Does x belongs to L ?

- Verifier
- An element x
- Ask questions to prover
- Gets anwer:
- Completeness: Is convinced that x in L, if so
- Soundess: reject « x in L » if not so
- Zero-knowledge:
- Intuitively: at the end, verifier is convinced that x in L (if so), but learns nothing else.

Proof and Interactive proof

- Two parts in a proof:
- Prover: knows the proof (-> the secret) [or is intended to know]
- Verifier: verifies the proof is correct (-> authentication)
- Correctness of a proof system/verifier:
- Completeness: every valid proof is accepted by the verifier
- Soundness: every invalid proof is rejected by the verifier
- Interactive proof system
- Protocol (questions/answers) between the verifier and the prover
- Verifier: probabilistic algorithm, polynomially bounded
- Soundness: every invalid proof is rejected with high probability (> 1/2)
- Completeness: every valid proof is accepted with high probability (>1/2)

Interaction with deterministic verifier and prover

- Interaction between 2 functions \mathbf{f} and \mathbf{g} on input \mathbf{x} :
$-a_{1}:=f(x) ; a_{2}:=g\left(x, a_{1}\right) ; a_{3}:=f\left(x, a_{1}, a_{2}\right) ; \ldots ; a_{2 i+1}: f\left(x, a_{1}, \ldots, a_{2 i}\right) ; a_{2 i+2}:=g\left(x, a_{1}, \ldots, a_{2 i+1}\right) .$.
- Notation: out $\mathrm{f}_{\mathrm{f}} \mathrm{f}, \mathrm{g}>(\mathrm{x})=\mathrm{f}\left(\mathrm{x}, \mathrm{a}_{1}\right.$, \qquad
- Def: a language L has a k-round deterministic interactive proof system iff there exists a DTM V that on input ($\mathrm{x}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}}$) runs in polynomial time $|x|^{\mathrm{O}(1)}$ and can have a k-round interaction with any function P such that:
- Completeness : there exists P such that for any x in L : Out $<V, P>(x)=1$
- Soundness: iff x not in L then for all P : Out $<V, P>(x)=0$
- Let dIP= \{ languages L with a $k(n)$-round deterministic interactive proof system with $\left.k(n)=n^{(1)}\right\}$
- Theorem: dIP = NP. (Proof: 3-SAT)
- So interaction with deterministic algorithms brings nothing

The power of probabilistic interaction

Prover
(Merlin)

Verifier
(Arthur)

Class IP

- Def: a language L has a k-round probabilistic interactive proof system iff there exists a probabilistic polynomial time Turing machine V that that can have a k-round interaction with a function P such that for all input x :
- Completeness : there exists P such that for any x in L :

$$
\operatorname{Prob}\left[\text { Out }_{V}<V, P>(x)=1\right] \geq 2 / 3
$$

- Soundness: iff x not in L then for all P :
$\operatorname{Prob}\left[\right.$ Out $\left._{\mathrm{V}}<\mathrm{V}, \mathrm{P}>(\mathrm{x})=1\right] \leq 1 / 3$
Note: all probabilities are on the random choices made by V.
- $\operatorname{IP}(\mathrm{k})=\{\mathrm{L}$ that have a k -round probabilistic interactive proof system $\}$
- $I P=U_{k \geq 1} I P(k)$

Example of interactive computation

- Graph isomorphism:
- Input: $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$
- Output: YES iff $G==G^{\prime}$ (i.e. a permutation of $V->V^{\prime}$ makes $E=E^{\prime}$)
- In NP, not known to be NP-complete, not known to be in co-NP.
- Assume an NP Oracle for Graph isomorphism => then a probabilistic verifier can compute Graph isomorphism in polynomial time.
- Protocol and error probability analysis.
- Theorem [Goldreich\&al] :
- NP included in IP.
- any language in NP possesses a zero-knowledge protocol.

