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Abstract. This paper focuses on parallel interactive applications rang-
ing from scientific visualization, to virtual reality or computational steer-
ing. Interactivity makes them particular on three main aspects: they are
endlessly iterative, use advanced I/O devices, and must perform under
strong performance constraints (latency, refresh rate). A data flow graph
is a common approach to describe such applications. Edges represent
data streams while vertices are nodes processing incoming data streams
and producing new data streams. When applications become large this
approach shows its limits in terms of maintainability and portability. In
this paper, we propose to use the composite design pattern to extend this
model for supporting hierarchies of components. The component hierar-
chy is traversed to instantiate the application and extract the data flow
graph required for the execution. This approach has been implemented
for the FlowVR middleware. It enables to define parametric composite
components, commonly called skeletons, that can be reused in various
applications. This approach proved to significantly leverage application
modularity as presented in different case studies.

Keywords: Interactive Applications; Parallelism; Components; Com-
posite Design Pattern

1 Introduction

An interactive application involves a program and a user interacting in an end-
less iterative process through input and output devices. It is often referred to a
”human in the loop simulation”. Today, an emerging class of interactive applica-
tions intends to associate virtual reality, scientific visualization, simulation and
application steering. It leads to very complex applications coupling advanced
I/O devices, large data sets, various parallel codes. To be interactive, these ap-
plications must perform under strong performance constraints, often measured
in terms of latency and refresh rate.

For example, the Hercules system couples an earthquake simulation and an
on-line visualization using 2000 processors to reach the frequency of 2Hz on a



1200 billions elements simulation [1]. Other initiatives intend to design cross-
continental interactive applications relying on the performance of optical net-
working [2]. A number of virtual reality applications are relying on parallel ma-
chines to provide the required I/O and computing resources. Blue-C [3] and
Grimage [4] are good examples of high performance immersive platforms relying
on parallel machines to process in real time data acquired through a network of
cameras.

In this paper, we focus on two issues faced when designing such applications:

– Software engineering issues where multiple pieces of codes (simulation codes,
graphics rendering codes, device drivers, etc.), developed by different persons,
during different periods of time, have to be integrated in the same framework
to properly work together.

– Hardware performance limitations bypassed by multiplying the units avail-
able (disks, CPUs, GPUs, cameras, video projectors, etc.), but introducing
at the same time extra complexity. In particular it often requires to intro-
duce parallel algorithms and data redistribution strategies, that should be
generic enough to minimize human intervention when the target execution
platform changes.

Most iterative applications can be seen as an assembly of static tasks endlessly
processing incoming data and forwarding results to other tasks. Many scientific
visualization tools use this data flow graph model to specify the applications [5].
But the graph tends to quickly become complex as the application size grows,
impairing the modularity.

In this paper, we propose to rely on the composite design pattern to extend
the data flow graph model. Edges are components that can recursively contain
other components. Vertices link sibling component ports or parent/child ports.
To enforce the genericity of the described application, components defer intro-
spection and auto-configuration processes to controllers. A controller is local to
a given component, but it may get extra data consulting the state of the neigh-
bor components or through external data repositories. These controllers, that
can generate new components for instance, are called recursively and repeatedly
in a traverse process until reaching a fixed point. A traverse either leads to an
error (missing data impairs the traverse completion) or a success. For instance
a traverse is called to extract the data flow graph required for the execution
from this hierarchical application description. This approach enables us to define
highly generic composite components, enforcing the application maintainability
and portability. In particular, we can define skeletons, i.e. parametric composite
components, that encapsulate commonly used and optimized parallel processing
patterns. This approach has been implemented for the FlowVR middleware [6].

Section 2 discusses related works. After an overview of FlowVR (section 3),
we present the hierarchical component model in section 4. Section 5 presents a
collection of skeletons built using our model. Section 6 focuses on 2 case studies
to discus the benefits of our approach on real applications, before to conclude in
section 7.



2 Related Work

The goal of scientific visualization is to process large data sets to compute im-
ages. Interactivity enables for instance users to change their point of view on
the data set or the transfer function applied for volume rendering. Applications
are developed with visualization environments like OpenDX [7], Iris Explorer [8]
or VTK [9]. These environments are usually based on a data flow graph model
where processing tasks receive data and generate new ones. Most of them sup-
port parallel executions. An application is basically a list of filters applied to the
data set before rendering. The first natural level of parallelism is to distribute
the different steps of the filter pipeline on different machines. Because the data
set is read only, the pipeline can easily be duplicated and executed in parallel
on sub parts of the data set [10]. Advanced parallel rendering algorithms exist,
based for instance on specific parallel data structures and dynamic work bal-
ancing schemes. In this case they are implemented on their own, usually using
classical parallel programming languages, because visualization environements
do not provide the necessary constructs [11].

Attempts to associate virtual reality, scientific visualization and simulations
push forward the complexity of interactive applications. They involve various
simulation codes that may generate large data sets, advanced I/O devices, like
network of cameras, projector arrays, haptic devices. Pipeline must be used with
care. It improves the application frequency, but also increases the latency. So
to ensure a good trade-off between frequency and latency multiple forms of
parallelism are associated, from pipelines or data parallelism to dynamic task
parallelism.

In virtual reality, to ensure an efficient data redistribution between paral-
lel algorithms that may run at different and varying frequencies, complex cou-
pling schemes associating data re-sampling and collective communications are re-
quired. Dedicated environments like FlowVR [6], OpenMask [12] or COVISE [13]
propose different approaches to support such features. However, the resulting ap-
plication code tends to be difficult to be maintained when reaching a certain size.
Connectivity between processing tasks (communication channels) are expressed
by direct links between the corresponding elements: it requires the concerned el-
ements be directly visible one from each other, preventing attempts to strongly
structure the code by encapsulating patterns in methods or functions.

