ H�+2. This would
guarantee that with overwhelming probability, at least 3n of these choices have a
valid witness. We show that from these slightly biased samples we can extract n truly
uniform samples of witnesses.

This last argument follows by a method for generating uniformly distributed sam-
ples from AT1 . At a first stage, 3n samples are taken using the unique hashing method.
Now a diluting second stage is run in order to extract the actual samples: Suppose
that the least likely element to be sampled gets probability pmin. For any element
rA that is sampled with probability prA , keep the sample with probability pmin

prA
and

delete it otherwise. Thus every element is eventually chosen with the same proba-
bility pmin, and since pmin

prA
≥ 1

2 , then at least n samples are eventually chosen (with

overwhelming probability). Note that the diluting stage is not necessarily efficiently
computable. However, the probability prA can be computed using the adversaries
unbounded running time, since these probabilities are fully defined by the transcript
T1, which can be stored in its entirety (as it is of length polynomial in n). There-
fore an unbounded eavesdropper may indeed extract n uniform samples from her
view.

23Note that the almost uniformity of the samples actually holds for every choice of the parameter
�. Therefore, this property can be relied on even if the correct choice of � is unknown.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1701

Note: In the two models that we consider we limit the honest parties to access and
store at most n actual bits from the broadcast string R. This is in contrast to storing
some function of R with a bound on the function’s output length (an ability that
the adversary is entitled to). This is a legitimate requirement, as the honest parties
should run algorithms that are considerably more efficient than the adversary’s. It
should be noted, however, that our Theorems (5.2 and 5.4) hold also if the honest
players can store functions, albeit they then call for a compression algorithm for all
of NP (rather than just for the lowest class VCOR).

6. On witness retrievable compression and public key cryptography
based on any one-way function.

6.1. On OT from any one-way function. The two top worlds that Impagli-
azzo considers in his survey [49] are Minicrypt, where one-way functions exist but OT
protocols do not exist (in this world some interesting cryptographic applications are
possible, and in particular shared key cryptography exists) and Cryptomania, where
OT protocols do exist (and hence also a wide range of cryptographic applications like
secure computation and public key cryptography). The last application we discuss
is an attempt to use compression in order to prove that Minicrypt=Cryptomania.
Whether OT can be constructed from any one-way function is a major open problem
in cryptography. Impagliazzo and Rudich [52] addressed this problem and proved
that key agreement protocols (and hence also OT) cannot be constructed from any
one-way function using “black-box” reductions. Many researchers view this impossi-
bility result as an indication that general one-way functions are insufficient for public
key cryptography.

We explore an approach of using compression in order to bridge the gap between
the two worlds. In order to do so we introduce an additional requirement of a com-
pression algorithm.

Definition 6.1 (witness-retrievable compression). Let Z,L, and L′ define a
compression algorithm as in Definition 1.2, and let RL and RL′ be NP relations for
L and L′, respectively. The compression is said to be witness-retrievable with respect
to RL and RL′ if there exists a probabilistic polynomial-time machine W such that for
every input x, if x ∈ L, then for every witness wx for x with respect to RL it holds
that wy = W (wx, Z(x)) is a witness for Z(x) ∈ L′ with respect to RL′ . We allow a
negligible error in the success of W (where probability is over the internal randomness
of Z and W).

We describe an approach to bridging this gap using witness-retrievable compres-
sion of a specific language. More precisely, we demonstrate a construction of an OT
protocol (see definition in, for instance, [38]) from any one-way function using such a
compression algorithm.

Theorem 6.2. If SAT has a witness-retrievable compression algorithm (even for
the specific type of CNF formulas in the proof below), then one can construct an OT
from any one-way function.

As in the CRH construction (Theorem 3.1), the conditional construction of OT in
Theorem 6.2 is inherently nonblack-box. Unfortunately we show that this approach
cannot work with a compression algorithm for the general SAT problem, due to the
following theorem.24

24The first version of this paper [46] (dated Feb 17, 2006) did not contain this theorem and was
hence more optimistic on the possibility of finding a witness-preserving compression algorithm for
SAT.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1702 DANNY HARNIK AND MONI NAOR

Theorem 6.3. If one-way functions exist, then there is no witness-retrievable
compression of SAT.

Furthermore, we also rule out the possibility of other types of witness-retrievable
compression that may be sufficient for Theorem 6.2. More precisely, the impossibility
of witness-retrievable compression does not change when allowing an error in the re-
trieval or when dealing with a case where there is a unique witness (see Corollary 6.9).
These developments rule out basing the approach of Theorem 6.2 on the compression
of a general and standard language. The approach may still work out with a witness-
retrievable compression algorithm for the specific CNF formulas as constructed in the
proof of Theorem 6.2.

Finally, we point out that almost all of the examples of compression algorithms in
this paper (in sections 2.1 and 2.10) are in fact witness-retrievable. This demonstrates
that these examples fall short of the general compression that we are seeking. In fact
a major obstacle in achieving compression for problems such as SAT seems to be that
most natural approaches would be witness-retrievable.

Proof of Theorem 6.2. The construction actually builds a PIR protocol and then
uses the construction of Di Crescenzo, Malkin, and Ostrovsky [20] to build an OT
protocol from the PIR protocol. Recall that a PIR protocol has a sender with a
database of size m and a receiver that chooses to learn one entry from the database
(see precise definition in, e.g., [20]). It is required that the receiver learns the bit
of his choice, but a computationally bounded sender learns essentially nothing about
this choice. In addition, the total communication should be strictly smaller than m.

Let f be a one-way function and take (Commit,Verify) to be a commitment
based on the one-way function f (as in section 3.1). In this proof we work under the
assumption that the parties are semihonest (that is, the parties follow the protocol as
prescribed and are only allowed to try and infer extra information from the transcript
of the protocol). The semihonest assumption is justified by the compiler of Goldreich,
Micali, and Wigderson [39] that showed how to transform a semihonest protocol into
one against malicious parties (again, the only needed cryptographic assumption is the
existence of a one-way function). Consider the protocol in Figure 2.

