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Does x belongs to L ? 

•  Zero-knowledge:  
–  Intuitively: at the end, verifier is convinced that x in 

L (if so), but learns nothing else.  

•  Verifier 
–  An element x 
–  Ask questions to prover 
–  Gets anwer: 
–  Completeness: Is convinced that x in L, if so 
–  Soundess: reject « x in L » if not so 

 

Proof and Interactive proof 
•  Two parts in a proof: 

–  Prover: knows the proof (-> the secret)  [or is intended to know] 
–  Verifier: verifies the proof is correct (-> authentication) 

•  Correctness of a proof system/verifier: 
–  Completeness: every valid proof is accepted by the verifier  
–  Soundness:  every invalid proof  is rejected by the verifier 

•  Interactive proof system 
–  Protocol (questions/answers) between the verifier and the prover  
–  Verifier: probabilistic algorithm, polynomially bounded 
–  Soundness: every invalid proof is rejected with high probability (> 1/2) 
–  Completeness: every valid proof is accepted with high probability (>1/2) 
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Interaction with deterministic 
verifier and prover 

•  Interaction between 2 functions f and g on input x : 
–  a1 := f(x) ; a2 := g(x, a1) ; a3 := f(x, a1, a2) ; …; a2i+1:=f(x, a1,…, a2i); a2i+2:=g(x, a1,…,a2i+1)…  

–  Notation: outf<f , g>(x) = f(x, a1, … , ak) 

•  Def: a language L has a k-round deterministic interactive proof 
system iff there exists a DTM V that on input (x,a1,…, ai) runs in 
polynomial time |x|O(1) and can have a k-round interaction with 
any function P such that: 
–  Completeness : there exists P such that for any x in L: OutV<V,P>(x) = 1 
–  Soundness: iff x not in L then for all P :  OutV<V,P>(x) = 0 

•  Let dIP= { languages L with a k(n)-round deterministic  
   interactive proof system with k(n)=nO(1) } 

–   Theorem: dIP = NP.        (Proof: 3-SAT ) 
–  So interaction with deterministic algorithms brings nothing 

The power of  
probabilistic interaction 

Prover 
(Merlin) 

Verifier 
(Arthur) 
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Class IP 

•  Def: a language L has a k-round probabilistic interactive proof 
system iff there exists a probabilistic polynomial time Turing 
machine V that that can have a k-round interaction with a 
function P such that for all input x : 
–  Completeness : there exists P such that for any x in L:  

       Prob[ OutV<V,P>(x) = 1 ] ≥ 2/3 
–  Soundness: iff x not in L then for all P :   

     Prob[ OutV<V,P>(x) = 1 ] ≤ 1/3 
Note: all probabilities are on the random choices made by V. 
 

•  IP(k) = { L that have a k-round probabilistic interactive proof system} 

•  IP =  Uk≥1 IP(k) 

Example of interactive computation 
•  Graph isomorphism: 

–  Input: G=(V,E) and G’=(V’,E’) 
–  Output: YES iff G == G’ (i.e. a permutation of V ->V’ makes E=E’) 

 

•  In NP, not known to be NP-complete,  
not known to be in co-NP. 
 

•  Assume an NP Oracle for Graph isomorphism =>  
then a probabilistic verifier can compute Graph isomorphism in 
polynomial time. 
–  Protocol and error probability analysis.  

•  Theorem [Goldreich&al] :  
–  NP included in IP. 
–  any language in NP possesses a zero-knowledge protocol.  
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Interactive Algorithm Graph NonIsomorhism 
AlgoGraphIso(G1=(V1,E1), G2=(V2,E2) ) { 

If (#V1 != #V2) or (#E1 != #E2)  
  return “NO : G1 not isomorphic to G2”; 

n := #V1 ; 
For (i=1 .. k) { 

 P := randompermutation([1, …, n]) ; 
 b := random({1,2}) ; 

 G’ := P(Gb) ;  
 ( i, Pi) := Call OracleWhichIsIso(G1, G2, G’) ; 
 If (Gi ≠ Pi (G’) ) FAILURE(“Oracle is not reliable”) ; 
 If ( b ≠ i) return “YES : G1 is isomorphic to G2” ; 

