Does x belongs to L?

- Verifier
 - An element x
 - Ask questions to prover
 - Gets anwer:
 - Completeness: Is convinced that x in L, if so
 - Soundess: reject « x in L » if not so
- · Zero-knowledge:
 - Intuitively: at the end, verifier is convinced that x in L (if so), but *learns nothing else*.

Proof and Interactive proof

- Two parts in a proof:
 - Prover: knows the proof (-> the secret) [or is intended to know]
 - Verifier: verifies the proof is correct (-> authentication)
- · Correctness of a proof system/verifier:
 - Completeness: every valid proof is accepted by the verifier
 - Soundness: every invalid proof is rejected by the verifier
- Interactive proof system
 - Protocol (questions/answers) between the verifier and the prover
 - Verifier: probabilistic algorithm, polynomially bounded
 - Soundness: every invalid proof is rejected with high probability (> 1/2)
 - Completeness: every valid proof is accepted with high probability (>1/2)

Interaction with deterministic verifier and prover

- Interaction between 2 functions f and g on input x :
 - $\begin{array}{ll} & a_1 := f(x) \; ; \; a_2 := g(x, \, a_1) \; ; \; a_3 := f(x, \, a_1, \, a_2) \; ; \; \ldots ; \; a_{2i+1} := f(x, \, a_1, \ldots , \, a_{2i}) ; \; a_{2i+2} := g(x, \, a_1, \ldots , a_{2i+1}) \ldots \\ & \text{Notation: out}_f < f \; , \; g > (x) = f(x, \, a_1, \, \ldots \, , \, a_k) \end{array}$
- Def: a language L has a k-round deterministic interactive proof system iff there exists a DTM V that on input (x,a₁,..., a_i) runs in polynomial time |x|^{O(1)} and can have a k-round interaction with any function P such that:
 - Completeness : there exists P such that for any x in L: $Out_V < V, P > (x) = 1$
 - Soundness: iff x not in L then for all P : $Out_V < V, P > (x) = 0$
- Let dIP= { languages L with a k(n)-round deterministic interactive proof system with k(n)=n^{O(1)} }
 - Theorem: dIP = NP. (Proof: 3-SAT)
 - So interaction with deterministic algorithms brings nothing

Example of interactive computation

- Graph isomorphism:
 - Input: G=(V,E) and G'=(V',E')
 - Output: YES iff G == G' (i.e. a permutation of V ->V' makes E=E')
- In NP, not known to be NP-complete, not known to be in co-NP.
- Assume an NP Oracle for Graph isomorphism => then a probabilistic verifier can compute Graph isomorphism in polynomial time.
 - Protocol and error probability analysis.
- Theorem [Goldreich&al] :
 - NP included in IP.
 - any language in NP possesses a zero-knowledge protocol.

Prob(OutputTruth: $AlgoGraphiso(G_1)$ $G_1 = G_2$??	120.0110	"NO: G ₁ not isomorphic to G ₂ "
Case $G_1 = G_2$	Prob = 1 - 2 ^{-k}	Prob = 2 ^{-k}
No: Case G ₁ ≠ G ₂ (soundness)	Impossible (Prob = 0)	Always (Prob = 1)
When the algorithm output => no error on this output When the algorithm output	ut.	

Graph [non]-isomorphism and zero knowledge

- In a zero-knowledge protocol, the verifier learns that G₁ is isomorphic to G₂ but nothing else.
- Previous protocol not known to be zero-knowledge:
 - Prover sends the permutation P_i such that $G_1 = P_i(G_2)$: so the verifier learns not only G_1 isomorphic to G_2 but P_i too.
 - We do not know, given two isomorphic graph, wether there exists a (randomized) polynomial time algorithm that returns a permutation that proves isomorphism.

#3-SAT in IP

- Error probability: from Schwartz-Zippel:
 - Prob[failure at step k] $\leq d^{\circ}(g_k)/p_k \leq d/p$
 - Prob[success at step k] \ge (1 d/p)
 - Prob[success for all n steps] $\ge (1 d/p)^n$
- Choose p determinstic prime larger than 2ⁿ
 - -2^{n} = max value for the sum !
 - With p prime, computing mod p makes no error!
- For 3-SAT, d° of each clause ≤ 3, also d°(g)≤3m :

Prob[success] \geq (1-3m/p)ⁿ ~ 1-3mn/p Choosing p prime larger than 3mn2ⁿ (note that p has O(n) bits) Prob[faiilure] $\leq 2^{-n}$ (w.h.p.)

Application in cryptology: zero-knowledge [wikipedia]

- Importance of « proof » in crypto: eg. identity proof=authentication
- Ali Baba (Peggy) knows the secret
 - "iftaH ya simsim" («Open Sesame»)
 - "Close, Simsim" («Close Sesame»).
- Bob (Victor) and Ali Baba design a protocol to prove that Ali Baba has the secret without revealing it
 - Ali Baba is the prover
 - Bob is the verifier
 - Ali Baba leaks no information