It remains to show that the protocol PIRf is indeed a PIR protocol. Due to
the fact that the commitment is binding (up to a negligible error), an assignment
satisfying Φσ must have x = i (recall that i is the index that Bob committed to).
Thus the first part of Φ is only satisfied when x = i. But the second part is only
satisfied if D[x] = 1; thus Φ is satisfied if and only if D[i] = 1. By the property of
the compression algorithm, also Ψ is satisfiable if and only if D[i] = 1. Hence, using
the witness-retrievable properties of the compression, Bob figures out whether or not
Ψ is satisfiable and learns the bit D[i] (up to a negligible error).

The second property is that the sender Alice learns no computational informa-
tion about Bob’s choice. This follows directly from the guarantees of the commitment
scheme (note that Bob does not send any information outside of the commitment).
The third and final requirement regards the length of the communication. But the
length of the communication is a fixed polynomial in p(n) (depending on the commit-
ment protocol and the parameter of the compression algorithm). So choosing a large
enough databases with m > p(n) guarantees a nontrivial PIR protocol and hence an
OT protocol.

Note that the OT protocol derived in Theorem 6.2 is a one-round protocol (that
is, one message sent from the receiver followed by one message from the sender). This
follows from the construction of the PIR protocol and the construction of [20] that
preserves the number of rounds. One implication of this fact is that such an OT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1703

Protocol PIRf :
Alice’s input: database D of m bits. Let D[i] denote the ith bit in D.
Bob’s input: index i ∈ [m]. Denote the bits of i by i1, . . . , i�.

1. Bob commits to i: Bob commits to i with randomness rB , Alice receives
σ = Commit(i, rB).

2. Alice computes Φ: The CNF formula Φ is defined as follows:
• Denote by Verifyσ the algorithm Verify with the input σ fixed.
That is, Verifyσ takes as inputs x and r and accepts if and only if
they form a legal opening of the commitment σ (and in particular
this means that x = i).

• Translate Verifyσ into a CNF formula Φσ (using Cook’s reduction)
over the variables x1, . . . , x� of x, the bits of r, and dummy variables
added in the reduction.

• For every j ∈ [m] define the clause Cj = (xj̄1
1 ∨ xj̄2

2 ∨ · · · ∨ xj̄�
�) if

D[j] = 0 (where x0 denotes x̄ and x1 denotes x) and Cj = 1 if
D[j] = 1.

• Set

Φ = Φσ ∧
∧

j∈[m]

Cj .

3. Alice Compresses Φ: Let (Z,W) be a witness-retrievable compression
algorithm for CNF formulas of the form of Φ. Alice runs Ψ = Z(Φ) and
sends Ψ to Bob.

4. Bob checks witness: Note that Bob knows the witness to Verifyσ and
can compute a witness w for Φσ. Bob checks if W (w,Ψ) is a satisfying
assignment for Ψ. If it is, Bob outputs 1; otherwise he outputs 0.

Fig. 2. The construction of a PIR protocol from any one-way function.

protocol may be used to construct a two-round key agreement scheme, that in turn
maybe used to construct a public key encryption. In general, this is achieved by fixing
the first message of the protocol to be as the public key.

Corollary 6.4. If there exists a witness-retrievable compression algorithm for
the type of SAT instances that occur in in the proof of Theorem 6.2, then based on
any one-way function one can construct a public key encryption scheme (PKE) that
is semantically secure against chosen plain text attacks.

6.2. On the limitation of the witness retrievability property. Witness-
retrievable compression is defined (Definition 6.1) as a compression with an addi-
tional probabilistic polynomial time algorithm W such that for every witness wx for
RL it holds that wy = W (wx, Z(x)) is a witness for Z(x) ∈ L′. Recall that nearly
all of the examples of compression algorithms (in sections 2.1 and 2.10) are in fact
witness-retrievable (the exception being compression of general sparse languages, Def-
inition 2.3). This property is essential to the success of the construction of the OT
protocol in Theorem 6.2 (without it the receiver would have to run in time that
is super-polynomial). In this section we show that if one-way functions exist, then a
compression algorithm for SAT cannot be witness-retrievable (this regards the general

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1704 DANNY HARNIK AND MONI NAOR

language SAT rather than a specific distribution of instances as generated in Theorem
6.2). Moreover, this statement also holds for other general languages mentioned in
Theorem 6.2 (that are potentially easier to compress than SAT). In particular, there
is no witness-retrievable compression for the Clique language or for the language
OR(SAT) (that is complete for VCOR). We give the formal statements below with
respect to the language OR(SAT) and deduce the statements for SAT and Clique as
corollaries.

We also rule out other natural definitions of witness-retrievability that would
have been sufficient for the proof of Theorem 6.2 to go through. Suppose we relax the
witness-retrievability requirement to hold only with some probability ε; then we show
that if one-way functions exist, then this probability ε has to be very low, at most
an inverse polynomial in m. Such a low probability of success is not sufficient for the
OT construction in Theorem 6.2 to follow (we note though, that witness-retrievability
with this low success probability is still sufficient for the cryptanalytic result in [28]).
We then show that the same situation also holds for languages that are guaranteed to
have unique witnesses (i.e., unique-SAT and unique-OR(SAT)). This is of relevance,
since the instances being compressed in the proof of Theorem 6.2 all have at most a
single witness.25

We emphasize again that the OT construction may still be successful under the
compression of formulas of the specific type that are generated in the proof. How-
ever, we cannot generalize this method to work with compression of a more standard
language.

