
1

Does x belongs to L ?

•  Zero-knowledge:
–  Intuitively: at the end, verifier is convinced that x in

L (if so), but learns nothing else.

•  Verifier
–  An element x
–  Ask questions to prover
–  Gets anwer:
–  Completeness: Is convinced that x in L, if so
–  Soundess: reject « x in L » if not so

Proof and Interactive proof
•  Two parts in a proof:

–  Prover: knows the proof (-> the secret) [or is intended to know]
–  Verifier: verifies the proof is correct (-> authentication)

•  Correctness of a proof system/verifier:
–  Completeness: every valid proof is accepted by the verifier
–  Soundness: every invalid proof is rejected by the verifier

•  Interactive proof system
–  Protocol (questions/answers) between the verifier and the prover
–  Verifier: probabilistic algorithm, polynomially bounded
–  Soundness: every invalid proof is rejected with high probability (> 1/2)
–  Completeness: every valid proof is accepted with high probability (>1/2)

2

Interaction with deterministic
verifier and prover

•  Interaction between 2 functions f and g on input x :
–  a1 := f(x) ; a2 := g(x, a1) ; a3 := f(x, a1, a2) ; …; a2i+1:=f(x, a1,…, a2i); a2i+2:=g(x, a1,…,a2i+1)…

–  Notation: outf<f , g>(x) = f(x, a1, … , ak)

•  Def: a language L has a k-round deterministic interactive proof
system iff there exists a DTM V that on input (x,a1,…, ai) runs in
polynomial time |x|O(1) and can have a k-round interaction with
any function P such that:
–  Completeness : there exists P such that for any x in L: OutV<V,P>(x) = 1
–  Soundness: iff x not in L then for all P : OutV<V,P>(x) = 0

•  Let dIP= { languages L with a k(n)-round deterministic
 interactive proof system with k(n)=nO(1) }

–  Theorem: dIP = NP. (Proof: 3-SAT)
–  So interaction with deterministic algorithms brings nothing

The power of
probabilistic interaction

Prover
(Merlin)

Verifier
(Arthur)

3

Class IP

•  Def: a language L has a k-round probabilistic interactive proof
system iff there exists a probabilistic polynomial time Turing
machine V that that can have a k-round interaction with a
function P such that for all input x :
–  Completeness : there exists P such that for any x in L:

 Prob[OutV<V,P>(x) = 1] ≥ 2/3
–  Soundness: iff x not in L then for all P :

 Prob[OutV<V,P>(x) = 1] ≤ 1/3
Note: all probabilities are on the random choices made by V.

•  IP(k) = { L that have a k-round probabilistic interactive proof system}

•  IP = Uk≥1 IP(k)

Example of interactive computation
•  Graph isomorphism:

–  Input: G=(V,E) and G’=(V’,E’)
–  Output: YES iff G == G’ (i.e. a permutation of V ->V’ makes E=E’)

•  In NP, not known to be NP-complete,
not known to be in co-NP.

•  Assume an NP Oracle for Graph isomorphism =>
then a probabilistic verifier can compute Graph isomorphism in
polynomial time.
–  Protocol and error probability analysis.

•  Theorem [Goldreich&al] :
–  NP included in IP.
–  any language in NP possesses a zero-knowledge protocol.

4

Interactive Algorithm Graph NonIsomorhism
AlgoGraphIso(G1=(V1,E1), G2=(V2,E2)) {

If (#V1 != #V2) or (#E1 != #E2)
 return “NO : G1 not isomorphic to G2”;

n := #V1 ;
For (i=1 .. k) {

 P := randompermutation([1, …, n]) ;
 b := random({1,2}) ;

 G’ := P(Gb) ;
 (i, Pi) := Call OracleWhichIsIso(G1, G2, G’) ;
 If (Gi ≠ Pi (G’)) FAILURE(“Oracle is not reliable”) ;
 If (b ≠ i) return “YES : G1 is isomorphic to G2” ;

}
return “NO : G1 not isomorphic to G2”;

}

OracleWhichIsIso(G1, G2, G’) {
// precondition: G’ is isomorphic to
// G1 or G2 or both.
// Output: i into {1,2} and a permutation
// Pi such that Gi = Pi (G’)
… ;
Return (i, Pi) ;

}

Theorem: Assuming OracleWhichIsIso of polynomial time,
AlgoGraphIso(G1, G2) proves in polynomial time k.nO(1) that :

-  either G1 is isomorphic to G2 (no error)
-  or G1 is not isomorphic with error probability ≤ 2-k.

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM

Analysis of error probability

 Truth:
 G1 = G2 ??