} 
return “NO : G1 not isomorphic to G2”; 

} 

OracleWhichIsIso(G1, G2, G’) { 
// precondition: G’ is isomorphic to 
//                      G1 or G2 or both. 
// Output: i into {1,2} and a permutation 
//              Pi such that Gi = Pi ( G’ ) 
… ; 
Return ( i, Pi ) ; 

}   

Theorem: Assuming OracleWhichIsIso of polynomial time, 
AlgoGraphIso(G1, G2 ) proves in polynomial time k.nO(1) that : 

-  either G1 is isomorphic to G2  (no error)      
-  or G1 is not isomorphic with error probability ≤ 2-k. 

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM 

Analysis of error probability 
               
 Truth: 
 G1 = G2 ?? 

“YES : G1 is 
isomorphic to G2”  

“NO: G1 not 
isomorphic to G2”  

 
Case G1 = G2       
(completeness) 

 
Prob = 1 - 2-k 

 
Prob = 2-k 

 
No:  Case G1 ≠ G2 
(soundness) 

 
Impossible  
(Prob = 0) 

 
Always  

(Prob = 1) 

- When the algorithm output YES : G1 is isomorphic to G2 then  G1 = G2 
    =>  no error on this output. 
 
- When the algorithm output “NO: G1 not isomorphic to G2” then we may  
   have an error (iff G1 = G2), but with a probability ≤  2-k 

 
One-sided error => Monte Carlo algorithm for Graph-Isomorphism 
 

Prob( Output of  
AlgoGraphIso(G1, G2)) 
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Graph [non]-isomorphism  
and zero knowledge 

•  In a zero-knowledge protocol, the verifier learns that 
G1 is isomorphic to G2 but nothing else.  

•  Previous protocol not known to be zero-knowledge: 
–  Prover sends the permutation Pi such that G1= Pi(G2) : so 

the verifier learns not only G1 isomorphic to G2 but Pi too. 
–  We do not know, given two isomorphic graph, wether there 

exists a (randomized) polynomial time algorithm that returns 
a permutation that proves isomorphism.  

A zero-knowledge interactive proof  
for Graph Isomorhism 

Verifier 
 input: (G1=(V1,E1), G2=(V2,E2) )  

     Accepts prover if convinced that G1 is 
isomorphic to G2 

 
 2. Receives H; 
     Chooses b=random(1,2) and sends 
    b to the prover 

 
 

 4. receives P’’ and checks H = P’’( Gb ) 
  

Prover 
 gets G1, G2 

      private secret perm. Ps: G2=Ps(G1) ; 
1.  Chooses a random perm. P’ and 

sends to verifier H=P’(G2)  
 
 3. Receives b; 
     if b=1 sends P’’=P’oPs to the verifier  
     else b=2: sends P’’=P’ to the verifier 
   

Theorem: This is a zero-knowledge, sound and complete, polynomial time 
                  interactive proof  that the two graphs G1 and G2 are isomorph.   
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#3-SAT in IP 
•  Key 1= Arithmetization:  

a clause c is represented by a polynomial Q(c) as follows:  
•  Q( not(x) ) = 1-x     Q(x and y) = x.y 
•  Q( x or not(y) or z)=Q(not( not(x) and y and not(z))= 1–( (1-x).y.(1-z) ) 

•  Let: Φ = ( c1 and … and cm )  be a 3-SAT CNF formula,  
and  g(X1, …, Xn) = Q(c1).Q(c2). … .Q(cm) : deg(g) ≤ 3m  (small!)   
A circuit that evaluates g at any (b1, …, bn) has polynomial size. 
 

•  To prove #SAT(Φ)=K reduces to  K = Σb1=0,1… Σbn=0,1 g(b1, …, bn) 

#3-SAT in IP 
•  To prove #SAT(Φ)=K reduces to  K = Σb1=0,1… Σbn=0,1 g(b1, …, bn) 
•  Key 2= Recursion .  