On the impossibility of perfect witness retrieval. Recall that the language
OR(SAT) takes as an input a list of m CNF formulas (each of length n) and accepts
if at least one of the formulas is satisfiable. Consider the following way of generating
an instance of OR(SAT). Take m bit commitments σ1, . . . , σm, each with security
parameter n (see proof of Theorem 3.1 for a definition and discussion of commitments
in our context). For each commitment σi, generate using Cook’s theorem a CNF
formula φσi that is satisfiable if and only if σi is a commitment to 1. As an instance
of OR(SAT), we take the OR of the m CNF formulas φσ1 , . . . , φσm . We denote this
instance by φ(σ1, . . . , σm). Denote by wσi a satisfying assignment for φσi (such an
assignment can be generated by an opening of σi to the value 1). The assignment wσi

also serves as a witness for φ(σ1, . . . , σm) ∈ OR(SAT). Our first impossibility result
is for compression of OR(SAT) with errorless witness-retrievability.

Lemma 6.5. If one-way functions exist, then there is no witness-retrievable com-
pression for OR(SAT) with perfect witness-retrieval.

Proof. The proof follows by showing that a witness-retrievable compression Z for
OR(SAT) can be used to transmit an m bit string between two parties with sublinear
communication. As a setup stage, the receiver generates m random commitments to
1 and m random commitments to 0 and sends them to the sender. Denoted these by
(σ1

1 , . . . , σ
1
m) and (σ0

1 , . . . , σ
0
m), respectively.

For every string x ∈ {0, 1}m denote φx = φ(σx1
1 , . . . , σxm

m) (where xi denotes the
ith bit of x). In order to send string x ∈ {0, 1}m the sender sends Z(φx) to the
receiver. We claim that the receiver can, with overwhelming probability, learn the
string x, thus contradicting the fact that the message sent is significantly shorter

25The relevant instances in Theorem 6.2 actually have a unique witness only if there exists a
commitment scheme that has only a unique opening. As this is not necessarily the case when given
any one-way function, we consider for simplicity the case of one-way permutations (that guarantee
a unique opening commitment scheme).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1705

than m. Note that the receiver knows witnesses wσ1
i
for all i and that a witness for

φx ∈ OR(SAT) consists of a witness wσ1
i
of a φσ1

i
that is included in φx. The receiver

extracts x as follows:
Procedure Rec on input Z(φx).
• For every i ∈ [m]

1. run w = W (Z(φx), wσ1
i
);

2. if w is a witness for Z(φx), then set yi = 1; otherwise, set yi = 0.
• Output y = y1, . . . , ym.

Denote by Xi the random variable of the ith bit of x and by Yi the random variable of
the corresponding output of Rec. We view the process as a channel between a sender
who holds the random variables X = X1, . . . , Xm to a receiver who gets the random
variables Y = Y1, . . . , Ym and claim that with overwhelming probability Y = X .

If Xi = 1, then the opening of σ1
i should yield a witness for Z(φx), from the

perfect witness-retrievability, and thus Yi = 1. We should show that if Xi = 0, then
indeed Yi = 0 (up to a negligible error). Note that X is uniformly distributed over
{0, 1}m, whereas Y is determined by the random choice of commitments (σ1

1 , . . . , σ
1
m)

and (σ0
1 , . . . , σ

0
m), the random coins of Z and W , and the random variable X .

Claim 6.6. Let X and Y be the random variables described above. Then for
every i ∈ [m] (possibly related to m,n) and every polynomial q(·) and all sufficiently
large n,

Pr[Yi = 1|Xi = 0] <
1

q(n)
.

Note that the Claim 6.6 holds also if the underlying witness-retrieval algorithm is
nonperfect. This will be used in the proof of Lemma 6.7.

Proof. Suppose that the claim is false, that is, for some q(·), for infinitely many
n, and some i (possibly related to n), Pr[Yi = 1|Xi = 0] ≥ 1/q(n). For simplicity we
first deal with the case where Pr[Yi = 1|Xi = 0] = 1. In other words, W (Z(φx), wσ1

i
)

always outputs a witness for Z(φx). Consider the two distributions L0 and L1 on lists
of m− 1 commitments:

• Distribution L0 is defined by a random and independent choice of m − 1
commitments to 0.

• Distribution L1 is defined by first choosing at random a string V1, V2, . . . ,
Vm−1 ∈ {0, 1}m−1 and then generating m − 1 independent commitments to
V1, V2, . . . , Vm−1.

From the hiding property of commitment schemes, it holds that these two distributions
are indistinguishable, i.e., given a list L of m − 1 commitments, no computationally
bounded distinguisher can tell with nonnegligible bias whether L was generated by
L0 or L1. We will show that if the premise of the claim is false, it is possible to
distinguish the two distributions (without knowledge of the openings to any of the
commitments in the list).

Given a list L of m− 1 commitments, the distinguisher generates σ0
i and σ1

i and
the corresponding witnesses. He then generates a formula φ by adding σ0

i to the ith
position in the list L and runs the compression on φ. The distinguisher then runs
w = W (Z(φ), wσ1

i
) and checks whether w is a witness to Z(φ). By the assumption, w

will indeed be a witness every time that φ is satisfiable. On the other hand, w cannot
be a witness if φ is not satisfiable, simply by the properties of the compression. Thus
if w is indeed a witness for Z(φ), then it must be that φ ∈ OR(SAT), and there is
some commitment to 1 in the list, and thus L was generated from L1. Otherwise, it

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1706 DANNY HARNIK AND MONI NAOR

means that φ 	∈ OR(SAT), and the original list was from L0 (ignoring the negligible
probability that L1 generates a list containing only commitments to 0).

Now if Pr[Yi = 1|Xi = 0] ≥ 1
q(n) for some polynomial q(·), then the distinguisher

follows the same procedure with the difference that
• if w = W (Z(φ), wσ1

i
) is a witness for Z(φ), then output L1.