“YES : G1 is
isomorphic to G2”

“NO: G1 not
isomorphic to G2”

Case G1 = G2
(completeness)

Prob = 1 - 2-k

Prob = 2-k

No: Case G1 ≠ G2
(soundness)

Impossible
(Prob = 0)

Always

(Prob = 1)

- When the algorithm output YES : G1 is isomorphic to G2 then G1 = G2
 => no error on this output.

- When the algorithm output “NO: G1 not isomorphic to G2” then we may
 have an error (iff G1 = G2), but with a probability ≤ 2-k

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Prob(Output of
AlgoGraphIso(G1, G2))

5

Graph [non]-isomorphism
and zero knowledge

•  In a zero-knowledge protocol, the verifier learns that
G1 is isomorphic to G2 but nothing else.

•  Previous protocol not known to be zero-knowledge:
–  Prover sends the permutation Pi such that G1= Pi(G2) : so

the verifier learns not only G1 isomorphic to G2 but Pi too.
–  We do not know, given two isomorphic graph, wether there

exists a (randomized) polynomial time algorithm that returns
a permutation that proves isomorphism.

A zero-knowledge interactive proof
for Graph Isomorhism

Verifier
 input: (G1=(V1,E1), G2=(V2,E2))

 Accepts prover if convinced that G1 is
isomorphic to G2

 2. Receives H;
 Chooses b=random(1,2) and sends
 b to the prover

 4. receives P’’ and checks H = P’’(Gb)

Prover
 gets G1, G2

 private secret perm. Ps: G2=Ps(G1) ;
1.  Chooses a random perm. P’ and

sends to verifier H=P’(G2)

 3. Receives b;
 if b=1 sends P’’=P’oPs to the verifier
 else b=2: sends P’’=P’ to the verifier

Theorem: This is a zero-knowledge, sound and complete, polynomial time
 interactive proof that the two graphs G1 and G2 are isomorph.

6

#3-SAT in IP
•  Key 1= Arithmetization:

a clause c is represented by a polynomial Q(c) as follows:
•  Q(not(x)) = 1-x Q(x and y) = x.y
•  Q(x or not(y) or z)=Q(not(not(x) and y and not(z))= 1–((1-x).y.(1-z))

•  Let: Φ = (c1 and … and cm) be a 3-SAT CNF formula,
and g(X1, …, Xn) = Q(c1).Q(c2). … .Q(cm) : deg(g) ≤ 3m (small!)
A circuit that evaluates g at any (b1, …, bn) has polynomial size.

•  To prove #SAT(Φ)=K reduces to K = Σb1=0,1… Σbn=0,1 g(b1, …, bn)

#3-SAT in IP
•  To prove #SAT(Φ)=K reduces to K = Σb1=0,1… Σbn=0,1 g(b1, …, bn)
•  Key 2= Recursion .

Notation: for a1, …, an integers, the following polynomials are defined from g:
–  gn(X1, …, Xn) = g(X1, …, Xn) ; gn-1(X1, …, Xn-1) = g(X1, …, Xn-1, an)

… gk(X1, …, Xk) = g(X1, …, Xk, ak+1,…, an) …. g1 (X1) = g(X1, a2, …, an)

–  Sn(X)=Σb1=0,1… Σbn=0,1 g(b1, …, bn) ; Sn-1(X)=Σb1=0,1…Σbn-1=0,1g(b1,..,bn-1,X)
Sn-2(X) =Σb1=0,1… Σbn-2=0,1 g(b1, …, bn-2, X, an) ; … ; S2(X) =g(X, a2, …, an)

•  Recursion : Proving #Φ=K ⇔ Sn(X) =K ⇔Sn-1(0)+Sn-1(1)=K
To do this, verifier asks to prover Sn-1(X) and checks by random
evaluation Sn-1(X)=Σb1=0,1…Σbn-1=0,1gn(b1,..,bn-1,X);
this reduces to check Sn-1(an)=Σb1=0,1…Σbn-1=0,1g(b1,..,bn-1,an)
so Sn-1(an)=Σb1=0,1…Σbn-1=0,1gn-1 (b1,..,bn-1) => recursion to n-1
Since #Φ=Sn[g]() ≤ 2n then for p>2n : (#Φ=K) ⇔ (#Φ=K mod p)
–  To limit to a polynomial number of operations, computation is performed

mod a prime p in 2n .. 22n (provided by prover and checked by verifier)
–  Note: a randomized alternative is that the verifier chooses a random smaller prime p > n2.

 (then Sn-K may be multiple of p, which is not possible with p >2n).

7

#3-SAT in IP
•  Error probability: from Schwartz-Zippel:

–  Prob[failure at step k] ≤ d°(gk)/pk ≤ d/p
–  Prob[success at step k] ≥ (1 – d/p)
–  Prob[success for all n steps] ≥ (1 – d/p)n

•  Choose p determinstic prime larger than 2n

–  2n = max value for the sum !
–  With p prime, computing mod p makes no error!