Notation: for a1, …, an integers, the following polynomials are defined from g: 
–  gn(X1, …, Xn) = g(X1, …, Xn) ; gn-1(X1, …, Xn-1) = g(X1, …, Xn-1, an)   

…  gk(X1, …, Xk) = g(X1, …, Xk, ak+1,…,  an)   …. g1 (X1) = g(X1, a2, …,  an) 

–  Sn(X)=Σb1=0,1… Σbn=0,1 g(b1, …, bn)  ; Sn-1(X)=Σb1=0,1…Σbn-1=0,1g(b1,..,bn-1,X)     
Sn-2(X) =Σb1=0,1… Σbn-2=0,1 g(b1, …, bn-2, X, an) ; … ; S2(X) =g(X, a2, …, an)  
 

•  Recursion : Proving #Φ=K ⇔ Sn(X) =K ⇔Sn-1(0)+Sn-1(1)=K 
To do this, verifier asks to prover Sn-1(X) and checks by random 
evaluation Sn-1(X)=Σb1=0,1…Σbn-1=0,1gn(b1,..,bn-1,X); 
this reduces to check Sn-1(an)=Σb1=0,1…Σbn-1=0,1g(b1,..,bn-1,an)  
so  Sn-1(an)=Σb1=0,1…Σbn-1=0,1gn-1 (b1,..,bn-1)   => recursion to n-1  
Since #Φ=Sn[g]() ≤ 2n then for p>2n : (#Φ=K) ⇔ (#Φ=K mod p) 
–  To limit to a polynomial number of operations, computation is performed 

mod a prime p in 2n .. 22n (provided by prover and checked by verifier) 
–  Note: a randomized alternative is that the verifier chooses a random smaller prime p > n2. 

   (then Sn-K may be multiple of p, which is not possible with p >2n). 
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#3-SAT in IP 
•  Error probability: from Schwartz-Zippel: 

–  Prob[failure at step k] ≤ d°(gk)/pk ≤ d/p 
–  Prob[success at step k] ≥ (1 – d/p) 
–  Prob[success for all n steps] ≥ (1 – d/p)n   

•  Choose p determinstic prime larger than 2n 

–  2n = max value for the sum ! 
–  With p prime,  computing mod p makes no error!  

•  For 3-SAT, d° of each clause ≤ 3, also d°(g)≤3m : 
   Prob[success] ≥ (1-3m/p)n ~ 1-3mn/p 
Choosing p prime larger than 3mn2n  (note that p has O(n) bits) 
     Prob[faiilure] ≤ 2-n        (w.h.p.)  

Sumcheck protocol in Fp (mod p) 
•  Input: a circuit Cn(X1, …, Xn) with n inputs that evaluates a degree d polynomial  

        g(X1, …, Xn) with coefs in Fp in polynomial time nO(1);   and an integer Kn. 
•  Output: a proof that sum Σb1=0,1… Σbn=0,1 g(b1, …, bn) equals Kn mod p 

–  With notation: this is equivalent to Sn[g]() = Kn mod p. 
•  Verifier: asks prover to send the univariate polynomial hn(X) of degree ≤ d : 

  hn(X) = Σb1=0,1… Σbn-1=0,1g(b1, b2, …, bn-1, X) 
The prover sends to verifier a polynomial sn(X) (a univariate polynomial in Fp[X]) 

•  Verifier receives sn(X); it checks that  sn(0)+sn(1)=Kn  mod p and sn(X)=hn(X) : 
–  First of all, if sn(0)+sn(1)≠Kn reject. Else check sn(X)=hn(X)by random eval:  
–  If n=1: h1=g !! => if  g(0)+g(1) ≠ K1, reject (else accept !) 
–  Else verfier picks a random 0≤an<p  and computes Kn-1:= sn(an) mod p ; 

then, by recursion, it proves:   
  Kn-1=hn(a) mod  p =Σb1=0,1… Σbn-1=0,1 Cn-1 (b1, …, bn-1)     

by building the circuit Cn-1(X1, …, Xn-1) equals to Cn(X1, …, Xn-1, a).  
If sn(a) ≠ hn(a) mod  p, the proof is rejected  (error detected) 