• if w is not a witness, flip a coin and output either L0 or L1 accordingly.
In case w was indeed a witness, the distinguisher is guaranteed to be correct. There-
fore, the above procedure gives an advantage 1

2q(n) in distinguishing between L0 and

L1, contradicting the hiding properties of the commitment scheme.
Note that the distributions L0 and L1 will be useful also in the discussion of the

unique witnesses case (Lemma 6.8).
On nonperfect witness retrievability. We now show that the witness-retrieval pro-

cedure is possible only if its success probability is sufficiently low (we denote the suc-
cess probability by 1

q(n,m)). We upper bound the success probability by a function

of the rate of compression that the algorithm Z achieves (we denote by p(n,m) the
polynomial that bounds the length of the output of Z, i.e., the compressed instance).

Lemma 6.7. Suppose one-way functions exist, and suppose that (Z,W) is a
witness-retrievable compression for OR(SAT) such that for every φ with parameters
m,n the following holds:

1. The compression parameter |Z(φ)| ≤ p(n,m).
2. The success probability of W is at least 1

q(n,m) , where probability is over the

random coins of Z and W as well as the choice of the witness.
Then q(n,m) ≥ Ω(m

p(n,m)).

Proof. The proof uses the same setting as in the proof of Lemma 6.5. Once more,
the sender sends a compressed value Z(φx) to the receiver that runs the procedureRec,
and we view this process as a channel between a sender who holds the random vari-
ables X = X1, . . . , Xm to a receiver who gets the random variables Y = Y1, . . . , Ym.
Only this time if Xi = 1, it is not guaranteed that also Yi = 1 (since the witness-
retrievability is no longer perfect). Instead, our assumption on the success probability
ofW translates to Pr[Yi = 1 | Xi = 1] ≥ 1

q(n,m) for a random i. SinceXi is a uniformly

distributed bit, then Pr[Yi = 1] ≥ 1
2q(n,m) for a random i.

In addition, Claim 6.6 states that for every i it holds that Pr[Yi = 1 | Xi = 0] ∈
neg(n). Thus, if Yi = 1, then Xi = 1 with overwhelming probability, and therefore
H(Xi | Yi = 1) ∈ neg(n) for every i (where H denotes the Shannon entropy). We use
the above-mentioned facts to provide an upper bound on the average entropy of Xi

(average over i) when given Y :

Ei[H(Xi | Y)] = Ei[Pr(Yi = 1)H(Xi | Yi = 1) + Pr(Yi = 0)H(Xi | Yi = 0)]

≤ 1

2q(n,m)
· neg(n) +

(
1− 1

2q(n,m)

)
· 1

≤ 1− 1

2q(n,m)
+ neg(n).

The first inequality is true, since H(Xi | Yi = 0) ≤ 1 for every i. We deduce an upper
bound on the entropy of X when given Y :

H(X |Y) ≤
∑
i

H(Xi | Y) = mEi[H(Xi | Y)] ≤ m

(
1− 1

2q(n,m)
+ neg(n)

)
.

Hence, when the receiver gets Z(φx) (and can generate Y), the receiver’s entropy of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1707

X deteriorates by

H(X)−H(X | Y) ≥ Ω

(
m

q(n,m)

)
.

This can only happen if the sender sent at least Ω(m
q(n,m)) bits to the receiver, and

thus p(n,m) ≥ Ω(m
q(n,m)) as required.

Note that the construction of OT protocols from one-way functions in Theorem 6.2
requires that the compression rate p(n,m) ≤ O(m1−ε) for some constant ε > 0. Thus,
when put in the context of constructing OT protocols, the above lemma states that
a useful compression algorithm for OR(SAT) cannot have witness-retrievability with
probability that is better than O(1

mε). In order to achieve nontrivial PIR proto-
cols (via Theorem 6.2), one would require witness-retrievability with a better success
probability.

On witness retrieval with a unique witness. The limitations on witness-retrievabi-
lity hold also when there is only a single witness, which is the case in our cryptographic
applications. For this we consider the promise problem OR(SAT)U that is OR(SAT)
with a guarantee that every instance has at most one satisfying assignment. We gen-
erate the interesting instances of OR(SAT)U as above, from sets of commitments. In
this case the set of commitments should be such that at most one of the commitments
is to the value 1. For simplicity we also assume that each commitment has a unique
opening (this may be achieved using one-way permutation), so overall such instances
have the unique witness property.

Lemma 6.8. Suppose one-way permutations exist, and suppose that (Z,W) is
a witness-retrievable compression for OR(SAT)U such that for every input φ with
parameters m,n the following holds:

1. The compression parameter is |Z(φ)| ≤ p(n,m).
2. The success probability of W is at least 1

q(n,m) for a polynomial q(·, ·), where
probability is over the random coins of Z and W .

Then 1
q(n,m) − p(n,m)

m ∈ neg(n).

Proof. Suppose that there is a witness-retrievable compression (Z,W) for
OR(SAT)U that succeeds with probability 1

q(n,m) . In similar fashion to the proof

of Claim 6.6 we will show that in such a case one can efficiently distinguish if a list of
m− 1 commitments was generated by the distribution L0 or by the distribution L1.
Recall that the distribution L0 is a random choice of m− 1 commitments to 0, while
the distribution L1 is a choice of m−1 random commitments (commitments to either
0 or 1). The distinguisher works without knowledge of the openings to any of the
commitments, thus contradicting the hiding properties of the commitment scheme.