•  For 3-SAT, d° of each clause ≤ 3, also d°(g)≤3m :
 Prob[success] ≥ (1-3m/p)n ~ 1-3mn/p
Choosing p prime larger than 3mn2n (note that p has O(n) bits)
 Prob[faiilure] ≤ 2-n (w.h.p.)

Sumcheck protocol in Fp (mod p)
•  Input: a circuit Cn(X1, …, Xn) with n inputs that evaluates a degree d polynomial

 g(X1, …, Xn) with coefs in Fp in polynomial time nO(1); and an integer Kn.
•  Output: a proof that sum Σb1=0,1… Σbn=0,1 g(b1, …, bn) equals Kn mod p

–  With notation: this is equivalent to Sn[g]() = Kn mod p.
•  Verifier: asks prover to send the univariate polynomial hn(X) of degree ≤ d :

 hn(X) = Σb1=0,1… Σbn-1=0,1g(b1, b2, …, bn-1, X)
The prover sends to verifier a polynomial sn(X) (a univariate polynomial in Fp[X])

•  Verifier receives sn(X); it checks that sn(0)+sn(1)=Kn mod p and sn(X)=hn(X) :
–  First of all, if sn(0)+sn(1)≠Kn reject. Else check sn(X)=hn(X)by random eval:
–  If n=1: h1=g !! => if g(0)+g(1) ≠ K1, reject (else accept !)
–  Else verfier picks a random 0≤an<p and computes Kn-1:= sn(an) mod p ;

then, by recursion, it proves:
 Kn-1=hn(a) mod p =Σb1=0,1… Σbn-1=0,1 Cn-1 (b1, …, bn-1)

by building the circuit Cn-1(X1, …, Xn-1) equals to Cn(X1, …, Xn-1, a).
If sn(a) ≠ hn(a) mod p, the proof is rejected (error detected)

•  Error probability [soundness] Prob[reject | sum≠Kn] ≥ (1-d/p)n .
[by induction: n=1: no error => P[reject | sum≠K]=1 ≥ (1-d/p). Now suppose property true at n-1. At n we have
Pr(error)=Pr[sn(a)=hn(a) | sn≠hn] ≤ d/p => Pr[reject | sum≠Kn] ≥ Pr[reject | sn≠hn] ≥ (1-d/p)n-1.(1-d /p) ≥ (1-d/p)n.]

8

#3-SAT: interactive polynomial proof

Verifier
 input: F(X1, …, Xn) = (c1 and … and cm)
 Kn an integer; let g(x) = Πi=1,n Pol(ci)
Accepts iff convinced that #F = Kn.
Preliminar receive p, check p is prime in {2n, 22n}
 Compute g(X1, …, Xn)= Πi=1,n Pol(ci) deg(g)≤3m
Check Kn= ΣX1=0,1… ΣXn=0,1 g(X1, …, Xn) [p] :
 1. If n=1, if (g(0)+g(1) = Kn) accept ; else reject.
 If n≥2, ask hn(X) to P.

 3. Receive sn (X) of degree ≤m.
 Compute vn=sn (0)+sn (1); if (vn ≠ Kn) reject.
 else choose rn=rand(0, … p-1); let Kn-1=s(rn)
 and use the same protocol to check
 Kn-1=ΣX1=0,1… ΣXn-1=0,1 g(X1, …, Xn-1, rn) [p]

Prover
 Preliminar: sends p prime in {2n, 22n}

2.  Send s(X) ; [note that if P is not
cheating, s(X) = hn(X)]

Theorem: This is a sound and complete, polynomial time randomized
 interactive proof of #3-SAT.
Moreover, prob(V rejects | K ≠ #F) ≥ (1-3m/p)^n ,
 also prob(error) ≤ 1-(1-3m/p)^n ≤ 3mn2-n .

Interactive proof of TQBF (1/2)
•  Input: quantified boolean formula F = ∀X1 ∃X2 ∀X3 …∃Xn : Φ(X1, …, Xn)

Output: Yes if F is true
•  Arithmetization: let PΦ (X1, …, Xn) the polynomial that represents Φ.

–  ∃Xn∈{0,1} : Q(X1, …, Xn) is represented by polynomial Q(X1, …, Xn-1,0)+Q(X1, …, Xn-1,1)
–  ∀Xn∈{0,1} : Q(X1, …, Xn) is represented by polynomial Q(X1, …, Xn-1,0).Q(X1, …, Xn-1,1)

•  With a similar approach to #SAT, arithmetization leads to check s(0).s(1)=K
But then multiplication makes the degree increase to 2n (not polynomial !)

•  Key: we are only interested by {0,1} values! A polynomial P can be
approximated with a multi-linear function with same evaluations at {0, 1}n.
 Let Li[P] be the linearization operator defined as :
Li[P(X1, . . . , Xn)] = (1 − Xi)P(X1, … , Xi-1,0, Xi+1, . . , Xn) + (Xi)P(X1,.., Xi-1,1, Xi+1,. . . , Xn).