Interactive Algorithm Graph Nonlsomorhism

```
AlgoGraphlso \(\left(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right), \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)\right)\) \{
    If \(\left(\# \mathrm{~V}_{1}\right.\) ! \(\left.=\# \mathrm{~V}_{2}\right)\) or \(\left(\# \mathrm{E}_{1}\right.\) != \(\left.\# \mathrm{E}_{2}\right)\)
            return "NO: \(\mathbf{G}_{1}\) not isomorphic to \(\mathbf{G}_{2}\) ";
    \(\mathrm{n}:=\# \mathrm{~V}_{1}\);
    For ( \(\mathrm{i}=1 . . \mathrm{k}\) ) \{
        \(\mathrm{P}:=\) randompermutation([1, .., n]) ;
        \(\mathrm{b}:=\operatorname{random}(\{1,2\})\);
        \(\mathrm{G}^{\prime}:=\mathrm{P}\left(\mathrm{G}_{\mathrm{b}}\right)\);
        ( \(\mathrm{i}, \mathrm{P}_{\mathrm{i}}\) ) := Call OracleWhichlsIso( \(\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}^{\prime}\) );
        If ( \(G_{i} \neq P_{i}\left(G^{\prime}\right)\) ) FAILURE("Oracle is not reliable")
        If ( \(\mathrm{b} \neq \mathrm{i}\) ) return "YES : \(\mathrm{G}_{1}\) is isomorphic to \(\mathrm{G}_{2}\) ";
    \}
    return "NO : \(\mathrm{G}_{1}\) not isomorphic to \(\mathrm{G}_{2}\) ";
\}
```

Theorem: Assuming OracleWhichIsIso of polynomial time, AlgoGraphlso $\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$ proves in polynomial time k.nO(1) that :

- either G_{1} is isomorphic to G_{2} (no error)
- or G_{1} is not isomorphic with error probability $\leq 2^{-k}$.

Thus, it is a MonteCarlo (randomized) algorithm for GRAPH ISOMORPHISM

Analysis of error probability

Prob(Output of Truth: AlgoGraphlso $\left(G_{1}, G_{2}\right)$) $\mathrm{G}_{1}=\mathrm{G}_{2} ? ?$	"YES : G_{1} is isomorphic to G_{2} "	"NO: G ${ }_{1}$ not isomorphic to G_{2} "
$\text { Case } \mathrm{G}_{1}=\mathrm{G}_{2}$ (completeness)	Prob $=1-2^{-k}$	Prob $=2^{-k}$
No: Case $\mathrm{G}_{1} \neq \mathrm{G}_{2}$ (soundness)	Impossible $(\text { Prob }=0)$	Always (Prob = 1)

-When the algorithm output YES : G_{1} is isomorphic to G_{2} then $G_{1}=G_{2}$ => no error on this output.
-When the algorithm output "NO: G_{1} not isomorphic to G_{2} " then we may have an error (iff $G_{1}=G_{2}$), but with a probability $\leq 2^{-k}$

One-sided error => Monte Carlo algorithm for Graph-Isomorphism

Graph [non]-isomorphism and zero knowledge

- In a zero-knowledge protocol, the verifier learns that G_{1} is isomorphic to G_{2} but nothing else.
- Previous protocol not known to be zero-knowledge:
- Prover sends the permutation P_{i} such that $G_{1}=P_{i}\left(G_{2}\right)$: so the verifier learns not only G_{1} isomorphic to G_{2} but P_{i} too.
- We do not know, given two isomorphic graph, wether there exists a (randomized) polynomial time algorithm that returns a permutation that proves isomorphism.

A zero-knowledge interactive proof for Graph Isomorhism

Verifier

input: $\left(\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right), \mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right)\right)$
Accepts prover if convinced that G 1 is isomorphic to G2
2. Receives H ;

Chooses $b=$ random $(1,2)$ and sends b to the prover
4. receives $P^{\prime \prime}$ and checks $H=P^{\prime \prime}\left(G_{b}\right)$

Theorem: This is a zero-knowledge, sound and complete, polynomial time interactive proof that the two graphs G_{1} and G_{2} are isomorph.

\#3-SAT in IP

Key 1= Arithmetization:

a clause c is represented by a polynomial $Q(c)$ as follows:

- $Q(\operatorname{not}(x))=1-x$
$Q(x$ and $y)=x . y$
- $Q(x$ or not(y) or $z)=Q(\operatorname{not}(\operatorname{not}(x)$ and y and $\operatorname{not}(z))=1-((1-x) . y .(1-z))$

Let: $\Phi=\left(\mathrm{c}_{1}\right.$ and \ldots and $\left.\mathrm{c}_{\mathrm{m}}\right)$ be a 3-SAT CNF formula,
and $g\left(X_{1}, \ldots, X_{n}\right)=Q\left(c_{1}\right) \cdot Q\left(c_{2}\right) . \ldots . Q\left(c_{m}\right): \operatorname{deg}(g) \leq 3 m$ (small!) A circuit that evaluates g at any $\left(b_{1}, \ldots, b_{n}\right)$ has polynomial size.

