Does x belongs to L ?

 Verifier
— An element x
— Ask questions to prover
— Gets anwer:
— Completeness: Is convinced that x in L, if so
— Soundess: reject « x in L » if not so

« Zero-knowledge:

— Intuitively: at the end, verifier is convinced that x in
L (if so), but learns nothing else.

Proof and Interactive proof

» Two parts in a proof:
— Prover: knows the proof (-> the secret) [or is intended to know]
— Verifier: verifies the proof is correct (-> authentication)

» Correctness of a proof system/verifier:
— Completeness: every valid proof is accepted by the verifier
— Soundness: every invalid proof is rejected by the verifier

* Interactive proof system
— Protocol (questions/answers) between the verifier and the prover
— Verifier: probabilistic algorithm, polynomially bounded
— Soundness: every invalid proof is rejected with high probability (> 1/2)
— Completeness: every valid proof is accepted with high probability (>1/2)




Interaction with deterministic
verifier and prover

Interaction between 2 functions f and g on input x :

— a,:=1(x); a,:=9(x,a4); az:=f(x, a;, @) ; ...; Aeq:=f(X, @y,..., 8); Agip:=9(X, @y,...,8541)---
— Notation: out,<f, g>(x) = f(x, a4, ..., a,)

Def: a language L has a k-round deterministic interactive proof
system iff there exists a DTM V that on input (x,a;,..., ) runs in
polynomial time |x|°(V) and can have a k-round interaction with
any function P such that:

— Completeness : there exists P such that for any x in L: Out,<V,P>(x) = 1
— Soundness: iff x not in L then for all P : Out,<V,P>(x) =0

Let dIP= { languages L with a k(n)-round deterministic

interactive proof system with k(n)=n°" }
— Theorem: dIP = NP. (Proof: 3-SAT )
— So interaction with deterministic algorithms brings nothing

The power of
probabilistic interaction

/4

Verifier

Prover
(Merlin) (Arthur)




Class IP

» Def: a language L has a k-round probabilistic interactive proof
system iff there exists a probabilistic polynomial time Turing
machine V that that can have a k-round interaction with a
function P such that for all input x :

— Completeness : there exists P such that for any x in L:
Prob[ Out,<V,P>(x) =1]2=2/3

— Soundness: iff x not in L then for all P :
Prob[ Out,<V,P>(x)=1]<1/3

Note: all probabilities are on the random choices made by V.

* IP(k) = { L that have a k-round probabilistic interactive proof system}

« IP= Uy, IP(k)

Example of interactive computation

» Graph isomorphism:
— Input: G=(V,E) and G'=(V',E’)
— Output: YES iff G == G’ (i.e. a permutation of V ->V' makes E=E’)

* In NP, not known to be NP-complete,
not known to be in co-NP.

» Assume an NP Oracle for Graph isomorphism =>
then a probabilistic verifier can compute Graph isomorphism in
polynomial time.
— Protocol and error probability analysis.

» Theorem [Goldreich&al] :
— NP included in IP.
— any language in NP possesses a zero-knowledge protocol.




Interactive Algorithm Graph Nonlsomorhism

AlgoGraphlso(G=(V,,E), G;=(V,E) ) {
If (#V, 1= #V,) or (#E, 1= #E,)

return “NO : G, not isomorphic to G,”;

n:=#Vy; OracleWhichlslso(G,, G,, G’
For (i=1 .. k) { racleWhic .?so(,.“. 2, ){
/I precondition: G’ is isomorphic to
P := randompermutation([1, ..., n]) ; Vi G1 or Gz or both.
g,:::goT((1’2}) : /I Output: i into {1,2} and a permutation
e <:> I P, such that G;= P,( G’ )

(i, P;) := Call OracleWhichlslso(G,, G,, G’) ;
If (G, # P, (G’) ) FAILURE(“Oracle is not reliable”) ; s
If (b #i) return “YES : G, is isomorphic to G,"; Return (i, Pi );

} }

return “NO : G, not isomorphic to G,”;

Theorem: Assuming OracleWhichlslso of polynomial time,
AlgoGraphlso(G,, G, ) proves in polynomial time k.n®" that :

- either G, is isomorphic to G, (no error)

- or G, is not isomorphic with error probability < 2.
Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM

Analysis of error probability

Prob( Output of | “ygS : G, is “NO: G, not
Truth: Algocraphisa(e, 6)) | jsomorphic to G,” | isomorphic to G,”
G,=G,??
Case G, =G, Prob =1 - 2 Prob = 2«
| (completeness)
No: Case G, # G, Impossible Always
(soundness) (PI’Ob = 0) (Prob = 1)

-When the algorithm output YES : G, is isomorphic to G, then G; =G,
=> no error on this output.