•  Error probability [soundness]  Prob[reject | sum≠Kn] ≥ (1-d/p)n . 
[by induction: n=1: no error => P[reject | sum≠K]=1 ≥ (1-d/p).   Now suppose property true at n-1. At n we have 
Pr(error)=Pr[ sn(a)=hn(a) | sn≠hn] ≤ d/p => Pr[ reject | sum≠Kn] ≥ Pr[ reject | sn≠hn] ≥ (1-d/p)n-1.(1-d /p) ≥ (1-d/p)n.] 
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#3-SAT: interactive polynomial proof 

Verifier 
 input:   F(X1, …, Xn) = (c1 and … and cm)           
             Kn an integer;  let g(x) = Πi=1,n Pol(ci) 
Accepts iff convinced that #F = Kn.  
Preliminar receive p, check p is prime in {2n, 22n} 
 Compute g(X1, …, Xn)= Πi=1,n Pol(ci)   deg(g)≤3m 
Check Kn= ΣX1=0,1… ΣXn=0,1 g(X1, …, Xn)  [p] : 
 1. If n=1, if (g(0)+g(1) = Kn ) accept ; else reject.  
    If n≥2, ask  hn(X) to P. 

 
 3. Receive sn (X) of degree ≤m. 
    Compute vn=sn (0)+sn (1); if (vn ≠ Kn) reject. 
    else choose rn=rand(0, … p-1); let Kn-1=s(rn) 
    and use the same protocol to  check 
        Kn-1=ΣX1=0,1… ΣXn-1=0,1 g(X1, …, Xn-1, rn) [p]  

Prover 
 Preliminar: sends p prime in {2n, 22n} 

2.  Send s(X) ;  [note that if P is not 
cheating, s(X) = hn(X)  ] 

Theorem: This is a sound and complete, polynomial time randomized 
                  interactive proof of #3-SAT.   
Moreover, prob( V rejects |  K ≠ #F) ≥ (1-3m/p)^n ,  
                  also prob(error) ≤ 1-(1-3m/p)^n  ≤ 3mn2-n .  
 

Interactive proof of TQBF (1/2) 
•  Input: quantified boolean formula F = ∀X1 ∃X2 ∀X3 …∃Xn  :  Φ(X1, …, Xn)  

Output: Yes if F is true 
•  Arithmetization: let PΦ (X1, …, Xn) the polynomial that represents  Φ. 

–  ∃Xn∈{0,1} : Q(X1, …, Xn)   is represented by polynomial Q(X1, …, Xn-1,0)+Q(X1, …, Xn-1,1) 
–  ∀Xn∈{0,1} : Q(X1, …, Xn)   is represented by polynomial Q(X1, …, Xn-1,0).Q(X1, …, Xn-1,1) 

•  With a similar approach to #SAT, arithmetization leads to check s(0).s(1)=K 
But then multiplication makes the degree increase to 2n (not polynomial !) 

•  Key: we are only interested by {0,1} values!  A polynomial P can be 
approximated with a multi-linear function with same evaluations at {0, 1}n. 
  Let Li[P] be the linearization operator defined as : 
Li[P(X1, . . . , Xn)] = (1 − Xi)P(X1, … , Xi-1,0, Xi+1, . . , Xn) + (Xi)P(X1,.., Xi-1,1, Xi+1,. . . , Xn).  
 

•  Linearization of F leads to the expression : 
∀X1 L1[∃X2  L1L2[ ∀X3  L1L2L3[ …[∃Xn  L1L2…Ln[ PΦ (X1, …, Xn) ]]..]]] 
whuch is of size O(1+2+3+… +n) = O(n2) polynomial.        
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Interactive proof of TQBF (2/2) 
•  Recursive protocol.  Suppose for any polynomial g(X1, …, Xk) the prover is 

able to convince the verifier that  
–  g(a1, …, ak)=C with prob=1 for any  a1, …, ak,C when it is true  
–  and prob≤ε when it is false.  