The distinguisher generates a random commitment σ1 to 1, along with its witness
wσ1 . Now, given a list L of m− 1 commitments, the distinguisher creates an instance
φ by adding σ1 in a random position in the list L and runs the compression on φ.
The distinguisher then tries to retrieve a witness to Z(φ) using the opening wσ1 . In
the case where L ∈ L0, φ is an instance of OR(SAT)U , and thus, by the assumption,
the distinguisher will retrieve a witness with probability at least 1

q(n,m) . On the other

hand, if L ∈ L1, then the instance φ is a general instance of OR(SAT) (without the
promise of the unique witness). Lemma 6.7 states that there exists a φ for which the

witness-retrieval succeeds with probability at most p(n,m)
m . A more careful inspection

of the proof of Lemma 6.7 shows that this statement also holds for a randomly chosen
φ (generated by choosing m random commitments, not all of which are to 0). Thus, if

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1708 DANNY HARNIK AND MONI NAOR

L ∈ L1, then the witness-retrieval succeeds on φ with probability at most p(n,m)
m (with

probability taken over the choice of L ∈ L1 and the randomness of the distinguisher).
Overall, the distinguisher accepts with probability at least 1

q(n,m) when L is from L0

and at most p(n,m)
m when L is from L1. So if 1

q(n,m)− p(n,m)
m is larger than a polynomial

fraction in n, then this procedure has a distinguishing advantage between L0 and L1,
contradicting the security of the commitment scheme.

All our results have been stated for the language OR(SAT). However, they may
be applied for other languages such as SAT and Clique. In particular, we get the
statement with respect to SAT as a corollary (since a compression for SAT can be
used as a compression for OR(SAT) via the same reduction as in Lemma 2.17).

Corollary 6.9. Suppose one-way functions exist, and let (Z,W) be a witness-
retrievable compression for SAT (or for Unique-SAT) such that for every input φ
with parameters m,n the following holds:

1. The compression parameter |Z(φ)| ≤ p(n,m).
2. The success probability of W is at least 1

q(n,m) , where probability is over the

random coins of Z and W as well as the choice of the witness.
Then q(n,m) ≥ Ω(m

p(n,m)).

7. Discussion and open problems.

7.1. Discussion—A unified perspective of the applications. In sections
3.1, 4, and 6 we presented three separate applications of compression that have a sim-
ilar flavor: A CRH from one-way functions using perfect compression (section 3.1), a
CRH/one-way function from hard on average language using perfect/imperfect com-
pression (section 4), and PIR/OT from a one-way function using witness-retrievable
compression (section 6). These constructions have a common underlying principle
and can be viewed as variants on this main theme. The basic observation is that
compression of OR(L), where L is a “hard on average” language, can be used to con-
struct PIR protocols in which the receiver is unbounded. This construction follows
by generalizing a standard approach in the design of PIR protocols (e.g., [59]). In
this method the receiver generates a sequence of n commitments hiding the char-
acteristic vector of its selection, and the server computes an encoding of the XOR
(alternatively, OR) of all of the committed values which correspond to the 1-entries
of the database. When decoded, this value amounts to the bit that the receiver was
seeking. The nontriviality in the PIR protocol stems from the fact that the length of
the latter encoding can be made shorter than the length of the database. Typically
this is achieved by using homomorphic properties of specific commitment schemes.
In our case, this is achieved via the compression of OR(L) (where L is the language
defined by the commitment scheme). Thus the use of compression here can be viewed
as a relaxation of the traditional use of homomorphic commitments.

The result of section 3.1 follows from this general scheme combined with the
observation that PIR with an unbounded receiver implies CRH (via the reduction of
[53]). Section 6 observes that the receiver in the PIR protocol can be made efficient if
the underlying compression is witness-retrievable. The results of section 4 follow by
further observing that the CRH construction doesn’t require the committed vector to
be known to anyone, and moreover this construction remains collision resistant even
if the committed vector is uniformly random (otherwise one could break the semantic
security of the commitment). Thus the commitments can be replaced by random
instances of a hard on average language. When compression is imperfect, the CRH is
relaxed to a distributional variant which still implies a one-way function.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1709

7.2. Future directions and open problems. The issue of compressibility and
the corresponding classification introduced in this work raise many open problems and
directions. The obvious one is to come up with a compression algorithm for a problem
like SAT or Clique (or some VCOR-complete or hard problem). Note that the new
impossibility results of Fortnow and Santhanam [36] do not rule out the possibility
of error-prone compression for these languages. We have seen compressibility of some
interesting NP languages, and hence the question is, Where exactly is the boundary
between compressibility and incompressibility? We tend to conjecture that it is in
the low levels of the VC hierarchy. We view PCP amplification methods such as the
recent result of Dinur [23] as potential leads toward achieving compression. This is
because these results show a natural amplification of properties on a graph and could
potentially be combined with a simple compression of promise problems (such as the
example for GapSAT in section 2.10). The main issue is doing the PCP amplification
without introducing many new variables. Due to the recent results of [36] and [14],
the underlying PCP in such an approach must also introduce some level of errors.

In particular, the following task would suffice for achieving nontrivial compression:
given CNF formulae φ1 and φ2 (not necessarily with short witnesses), come up with
a CNF formula φ that (1) satisfiability of the new formula coincides with very high
probability with the satisfiability of φ1∨φ2, and (2) shorter than the combined lengths
of φ1 and φ2. By shorter, we mean of length (1 − ε)(|φ1| + |φ2|). The reason this
is sufficient is that we can apply it recursively and obtain nontrivial compression for
OR(SAT), which implies the cryptographic applications.

Short of showing a compression for general complexity classes, it would be inter-
esting to come up with further interesting compression algorithms as well as to obtain
more hardness results. For instance, is Clique or any other embedding problem com-
plete for VC1? Is there a natural and simple complete problem for VC1? Also, the
VC hierarchy is by no means the ultimate classification with respect to compressibil-
ity. One can hope to further refine this classification, especially within the confines
of VC1. Moreover, it would be interesting to find connections of the VC hierarchy
to other classifications (e.g., in the style of Feige [31] for average case complexity
and approximation algorithms and Chen et al. [12] for parameterized complexity and
subexponential algorithms).