-When the algorithm output “NO: G, not isomorphic to G,” then we may
have an error (iff G, = G,), but with a probability < 2*

One-sided error => Monte Carlo algorithm for Graph-lsomorphism




Graph [non]-isomorphism
and zero knowledge

* In a zero-knowledge protocol, the verifier learns that
G, is isomorphic to G, but nothing else.

* Previous protocol not known to be zero-knowledge:
— Prover sends the permutation P, such that G,= P,(G,) : so
the verifier learns not only G, isomorphic to G, but P, too.

— We do not know, given two isomorphic graph, wether there
exists a (randomized) polynomial time algorithm that returns

a permutation that proves isomorphism.

A zero-knowledge interactive proof
for Graph Isomorhism

Verifier Prover

input: (G,=(V4,E,), G,=(V,E,) ) gets G, G,

Accepts prover if convinced that G1 is private secret perm. Pg: G,=Py(G,) ;

isomorphic to G2 1. Chooses a random perm. P’ and
sends to verifier H=P’(G,)

2. Receives H;
Chooses b=random(1,2) and sends <E> 3. Receives b;
if b=1 sends P’=P’0P to the verifier

b to the prover
else b=2: sends P’=P’ to the verifier

4. receives P” and checks H =P"( G, )

Theorem: This is a zero-knowledge, sound and complete, polynomial time
interactive proof that the two graphs G, and G, are isomorph.




#3-SAT in IP

Key 1= Arithmetization:
a clause c is represented by a polynomial Q(c) as follows:
* Q(not(x) ) = 1-x Q(x and y) = x.y
* Q( x or not(y) or z)=Q(not( not(x) and y and not(z))= 1—( (1-x).y.(1-z) )

Let: ®=(c,and ... and ¢, ) be a 3-SAT CNF formula,
and g(Xy, ..., X,) = Q(c,).Q(c,). ... .Q(c,,) : deg(g) = 3m (small!)
A circuit that evaluates g at any (b, ..., b,) has polynomial size.

To prove #SAT(®)=K reduces to K=3%, _o4... Z, 1 9(by, ..., by,)

#3-SAT in IP

To prove #SAT(®)=K reduces to K=3%, _o4... Z, 1 9(by, ..., by,)
Key 2= Recursion .
Notation: for a,, ..., a, integers, the following polynomials are defined from g:

= On(Xpy - X)) =Xy, o Xi) 5 G (XK, e Xi) = 90Xy, s Xy, @)
e Ok(Xyy s X) =Xy Xy By a,) ....g9;(Xy)=9(Xy,ay ..., a,)

= $u(X)=Zp <01+ Zp =01 IO, -0y by) 5 84 (X)=Zp 20.1-+- 2 =0,19(D1,--,0n1,X)
S,2(X) =2, 20.1--- Zp, ,=0,1 (01, s broy X @p) 55 82(X) =g(X, @y, ..., @)

Recursion : Proving #0=K < S (X) =K &S, ,(0)+S,_,(1)=K

To do this, verifier asks to prover S,,_,(X) and checks by random
evaluation S, 1(X)=Z, _g 1---Z,_,=0.19n(D1,--,.0n.1,X);

this reduces to check S, (a,)=Z,,-g 1---Zp, ,=0,19(D1,--,0, 1,8,)

so S, .4(a,)72p -0 1---Zp, ,=0,19n-1 (01,--,0,4) => recursion to n-1
Since #®=S [g]() < 2" then for p>2" : (#P=K) & (#D=K mod p)

— To limit to a polynomial number of operations, computation is performed

mod a prime p in 2" - 22" (provided by prover and checked by verifier)

— Note: a randomized alternative is that the verifier chooses a random smaller prime p > n2.
(then S,-K may be multiple of p, which is not possible with p >2").