•  Let U be the polynomial of degree d : 
–  Case 1: U(X1, …, Xk-1) = « ∃Xk∈{0,1} : g(X1, …, Xk) » = g(X1, …, Xk-1,0) + g(X1, …, Xk-1,1) 

=> The prover provides a polynomial s(Xk) supposed to be g(a1, …, ak-1, Xk) 
Verifier checks if s(0)+s(1) = C. If not reject;  
else verifier  picks a random 0≤α<p and asks prover to prove « s(α) =g(a1, …, ak-1, α ) ».  

–  Case 2: U(X1, …, Xk-1) = « ∀Xk∈{0,1} : g(X1, …, Xk) » = g(X1, …, Xk-1,0).g(X1, …, Xk-1,1) 
Same as case 1 but verifier checks if s(0).s(1) = C    [instead of s(0)+s(1)=C ] 

–  Case 3: U(X1, …, Xk) = « Lk[g(X1, …, Xk)] » = (1-Xk)g(X1, …, Xk-1,0) + Xk.g(X1, …, Xk-1,1) 
=> The prover provides a polynomial s(Xk) supposed to be g(a1, …, ak-1, Xk) 
Verifier checks (1-ak)s(0) + ak.s(1) = C. If not reject; 
else verifier  picks a random 0≤α<p and asks prover to prove « s(α) =g(a1, …, ak-1, α ) ».  

•  Error analysis  
  

–  ∃Xn∈{0,1} : Q(X1, …, Xn)   is represented by polynomial Q(X1, …, Xn-1,0)+Q(X1, …, Xn-1,1) 
–  ∀Xn∈{0,1} : Q(X1, …, Xn)   is represented by polynomial Q(X1, …, Xn-1,0).Q(X1, …, Xn-1,1) 

•  With a similar approach to #SAT, arithmetization leads to check s(0).s(1)=K 
But then multiplication makes the degree increase to 2n (not polynomial !) 

•  Key: we are only interested by {0,1} values!  A polynomial P can be 
approximated with a multi-linear function with same evaluations at {0, 1}n. 
  Let Li[P] be the linearization operator defined as : 
Li[P(X1, . . . , Xn)] = (1 − Xi)P(X1, … , Xi-1,0, Xi+1, . . , Xn) + (Xi)P(X1,.., Xi-1,1, Xi+1,. . . , Xn).  
 

•  Linearization of F leads to the expression : 
∀X1 L1[∃X2  L1L2[ ∀X3  L1L2L3[ …[∃Xn  L1L2…Ln[ PΦ (X1, …, Xn) ]]..]]] 
whuch is of size O(1+2+3+… +n) = O(n2) polynomial.        

Complexity classes 
•  Decision problems (1 output bit: YES/ NO) 
•  Deterministic polynomial time: 

–  P : both Yes/No sides  
–  NP : certification for the Yes side 
–  co-NP: certification for the No side 

•  Randomized polynomial time: 
–  BPP: Atlantic City: prob(error) < 1/2 
–  RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2 
–  ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0  

 
•  IP  Interactive proof 

–  Verifier: randomized polynomial time 
–  Prover: interactive (dynamic), unbound power 

•  F(x) = YES => it exists a correct prover Π such that   Prob[ Verifier (Π, x) accepts ] = 1; 
•  F(x) = NO => for all prover Π:            Prob[ Verifier (Π, x) accepts ] < 1/2. 

–  Theorem: IP = PSPACE   (interaction with randomized algorithms helps!) 
 

•  PCP: Probabilistiic Checkable Proofs (static proof) 
–  PCP( r, q ) :  the verifier uses random bits and reads q bits of the proof only. 
–  Theorem: NP=PCP( log n, O(1) )    
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Application in cryptology: 
 zero-knowledge [wikipedia]               

•  Importance of « proof » in crypto: eg. identity 
proof=authentication 

•  Ali Baba (Peggy) knows the secret 
–  "iftaH ya simsim" («Open Sesame») 
–  "Close, Simsim" («Close Sesame»). 

•  Bob (Victor) and Ali Baba design a protocol to 
prove that Ali Baba has the secret without 
revealing it 
–  Ali Baba is the prover 
–  Bob is the verifier 
–  Ali Baba leaks no information 