Regarding the cryptographic application of getting a CRH from one-way functions
(Theorem 3.1), one issue, Is how essential is the requirement that the compression
will be errorless (this question is even more interesting due to the new impossibility
results of [36])? We know that this requirement can be relaxed to hold with an
error that is exponentially small in m. However, it is unknown whether a CRH can
be constructed from any one-way function using a compression algorithm that errs
with probability that is, say, exponentially small in n and logm. Note that using
typical amplification techniques for CRH are unsuccessful. For example, taking a
concatenation of several independently chosen hash functions on the same input fails,
since reducing the adversary’s success probability to allow using the a union bound
requires using too many (Ω(m)) independent functions for the overall hash to still
be shrinking. Another question in this regard is whether compression of languages
outside of NP is possible. For example, applications such as the construction of a
CRH (in sections 3.1 and 4) can work also with compression of the language AND(L)
(which may not have a short witness) or XOR(L) (not in NP) rather than OR(L).

Especially in light of the apparent hardness of compression, it is valuable to un-
derstand what are the implications of incompressibility. We have seen the necessity
of incompressibility for the security of schemes in the hybrid BSM. Other examples

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1710 DANNY HARNIK AND MONI NAOR

are the previously mentioned works of Dubrov and Ishai [26] regarding derandomiza-
tion and Dziembowski [28] with respect to forward-secure storage. In order to gain
confidence in an incompressibility assumption when used in a cryptographic setting,
it is important to come up with an efficiently falsifiable assumption26 of this nature
(see [68]).

Finally we feel that we have just scratched the surface of an important topic, and
in the future there will be other implications of compressibility or the impossibility of
compression, whether in cryptography or in other areas.

Acknowledgments. We thank Yuval Ishai for many helpful comments and
specifically for pointing out that the CRH construction does not require witness-
retrievability. We are also grateful to Alon Rosen, Ronen Shaltiel, and Gillat Kol
for their comments on the presentation and Hovav Shacham for conversations regard-
ing witness-retrievable compression. Finally we thank the anonymous referees for
FOCS and SICOMP, Salil Vadhan and Mike Langston for their helpful comments and
suggestions, and Mike Fellows for pointing out some references.

REFERENCES

[1] S. Aaronson, NP-complete problems and physical reality, SIGACT News, 36 (2005), pp. 30–52.
[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. ACM, 42 (1995), pp. 844–856.
[3] Y. Aumann, Y.Z. Ding, and M.O. Rabin, Everlasting security in the bounded storage model,

IEEE Trans. Inform. Theory, 48 (2002), pp. 1668–1680.
[4] Y. Aumann and M.O. Rabin, Information theoretically secure communication in the limited

storage space model, in Advances in Cryptology–CRYPTO ’99, Lecture Notes in Comput.
Sci. 1666, Springer, New York, 1999, pp. 65–79.

[5] B. Barak, How to go beyond the black-box simulation barrier, in Proceedings of the 42nd IEEE
Symposium on Foundations of Computer Science, 2001, pp. 106–115.

[6] M. Bellare, A. Boldyreva, and A. Palacio, An uninstantiable random-oracle-model scheme
for a hybrid-encryption problem, in Advances in Cryptology – EUROCRYPT ’2004, Lecture
Notes in Comput. Sci. 3027, 2004, Springer, New York, pp. 171–188.

[7] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average case com-
plexity, J. Comput. System Sci., 44 (1992), pp. 193–219.

[8] J. Buss and T. Islam, Simplifying the weft hierarchy, Theoret. Comput. Sci., 351 (2006),
pp. 303–313.

[9] C. Cachin and U. Maurer, Unconditional security against memory-bound adversaries, in
Advances in Cryptology – CRYPTO ’97, Lecture Notes in Comput. Sci. 1294, Springer,
New York, 1997, pp. 292–306.

[10] L. Cai and J. Chen, On the amount of nondeterminism and the power of verifying, SIAM J.
Comput., 26 (1997), pp. 733–750.

[11] R. Canetti, O. Goldreich, and S. Halevi, The random oracle methodology, revisited, J.
ACM, 51 (2004), pp. 557–594.

[12] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia, Tight lower
bounds for certain parameterized NP-hard problems, Inform. and Comput., 201 (2005),
pp. 216–231.

[13] J. Chen, I. Kanj, and W. Jia, Vertex cover: Further observations and further improvements,
J. Algorithms, 41 (2001), pp. 280–301.

[14] Y. Chen and M. Müller, SAT is unlikely to be compressible, manuscript, 2007.
[15] B. Chor, M. Fellows, and D. Juedes, Linear kernels in linear time, or how to save k colors

in O(n2) steps, in WG 04, Lecture Notes in Comput. Sci. 3353, Springer-Verlag, New York,
2004, pp. 257–269.

[16] S.A. Cook, The complexity of theorem-proving procedures, in Proceedings of the 3rd ACM
Symposium on the Theory of Computing, 1971, pp. 151–158.

[17] I. Damg̊ard, A design principle for hash functions, in Advances in Cryptology - CRYPTO ’89,
Lecture Notes in Comput. Sci. 435, Springer, New York, 1989, pp. 416–427.

26An efficiently falsifiable assumption is one for which it is possible to create verifiable challenges
so that if the assumption is false, then the challenges can be solved.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1711

[18] I. Damg̊ard, T. Pedersen, and B. Pfitzmann, On the existence of statistically hiding bit
commitment schemes and fail-stop signatures, in Advances in Cryptology - CRYPTO ’93,
Lecture Notes in Comput. Sci. 773, Springer, New York, 1993, pp. 250–265.

[19] H. Dell and D. van Melkebeek, Satisfiability Allows No Nontrivial Sparsification Unless the
Polynomial-time Hierarchy Collapses, manuscript.