To prove \#SAT $(\Phi)=\mathrm{K}$ reduces to $\mathrm{K}=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{\mathrm{n}}=0,1} \mathrm{~g}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$

\#3-SAT in IP

To prove \#SAT $(\Phi)=\mathrm{K}$ reduces to $\mathrm{K}=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{\mathrm{n}}=0,1} \mathrm{~g}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$

Key 2= Recursion .

Notation: for $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ integers, the following polynomials are defined from g :

```
\(-g_{n}\left(X_{1}, \ldots, X_{n}\right)=g\left(X_{1}, \ldots, X_{n}\right) ; g_{n-1}\left(X_{1}, \ldots, X_{n-1}\right)=g\left(X_{1}, \ldots, X_{n-1}, a_{n}\right)\)
    \(\ldots g_{k}\left(X_{1}, \ldots, X_{k}\right)=g\left(X_{1}, \ldots, X_{k}, a_{k+1}, \ldots, a_{n}\right) \quad \ldots . g_{1}\left(X_{1}\right)=g\left(X_{1}, a_{2}, \ldots, a_{n}\right)\)
\(-S_{n}(X)=\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n}=0,1} g\left(b_{1}, \ldots, b_{n}\right) ; S_{n-1}(X)=\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n-1}=0,1} 9\left(b_{1}, . ., b_{n-1}, X\right)\)
    \(\mathbf{S}_{\mathrm{n}-2}(\mathrm{X})=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{n-2}=0,1} g\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}-2}, \mathrm{X}, \mathrm{a}_{\mathrm{n}}\right) ; \ldots ; \mathbf{S}_{\mathbf{2}}(X)=\mathrm{g}\left(X, a_{2}, \ldots, a_{n}\right)\)
```

Recursion : Proving $\# \Phi=K \Leftrightarrow S_{n}(X)=K \Leftrightarrow S_{n-1}(0)+S_{n-1}(1)=K$ To do this, verifier asks to prover $\mathbf{S}_{\mathrm{n}-1}(\mathrm{X})$ and checks by random evaluation $\mathbf{S}_{\mathrm{n}-1}(X)=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{\mathrm{n}-1}=0,1} \mathrm{~g}_{\mathrm{n}}\left(\mathrm{b}_{1}, . ., \mathrm{b}_{\mathrm{n}-1}, \mathrm{X}\right)$;
this reduces to check $\mathrm{S}_{\mathrm{n}-1}\left(\mathrm{a}_{\mathrm{n}}\right)=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{n-1}=0,1} \mathrm{~g}\left(\mathrm{~b}_{1}, . ., \mathrm{b}_{\mathrm{n}-1}, \mathrm{a}_{\mathrm{n}}\right)$
so $\mathbf{S}_{\mathrm{n}-1}\left(\mathrm{a}_{\mathrm{n}}\right)=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{n-1}=0,1} \mathrm{~g}_{\mathrm{n}-1}\left(\mathrm{~b}_{1}, . ., \mathrm{b}_{\mathrm{n}-1}\right) \quad$) recursion to $n-1$ Since $\# \Phi=S_{n}[g]() \leq 2^{n}$ then for $p>2^{n}:(\# \Phi=K) \Leftrightarrow(\# \Phi=K$ mod $p)$

- To limit to a polynomial number of operations, computation is performed mod a prime p in $2^{n} \cdot .2^{2 n}$ (provided by prover and checked by verifier)
- Note: a randomized alternative is that the verifier chooses a random smaller prime $p>n^{2}$. (then $S_{n}-K$ may be multiple of p, which is not possible with $p>2^{n}$).