#3-SAT in IP

 Error probability: from Schwartz-Zippel:
— Probjfailure at step k] =< d°(g,)/p, < d/p
— Prob[success at step k] = (1 — d/p)
— Prob[success for all n steps] = (1 — d/p)"

» Choose p determinstic prime larger than 2"
— 2" = max value for the sum !
— With p prime, computing mod p makes no error!
* For 3-SAT, d° of each clause < 3, also d°(g)<3m :

Prob[success] = (1-3m/p)" ~ 1-3mn/p
Choosing p prime larger than 3mn2" (note that p has O(n) bits)
Problfaiilure] < 2" (w.h.p.)

Sumcheck protocol in F, (mod p)

Input: a circuit C,(X,, ..., X,) with n inputs that evaluates a degree d polynomii
a(Xy, ..., X,) with coefs in F in polynomial time n®"); and an integer K.
Output: a proof that sum 2, _, ;... Z, .o 1 9(by, ..., b,) equals K, mod p
— With notation: this is equivalent to S,[g]() = K,, mod p.
Verifier: asks prover to send the univariate polynomial h,(X) of degree < d :
ho(X) = Zp 0.1 Zp, 20,1901, D, ..., By, X)
The prover sends to verifier a polynomial s,(X) (a univariate polynomial in F[X])
Verifier receives s,(X); it checks that s,(0)+s,(1)=K, mod p and s,(X)=h(X) :
— First of all, if s,(0)+s,(1)#K, reject. Else check s,(X)=h,(X)by random eval:
— Ifn=1: h,=g Il =>if g(0)+g(1) # K,, reject (else accept !)
— Else verfier picks a random 0<a, <p and computes K _;:=s,(a,) mod p ;
then, by recursion, it proves:
Kh.i=hp(@) mod p =% o 4... 2y =01 Cpq (Dy, -, brq)
by building the circuit C,_{(Xy, ..., X,.4) equals to C,(X,, ..., X,.¢, @).
If s,(a) # h,(a) mod p, the proof is rejected (error detected)
Error probability [soundness] Prob[reject | sum#K,] = (1-d/p)" .

[by induction: n=1: no error => P[reject | sum#K]=1 = (1-d/p). Now suppose property true at n-1. At n we have
Pr(error)=Pr[ s,(a)=h,(a) | s,#h,] < d/p => Pr[ reject | sum#K,] = Pr| reject | s,#h,] = (1-d/p)*".(1-d /p) = (1-d/p)".]




#3-SAT: interactive polynomial proof

Verifier Prover
input: F(X,,...,X,)=(c;and ... and c,) Preliminar: sends p prime in {2, 221}
K, an integer; let g(x) = IT,. , Pol(c;)
Accepts iff convinced that #F = K|..
Preliminar receive p, check p is prime in {2n, 221}
Compute g(Xy, ..., X,)= I ,Pol(c) deg(g)<3m
Check K= Zx4-0,1- -+ Zxn=0,1 9(X4, -, X;)) [P
1. If n=1, if (g(0)+g(1) = K, ) accept ; else reject.
If n=2, ask h,(X) to P. 2. Send s(X); [note that if P is not
cheating, s(X) = h,(X) ]
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3. Receive s, (X) of degree <m.
Compute v,=s,, (0)+s, (1); if (v, # K,,) reject.
else choose r,=rand(0, ... p-1); let K. _;=s(r,)
and use the same protocol to check
Kn1=Zx4=0,1-++ Zxne1=0,1 9(X4s -y Xy, 1) [P

Theorem: This is a sound and complete, polynomial time randomized
interactive proof of #3-SAT.

Moreover, prob( V rejects | K # #F) 2 (1-3m/p)*n ,
also prob(error) < 1-(1-3m/p)*n < 3mn2™" .