[20] G. Di Crescenzo, T. Malkin, and R. Ostrovsky, Single database private information re-
trieval implies oblivious transfer, in Advances in Cryptology – EUROCRYPT ’2000, Lec-
ture Notes in Comput. Sci. 1807, Springer, New York, 2000, pp. 122–138.

[21] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory,
22 (1976), pp. 644–654.

[22] Y.Z. Ding and M.O. Rabin, Hyper-encryption and everlasting security, in Annual Symposium
on Theoretical Aspects of Computer Science (STACS), Lecture Notes in Comput. Sci. 2285,
Springer, New York, 2002, pp. 1–26.

[23] I. Dinur, The PCP theorem by gap amplification, J. ACM, 54 (2007), article 12.
[24] R. Downey and M. Fellows, Parameterized Complexity, Springer, New York, 1999.
[25] R. Downey, M. Fellows, and U. Stege, Parameterized complexity: A systematic method

for confronting computational intractability, in Contemporary Trends in Discrete Mathe-
matics, AMS DIMACS Proc. Ser. 49, AMS, Providence, RI, 1999, pp. 49–100.

[26] B. Dubrov and Y. Ishai, On the randomness complexity of efficient sampling, in Proceedings
of the 38th ACM Symposium on the Theory of Computing, 2006, pp. 711–720.

[27] C. Dwork, J. Lotspiech, and M. Naor, Digital signets: Self-enforcing protection of digital
information, in Proceedings of the 28th ACM Symposium on the Theory of Computing,
1996, pp. 489–498.

[28] S. Dziembowski, On forward-secure storage, in Advances in Cryptology – CRYPTO ’06, Lec-
ture Notes in Comput. Sci. 4117, Springer, New York, 2006, pp. 251–270.

[29] S. Dziembowski and U. Maurer, On generating the initial key in the bounded-storage model,
in Advances in Cryptology – EUROCRYPT 2004, Lecture Notes in Comput. Sci. 3027,
Springer, New York, 2004, pp. 126–137.

[30] S. Dziembowski and U. Maurer, Optimal randomizer efficiency in the bounded-storage model,
J. Cryptology, 17 (2004), pp. 5–26.

[31] U. Feige, Relations between average case complexity and approximation complexity, in Pro-
ceedings of the 34th ACM Symposium on the Theory of Computing, 2002, pp. 534–543.

[32] U. Feige and J. Kilian, On limited versus polynomial nondeterminism, Chicago J. Theoret.
Comput. Sci., 1997 (1997), pp. 1–20.

[33] M. Fischlin, On the impossibility of constructing non-interactive statistically-secret protocols
from any trapdoor one-way function, in Topics in Cryptology–CT-RSA 2002, The Cryp-
tographer’s Track at the RSA Conference, 2002, pp. 79–95.

[34] J. Flum and M. Grohe, Parameterized Compleixity Theory, Springer, New York, 2006.
[35] J. Flum, M. Grohe, and M. Weyer, Bounded fixed-parameter tractability and log2 n nonde-

terministic bits, in Proceedings of the 31st International Colloquium on Automata, Lan-
guages and Programming (ICALP) 2004, Lecture Notes in Comput. Sci. 3142, Springer,
New York, 2004, pp. 555–567.

[36] L. Fortnow and R. Santhanam, Infeasibility of instance compression and succinct PCPs for
NP, in Proceedings of the 40th ACM Symposium on the Theory of Computing, ACM, New
York, 2008, pp. 133–142.

[37] O. Goldreich, Foundations of Cryptography, Cambridge University Press, London, 2001.
[38] O. Goldreich, Foundations of Cryptography - Volume 2, Cambridge University Press, London,

2004.
[39] O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity, or

all languages in NP have zero-knowledge proof systems, J. ACM, 38 (1991), pp. 691–729.
[40] J. Goldsmith, M. Levy, and M. Mundhenk, Limited nondeterminism, SIGACT News, 27

(1996), pp. 20–29.
[41] S. Goldwasser and Y. Tauman Kalai, On the (in)security of the Fiat-Shamir paradigm,

in Proceedings of the 44th IEEE Symposium on Foundations of Computer Science, 2003,
pp. 102–111.

[42] I. Haitner, J. Hoch, O. Reingold, and G. Segev, Finding collisions in interactive protocols
– a tight lower bound on the round complexity of statistically-hiding commitments, in
Proceedings of the 48th IEEE Symposium on Foundations of Computer Science, 2007,
pp. 669–679.

[43] I. Haitner, O. Horvitz, J. Katz, C. Koo, R. Morselli, and R. Shaltiel, Reducing complex-
ity assumptions for statistically-hiding commitment, in Advances in Cryptology – EURO-
CRYPT ’2005, Lecture Notes in Comput. Sci. 3494, Springer, New York, 2005, pp. 58–77.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1712 DANNY HARNIK AND MONI NAOR

[44] I. Haitner and O. Reingold, Statistically-hiding commitment from any one-way function, in
Proceedings of the 39th ACM Symposium on the Theory of Computing, 2007, pp. 1–10.

[45] D. Harnik and M. Naor, On everlasting security in the hybrid bounded storage model, in
Proceedings of the 33rd International Colloquium on Automata, Languages and Program-
ming (ICALP) 2006, Part II, Lecture Notes in Comput. Sci. 4052, Springer, New York,
2006, pp. 192–203.

[46] D. Harnik and M. Naor, On the compressibility of NP instances and cryptographic applica-
tions, in Electron. Colloq. Comput. Complex., TR06-022, 2006.

[47] J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 29 (1999), pp. 1364–1396.

[48] C. Hsiao and L. Reyzin, Finding collisions on a public road, or do secure hash functions need
secret coins?, in Advances in Cryptology – CRYPTO ’04, Lecture in Notes Comput. Sci.
3152, Springer, New York, 2004, pp. 92–105.

[49] R. Impagliazzo, A personal view of average-case complexity, in Proceedings of the 10th Annual
Structure in Complexity Theory Conference, 1995, IEEE Computer Society Press, pp. 134–
147.