\#3-SAT in IP

- Error probability: from Schwartz-Zippel:
- Prob[failure at step $k] \leq d^{\circ}\left(g_{k}\right) / p_{k} \leq d / p$
- Prob[success at step k] $\geq(1-d / p)$
- Prob[success for all n steps] $\geq(1-d / p)^{n}$
- Choose p determinstic prime larger than $2^{\text {n }}$
$-2^{n}=$ max value for the sum !
- With p prime, computing mod p makes no error!
- For $3-S A T, d^{\circ}$ of each clause ≤ 3, also $d^{\circ}(g) \leq 3 m$:
$\operatorname{Prob}\left[\right.$ success] $\geq(1-3 \mathrm{~m} / \mathrm{p})^{n} \sim 1-3 \mathrm{mn} / \mathrm{p}$
Choosing p prime larger than $3 m n 2^{n}$ (note that p has $O(n)$ bits)
Prob[faiilure] $\leq 2^{-n} \quad$ (w.h.p.)

Sumcheck protocol in $\mathrm{F}_{\mathrm{p}}(\bmod \mathrm{p})$

- Input: a circuit $C_{n}\left(X_{1}, \ldots, X_{n}\right)$ with n inputs that evaluates a degree d polynomid $g\left(X_{1}, \ldots, X_{n}\right)$ with coefs in F_{p} in polynomial time $n^{O(1)}$; and an integer K_{n}.
- Output: a proof that sum $\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{\mathrm{n}}=0,1} \mathrm{~g}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}}\right)$ equals $\mathrm{K}_{\mathrm{n}} \bmod \mathrm{p}$
- With notation: this is equivalent to $\mathrm{S}_{\mathrm{n}}[\mathrm{g}]()=\mathrm{K}_{\mathrm{n}} \bmod \mathrm{p}$.
- Verifier: asks prover to send the univariate polynomial $h_{n}(X)$ of degree $\leq d$:

$$
h_{n}(X)=\Sigma_{b_{1}=0,1} \ldots \Sigma_{b_{n-1}=0,1} g\left(b_{1}, b_{2}, \ldots, b_{n-1}, X\right)
$$

The prover sends to verifier a polynomial $s_{n}(X)$ (a univariate polynomial in $F_{p}[X]$)

- Verifier receives $s_{n}(X)$; it checks that $s_{n}(0)+s_{n}(1)=K_{n} \bmod p$ and $s_{n}(X)=h_{n}(X)$
- First of all, if $s_{n}(0)+s_{n}(1) \neq K_{n}$ reject. Else check $s_{n}(X)=h_{n}(X)$ by random eval:
- If $n=1: h_{1}=g$!! => if $g(0)+g(1) \neq K_{1}$, reject (else accept !)
- Else verfier picks a random $0 \leq a_{n}<p$ and computes $K_{n-1}:=s_{n}\left(a_{n}\right) \bmod p$; then, by recursion, it proves:

$$
\mathrm{K}_{\mathrm{n}-1}=\mathrm{h}_{\mathrm{n}}(\mathrm{a}) \bmod \mathrm{p}=\Sigma_{\mathrm{b}_{1}=0,1} \ldots \Sigma_{\mathrm{b}_{n-1}=0,1} C_{n-1}\left(\mathrm{~b}_{1}, \ldots, \mathrm{~b}_{\mathrm{n}-1}\right)
$$

by building the circuit $C_{n-1}\left(X_{1}, \ldots, X_{n-1}\right)$ equals to $C_{n}\left(X_{1}, \ldots, X_{n-1}, a\right)$. If $s_{n}(a) \neq h_{n}(a) \bmod p$, the proof is rejected (error detected)

- Error probability [soundness] Prob[reject \mid sum $\left.\neq K_{n}\right] \geq(1-d / p)^{n}$.
[by induction: $n=1$: no error $=>P[$ reject \mid sum $\neq K]=1 \geq(1-d / p)$. Now suppose property true at $n-1$. At n we have $\operatorname{Pr}($ error $)=\operatorname{Pr}\left[s_{n}(a)=h_{n}(a) \mid s_{n} \neq h_{n}\right] \leq d / p=>\operatorname{Pr}\left[\right.$ reject \mid sum $\left.\neq K_{n}\right] \geq \operatorname{Pr}\left[\right.$ reject $\left.\left.\mid s_{n} \neq h_{n}\right] \geq(1-d / p)^{n-1} .(1-d / p) \geq(1-d / p)^{n}.\right]$