Interactive proof of TQBF (1/2)

* Input: quantified boolean formula F = VX, 33X, VX;...3X, : ®(X,, ..., X,)
Output: Yes if F is true
» Arithmetization: let P, (X;, ..., X)) the polynomial that represents ®.
— 3X,€{0,1}: Q(Xq, ..., X,) is represented by polynomial Q(X,, ..., X,.1,00+Q(X, ..., X,.1,1)
- VX,€{0,1}: Q(X;, ..., X,) is represented by polynomial Q(Xq, ..., X,4,0).Q(X,, ..., X.1,1)
» With a similar approach to #SAT, arithmetization leads to check s(0).s(1)=K
But then multiplication makes the degree increase to 2" (not polynomial !)

» Key: we are only interested by {0,1} values! A polynomial P can be
approximated with a multi-linear function with same evaluations at {0, 1}".
Let L,[P] be the linearization operator defined as :
LIPCXy, - .-, X = (1= XPP(Xq, oy Xi0,0, Xias -5 Xo) + (K)P(Xy,0, Xig, 1y Ky o X3)

» Linearization of F leads to the expression :
VX L3X, LiL[ VX5 LyiLoLg[ ... [3 X, Lyl L[ Py (Xq, ..., Xp) 11100
whuch is of size O(1+2+3+... +n) = O(n2) polynomial.




Interactive proof of TQBF (2/2)

* Recursive protocol. Suppose for any polynomial g(X,, ..., X,) the prover is
able to convince the verifier that
- g(ay, ..., a))=C with prob=1 for any a, ..., a,,C whenitis true

— and prob<e when it is false.

* Let U be the polynomial of degree d :
— Case 1: U(Xy, ..., Xiq1) = « IXE{0,1}: g(Xy, -0y Xi) » = 9Ky, vey Xiers0) + 9Ky, -y Xiqs1)

=> The prover provides a polynomial s(X,) supposed to be g(ay, ..., a4, Xi)
Verifier checks if s(0)+s(1) = C. If not reject;
else verifier picks a random O<a<p and asks prover to prove « s(a) =g(ay, ..., @, a ) ».

— Case 2: U(Xq, ..., Xiq) = « VX E{0,1}: g(Xq, ..., X ) » =9(Xy, oony Xier,0).9(XK4, ooty Xiqn 1)
Same as case 1 but verifier checks if s(0).s(1) = C [instead of s(0)+s(1)=C ]

— Case 3: U(Xy, ..., X) = « LIg(X, ooy X1 » = (1-X)g(K 1 ey Xis0) + X g(Xgy vy Xips1)

=> The prover provides a polynomial s(X,) supposed to be g(ay, ..., a4, Xi)
Verifier checks (1-a,)s(0) + a,.s(1) = C. If not reject;
else verifier picks a random O<a<p and asks prover to prove « s(a) =g(ay, ..., @, a ) ».

* Error analysis

Complexity classes

Decision problems (1 output bit: YES/ NO)
Deterministic polynomial time:
— P : both Yes/No sides
— NP : certification for the Yes side
— co-NP: certification for the No side
Randomized polynomial time:
— BPP: Atlantic City: prob(error) < 1/2
— RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
— ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof
Verifier: randomized polynomial time
Prover: interactive (dynamic), unbound power
* F(x) = YES => it exists a correct prover I1 such that Prob][ Verifier (I1, x) accepts ] = 1;
* F(x) = NO => for all prover I1: Prob][ Verifier (I1, x) accepts ] < 1/2.
Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)
— PCP(r, q): the verifier uses random bits and reads q bits of the proof only.
— Theorem: NP=PCP(log n, O(1))




Application in cryptology:

zero-knowledge [wikipedia]

Importance of « proof » in crypto: eg. identity
proof=authentication

Ali Baba (peggy) knows the secret
— "iftaH ya simsim" («Open Sesamey)
— "Close, Simsim" («Close Sesame»).

Bob (victor) and Ali Baba design a protocol to
prove that Ali Baba has the secret without
revealing it

— Ali Baba is the prover

— Bob is the verifier

— Ali Baba leaks no information

Peggy randomly takes either
path A or B, while Victor
walits outside

Peggy reliably appears at
the exit Victor names
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