[50] R. Impagliazzo and M. Luby, One-way functions are essential for complexity based cryptog-
raphy, in Proceedings of the 30th IEEE Symposium on Foundations of Computer Science,
1989, pp. 230–235.

[51] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complex-
ity?, in Proceedings of the 39th IEEE Symposium on Foundations of Computer Science,
1998, pp. 653–663.

[52] R. Impagliazzo and S. Rudich, Limits on the provable consequences of one-way permutations,
in Proceedings of the 21st ACM Symposium on the Theory of Computing, 1989, pp. 44–61.

[53] Y. Ishai, E. Kushilevitz, and R. Ostrovsky, Sufficient conditions for collision-resistant
hashing, in 2nd Theory of Cryptography Conference (TCC ’05), Lecture Notes in Comput.
Sci. 3378, Springer, New York, 2005, pp. 445–456.

[54] H. Kaplan, R. Shamir, and R. Tarjan, Tractability of parameterized completion problems
on chordal, strongly chordal, and proper interval graphs, SIAM J. Comput., 28 (1999),
pp. 1906–1922.

[55] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[56] R. Karp and M. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res. Dev.,
31 (1987), pp. 249–260.

[57] J. Kilian, A note on efficient zero-knowledge proofs and arguments, in Proceedings of the 24th
ACM Symposium on the Theory of Computing, 1992, pp. 723–732.

[58] C. Kintala and P. Fischer, Refining nondeterminism in relativized polynomial-time bounded
computations, SIAM J. Comput., 9 (1980), pp. 46–53.

[59] E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single database,
computationally-private information retrieval, in Proceedings of the 38th IEEE Sympo-
sium on Foundations of Computer Science, 1997, pp. 364–373.

[60] M. Li and P. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd
ed., Springer, New York, 1997.

[61] C. Lu, Encryption against space-bounded adversaries from on-line strong extractors, J. Cryp-
tology, 17 (2004), pp. 27–42.

[62] U. Maurer, Conditionally-perfect secrecy and a provably-secure randomized cipher, J. Cryp-
tology, 5 (1992), pp. 53–66.

[63] U. Maurer, Secret key agreement by public discussion, IEEE Trans. Inform. Theory, 39 (1993),
pp. 733–742.

[64] U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on reduc-
tions, and applications to the random oracle methodology, in Proceedings of the 1st Theory
of Cryptography Conference (TCC ’04), Lecture Notes in Comput. Sci. 2951, Springer, New
York, 2004, pp. 21–39.

[65] S. Micali, CS proofs, in Proceedings of the 35th IEEE Symposium on Foundations of Computer
Science, 1994, pp. 436–453.

[66] J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,
SIAM J. Comput., 22 (1993), pp. 838–856.

[67] M. Naor, Bit commitment using pseudorandomness, J. Cryptology, 4 (1991), pp. 151–158.
[68] M. Naor, On cryptographic assumptions and challenges, in Advances in Cryptology –

CRYPTO ’03, Lecture Notes in Comput. Sci. 2729, Springer, New York, 2003, pp. 96–
109.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION OF INSTANCES AND CRYPTO APPLICATIONS 1713

[69] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung, Perfect zero-knowledge arguments
for NP using any one-way permutation, J. Cryptology, 11 (1998), pp. 87–108.

[70] M. Naor and M. Yung, Universal one-way hash functions and their cryptographic applica-
tions, in Proceedings of the 21st ACM Symposium on the Theory of Computing, 1989,
pp. 33–43.

[71] M. Nguyen, S. Ong, and S. Vadhan, Statistical zero-knowledge arguments for NP from any
one-way function, in Proceedings of the 47th IEEE Symposium on Foundations of Com-
puter Science, 2006, pp. 3–14.

[72] R. Niedermeier, Invitation to Fixed Parameter Algorithms, Oxford University Press, London,
2006.

[73] J.B. Nielsen, Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case, in Advances in Cryptology – CRYPTO ’02, Lecture Notes in
Comput. Sci. 2442, Springer, New York, 2002, pp. 111–126.

[74] J.B. Nielsen, On protocol security in the cryptographic model, BRICS Diss. Ser. DS-03-8,
University of Aarhus, Denmark, 2003.

[75] C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes,
in Proceedings of the 20th ACM Symposium on the Theory of Computing, 1988, pp. 229–
234.

[76] C. Papadimitriou and M. Yannakakis, On limited nondeterminism and the complexity of the
V-C dimension, J. Comput. System Sci., 53 (1996), pp. 161–170.

[77] D. Simon, Finding collisions on a one-way street: Can secure hash functions be based on
general assumptions?, in Advances in Cryptology – EUROCRYPT 1998, Lecture Notes in
Comput. Sci. 1403, Springer, New York, 1998, pp. 334–345.

[78] L. Trevisan, S. Vadhan, and D. Zuckerman, Compression of samplable sources, Comput.
Complexity, 14 (2005), pp. 186–227.

[79] S. Vadhan, Constructing locally computable extractors and cryptosystems in the bounded stor-
age model, J. Cryptology, 17 (2004), pp. 43–77.

[80] L. Valiant and V. Vazirani, NP is as easy as detecting unique solutions, Theoret. Comput.
Sci., 47 (1986), pp. 85–93.

[81] H. Wee, On pseudoentropy versus compressibility, in Proceedings of the IEEE Conference on
Computational Complexity, 2004, pp. 29–41.

[82] H. Wee, On obfuscating point functions, in Proceedings of the 37th ACM Symposium on
Theory of Computing, 2005, pp. 523–532.

[83] H. Wee, Finding pessiland, in Theory of Cryptography Conference (TCC ’06), Lecture Notes
in Comput. Sci. 3876, Springer, New York, 2006, pp. 429–442.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