\#3-SAT: interactive polynomial proof

Verifier
input: $F\left(X_{1}, \ldots, X_{n}\right)=\left(c_{1}\right.$ and \ldots and $\left.c_{m}\right)$ K_{n} an integer; let $g(x)=\Pi_{i=1, n} \operatorname{Pol}\left(c_{i}\right)$
Accepts iff convinced that \#F $=K_{n}$.
Preliminar receive p, check p is prime in $\left\{2^{n}, 2^{2 n}\right\}$ Compute $g\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i=1, n} \operatorname{Pol}\left(\mathrm{c}_{\mathrm{i}}\right) \operatorname{deg}(\mathrm{g}) \leq 3 \mathrm{~m}$ Check $\mathrm{K}_{\mathrm{n}}=\Sigma_{\mathrm{X} 1=0,1} \ldots \Sigma_{\mathrm{Xn}=0,1} \mathrm{~g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \quad[\mathrm{p}]$:

1. If $n=1$, if $\left(g(0)+g(1)=K_{n}\right)$ accept ; else reject. If $n \geq 2$, ask $h_{n}(X)$ to P.
2. Receive $s_{n}(X)$ of degree $\leq m$

Compute $v_{n}=s_{n}(0)+s_{n}(1)$; if $\left(v_{n} \neq K_{n}\right)$ reject. else choose $r_{n}=r a n d(0, \ldots p-1)$; let $K_{n-1}=s\left(r_{n}\right)$ and use the same protocol to check
$\mathrm{K}_{\mathrm{n}-1}=\Sigma_{\mathrm{X} 1=0,1} \ldots \Sigma_{\mathrm{Xn}-1=0,1} \mathrm{~g}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}, \mathrm{r}_{\mathrm{n}}\right)[\mathrm{p}]$

Prover

Preliminar: sends p prime in $\left\{2^{n}, 2^{2 n}\right\}$
2. Send $s(X)$; [note that if P is not cheating, $\left.s(X)=h_{n}(X)\right]$

Theorem: This is a sound and complete, polynomial time randomized interactive proof of \#3-SAT.
Moreover, $\operatorname{prob}(\mathrm{V}$ rejects $\mid K \neq \# F) \geq(1-3 m / p)^{\wedge} n$, also prob(error) $\leq 1-(1-3 m / p)^{\wedge} n \leq 3 m n 2^{-n}$.

Interactive proof of TQBF (1/2)

- Input: quantified boolean formula $F=\forall X_{1} \exists X_{2} \forall X_{3} \ldots \exists X_{n}: \Phi\left(X_{1}, \ldots, X_{n}\right)$ Output: Yes if F is true
- Arithmetization: let $P_{\Phi}\left(X_{1}, \ldots, X_{n}\right)$ the polynomial that represents Φ.
- $\exists X_{n} \in\{0,1\}: Q\left(X_{1}, \ldots, X_{n}\right)$ is represented by polynomial $Q\left(X_{1}, \ldots, X_{n-1}, 0\right)+Q\left(X_{1}, \ldots, X_{n-1}, 1\right)$
- $\forall X_{n} \in\{0,1\}: Q\left(X_{1}, \ldots, X_{n}\right)$ is represented by polynomial $Q\left(X_{1}, \ldots, X_{n-1}, 0\right) . Q\left(X_{1}, \ldots, X_{n-1}, 1\right)$
- With a similar approach to \#SAT, arithmetization leads to check $s(0) . s(1)=K$ But then multiplication makes the degree increase to 2^{n} (not polynomial !)
- Key: we are only interested by $\{0,1\}$ values! A polynomial P can be approximated with a multi-linear function with same evaluations at $\{0,1\}^{n}$. Let $L_{i}[P]$ be the linearization operator defined as:
$L_{i}\left[P\left(X_{1}, \ldots, X_{n}\right)\right]=\left(1-X_{i}\right) P\left(X_{1}, \ldots, X_{i-1}, 0, X_{i+1}, \ldots, X_{n}\right)+\left(X_{i}\right) P\left(X_{1}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots, X_{n}\right)$.
- Linearization of F leads to the expression:
$\forall X_{1} L_{1}\left[\exists X_{2} L_{1} L_{2}\left[\forall X_{3} L_{1} L_{2} L_{3}\left[\ldots\left[\exists X_{n} L_{1} L_{2} \ldots L_{n}\left[P_{\Phi}\left(X_{1}, \ldots, X_{n}\right)\right]\right] ..\right]\right]\right]$ whuch is of size $\mathrm{O}(1+2+3+\ldots+n)=O\left(n^{2}\right)$ polynomial.