•  Linearization of F leads to the expression :
∀X1 L1[∃X2 L1L2[∀X3 L1L2L3[…[∃Xn L1L2…Ln[PΦ (X1, …, Xn)]]..]]]
whuch is of size O(1+2+3+… +n) = O(n2) polynomial.

9

Interactive proof of TQBF (2/2)
•  Recursive protocol. Suppose for any polynomial g(X1, …, Xk) the prover is

able to convince the verifier that
–  g(a1, …, ak)=C with prob=1 for any a1, …, ak,C when it is true
–  and prob≤ε when it is false.

•  Let U be the polynomial of degree d :
–  Case 1: U(X1, …, Xk-1) = « ∃Xk∈{0,1} : g(X1, …, Xk) » = g(X1, …, Xk-1,0) + g(X1, …, Xk-1,1)

=> The prover provides a polynomial s(Xk) supposed to be g(a1, …, ak-1, Xk)
Verifier checks if s(0)+s(1) = C. If not reject;
else verifier picks a random 0≤α<p and asks prover to prove « s(α) =g(a1, …, ak-1, α) ».

–  Case 2: U(X1, …, Xk-1) = « ∀Xk∈{0,1} : g(X1, …, Xk) » = g(X1, …, Xk-1,0).g(X1, …, Xk-1,1)
Same as case 1 but verifier checks if s(0).s(1) = C [instead of s(0)+s(1)=C]

–  Case 3: U(X1, …, Xk) = « Lk[g(X1, …, Xk)] » = (1-Xk)g(X1, …, Xk-1,0) + Xk.g(X1, …, Xk-1,1)
=> The prover provides a polynomial s(Xk) supposed to be g(a1, …, ak-1, Xk)
Verifier checks (1-ak)s(0) + ak.s(1) = C. If not reject;
else verifier picks a random 0≤α<p and asks prover to prove « s(α) =g(a1, …, ak-1, α) ».

•  Error analysis

–  ∃Xn∈{0,1} : Q(X1, …, Xn) is represented by polynomial Q(X1, …, Xn-1,0)+Q(X1, …, Xn-1,1)
–  ∀Xn∈{0,1} : Q(X1, …, Xn) is represented by polynomial Q(X1, …, Xn-1,0).Q(X1, …, Xn-1,1)

•  With a similar approach to #SAT, arithmetization leads to check s(0).s(1)=K
But then multiplication makes the degree increase to 2n (not polynomial !)

•  Key: we are only interested by {0,1} values! A polynomial P can be
approximated with a multi-linear function with same evaluations at {0, 1}n.
 Let Li[P] be the linearization operator defined as :
Li[P(X1, . . . , Xn)] = (1 − Xi)P(X1, … , Xi-1,0, Xi+1, . . , Xn) + (Xi)P(X1,.., Xi-1,1, Xi+1,. . . , Xn).

•  Linearization of F leads to the expression :
∀X1 L1[∃X2 L1L2[∀X3 L1L2L3[…[∃Xn L1L2…Ln[PΦ (X1, …, Xn)]]..]]]
whuch is of size O(1+2+3+… +n) = O(n2) polynomial.

Complexity classes
•  Decision problems (1 output bit: YES/ NO)
•  Deterministic polynomial time:

–  P : both Yes/No sides
–  NP : certification for the Yes side
–  co-NP: certification for the No side

•  Randomized polynomial time:
–  BPP: Atlantic City: prob(error) < 1/2
–  RPP: Monte Carlo: prob(error YES side)=0 ; prob(error NO side)< 1/2
–  ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

•  IP Interactive proof

–  Verifier: randomized polynomial time
–  Prover: interactive (dynamic), unbound power

•  F(x) = YES => it exists a correct prover Π such that Prob[Verifier (Π, x) accepts] = 1;
•  F(x) = NO => for all prover Π: Prob[Verifier (Π, x) accepts] < 1/2.

–  Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

•  PCP: Probabilistiic Checkable Proofs (static proof)
–  PCP(r, q) : the verifier uses random bits and reads q bits of the proof only.
–  Theorem: NP=PCP(log n, O(1))

10

Application in cryptology:
 zero-knowledge [wikipedia]

•  Importance of « proof » in crypto: eg. identity
proof=authentication

•  Ali Baba (Peggy) knows the secret
–  "iftaH ya simsim" («Open Sesame»)
–  "Close, Simsim" («Close Sesame»).

•  Bob (Victor) and Ali Baba design a protocol to
prove that Ali Baba has the secret without
revealing it
–  Ali Baba is the prover
–  Bob is the verifier
–  Ali Baba leaks no information