Interactive proof of TQBF (2/2)

- Recursive protocol. Suppose for any polynomial $g\left(X_{1}, \ldots, X_{k}\right)$ the prover is able to convince the verifier that
$-g\left(a_{1}, \ldots, a_{k}\right)=C$ with prob=1 for any a_{1}, \ldots, a_{k}, C when it is true
- and prob $\leq \varepsilon$ when it is false.
- Let U be the polynomial of degree d :
- Case 1: $U\left(X_{1}, \ldots, X_{k-1}\right)=« \exists X_{k} \in\{0,1\}: g\left(X_{1}, \ldots, X_{k}\right) »=g\left(X_{1}, \ldots, X_{k-1}, 0\right)+g\left(X_{1}, \ldots, X_{k-1}, 1\right)$ $=>$ The prover provides a polynomial $s\left(X_{k}\right)$ supposed to be $g\left(a_{1}, \ldots, a_{k-1}, X_{k}\right)$
Verifier checks if $s(0)+s(1)=C$. If not reject;
else verifier picks a random $0 \leq \alpha<p$ and asks prover to prove «s($\alpha)=g\left(a_{1}, \ldots, a_{k-1}, \alpha\right)$ ».
- Case 2: $U\left(X_{1}, \ldots, X_{k-1}\right)=« \forall X_{k} \in\{0,1\}: g\left(X_{1}, \ldots, X_{k}\right) »=g\left(X_{1}, \ldots, X_{k-1}, 0\right) \cdot g\left(X_{1}, \ldots, X_{k-1}, 1\right)$ Same as case 1 but verifier checks if $s(0) . s(1)=C \quad$ [instead of $s(0)+s(1)=C$]
- Case 3: $U\left(X_{1}, \ldots, X_{k}\right)=« L_{k}\left[g\left(X_{1}, \ldots, X_{k}\right)\right] »=\left(1-X_{k}\right) g\left(X_{1}, \ldots, X_{k-1}, 0\right)+X_{k} \cdot g\left(X_{1}, \ldots, X_{k-1}, 1\right)$ $=>$ The prover provides a polynomial $s\left(X_{k}\right)$ supposed to be $g\left(a_{1}, \ldots, a_{k-1}, X_{k}\right)$ Verifier checks $\left(1-a_{k}\right) s(0)+a_{k} \cdot s(1)=C$. If not reject; else verifier picks a random $0 \leq \alpha<p$ and asks prover to prove $« s(\alpha)=g\left(a_{1}, \ldots, a_{k-1}, \alpha\right)$).
- Error analysis

Complexity classes

Decision problems (1 output bit: YES/ NO)

Deterministic polynomial time:

- P : both Yes/No sides
- NP: certification for the Yes side
- co-NP: certification for the No side

Randomized polynomial time:

- BPP: Atlantic City: prob(error) < 1/2
- RPP: Monte Carlo: prob(error YES side)=0; prob(error NO side)<1/2
- ZPP: Las Vegas: prob(failure)<1/2 but prob(error)=0

IP Interactive proof

- Verifier: randomized polynomial time
- Prover: interactive (dynamic), unbound power
- $F(x)=$ YES $=>$ it exists a correct prover Π such that $\operatorname{Prob}[\operatorname{Verifier}(\Pi, x)$ accepts] $=1$;
- $F(x)=\mathrm{NO}=>$ for all prover Π : $\quad \operatorname{Prob}[$ Verifier (Π, x) accepts] < 1/2.
- Theorem: IP = PSPACE (interaction with randomized algorithms helps!)

PCP: Probabilistiic Checkable Proofs (static proof)

- PCP(r,q): the verifier uses random bits and reads q bits of the proof only.
- Theorem: NP=PCP($\log \mathrm{n}, \mathrm{O}(1))$

Application in cryptology: zero-knowledge [wikipedia]

- Importance of « proof » in crypto: eg. identity proof=authentication
- Ali Baba (Peggy) knows the secret
- "iftaH ya simsim" («Open Sesame»)
- "Close, Simsim" («Close Sesame»).
- Bob (victor) and Ali Baba design a protocol to prove that Ali Baba has the secret without revealing it
- Ali Baba is the prover
- Bob is the verifier
- Ali Baba leaks no information