Component models, like CCA (Common Component Architecture) or CCM
(Corba Component Model), provide Architecture Description Languages for dis-
tributed applications. SCIRun, an environment dedicated to scientific visualiza-
tion, is based on the CCA model [14]. Some extensions intend to enforce the
support of parallel components and the associated coupling patterns [15]. But
these models suffer from the same limitations as the systems mentioned earlier
(FlowVR, COVISE) regarding the modularity of parallel component coupling.
Fractal [16] is a hierarchical component model. We are aware of one implemen-
tation of Fractal for parallel (grid) applications: ProActive [17]. A ProActive
composite component can be a parallel component. But redistribution patterns



are coded into the ports of the parallel components. A pattern cannot be modi-
fied without modifying the component, limiting the application modularity.

The skeleton model proposes a pattern language for parallel programming [18,
19]. A program is written from the composition of predefined parallel patterns.
Various environments rely on this model like ASSIST [20] for grid computing
or Skipper [21] for vision applications. Skeletons have a clear semantics, can be
associated to a cost model and hide their implementation details to the applica-
tion developer. Given the target architecture, the application is compiled down
to a specialized parallel code. Hierarchies of skeletons are supported by some
environments like Skipper-D. ‘ With the emergence of multicore architectures
and GPU programming, some programming environments propose to focus on a
stream paradigm, like StreamIT [22], Brook [23] or Cg [24]. They target stream-
ing applications like video, voice or DSP programming. A program is usually a
set of iterative modules that communicate via FIFO data channels. Parallelism
is expressed by the composition of a reduced number of skeletons. For exam-
ple, in StreamIT, developers are allowed to use 3 kinds of skeletons: Pipeline,
SplitJoin and FeedBack Loop. By limiting the available skeletons, it constrains
the program to simple data parallel access patterns, enabling to write efficient
compilers for the targeted architecture. It is however too restrictive to ensure
efficient executions on a general purpose and potentially heterogeneous parallel
machine.

3 FlowVR

We present in this section FlowVR [6]. Our component model relies on this mid-
dleware. FlowVR is dedicated to parallel interactive applications. It is based on
the data flow model also used by other scientific visualization tools. A FlowVR
application is a network of static iterative processes connected by data flow
channels. The main target applications include virtual reality and scientific vi-
sualization.

FlowVR has been used for developing various large interactive applications [25,
26]. FlowVR is open source1. It is distributed with extensions like FlowVR-
Render that enables distributed rendering or VTK-FlowVR that encapsulates
VTK[9] applications into FlowVR Modules [27].

3.1 FlowVR Run-time

An application is composed of modules exchanging data through a FlowVR net-
work. A module is an endless iterative code that defines input and output ports.
At each iteration it reads incoming data from input ports, processes these data
and writes the results on output ports. A module runs in its own independent
process or thread, thus reducing the effort required to turn an existing code into
a module. For instance an MPI program can be modified to define one module
per process.

1 FlowVR is available at http://flowvr.sf.net



The FlowVR network is handled at run-time by a FlowVR daemon running
on each host of the target machine. Daemons act as brokers. They relay messages
between modules. Modules are not aware of the existence of other modules. A
module only exchanges data with the daemon that runs on the same host. If
the destination module runs on the same host, the daemon gives this module
a pointer to the data (messages are stored in shared memory segments). If the
destination runs on a distant host, the module sends the data to the daemon of
this host using TCP. At reception the daemon stores the message in a shared
memory segment and handles a pointer to the destination module.

The role of the daemon is not limited to data forwarding. It can load plugins
to process data, duplicate, merge or split messages for instance. The user can
define its own plugins if required. Notice that plugins have a less restricted
access to the shared memory than modules, enabling to implement more efficient
message handling actions.

Each FlowVR application is managed by a special module, called a controller,
automatically loaded at starting time. The controller first starts the application’s
modules using their own launching command, ssh or mpirun for instance. Once
launched, modules register to their local daemon that sends an acknowledgment
to the controller. Then, the controller sends to each daemon the routing table
and list of plugins to load to implement the FlowVR network.

3.2 Flat Data Flow Graph

Fig. 1. The flat data flow graph of a large FlowVR application. Edges represent pro-
cessing tasks and vertices data channels.



At low level a FlowVR application is modeled by a flat data flow graph
composed of:

– Modules with input and output ports, each one is mapped on a given host,
– Filters that are daemon plugins. Like modules, filters have input and output

ports, and are mapped on a given host.
– Connections that represent FIFO data channels. A connection connects one

source input port to a destination output port.
– Routing nodes that have one input port and one or more output ports. They

are assigned to a given host and model message routing actions.

In the first versions of FlowVR, the application developer had to specify its
application describing this graph. He was assisted by a library of Perl functions
that encapsulated some commonly used patterns. However large applications
proved difficult to debug and maintain, motivating the adoption of a hierarchical
approach to further enforce the application modularity (Fig. 1).

4 Component Model

We adopt a hierarchical component model to describe a FlowVR application. It
is based on the composite design pattern [28].

4.1 Hierarchical Components

A component has an interface defined by a set of ports. We distinguish two kinds
of components:

Primitive components. A primitive component is a base component that can-
not contain an other component. Primitive components are modules, filters,
routing nodes and connections.

Composite components. A composite component contains other components
(composite or primitive). It has input and output ports. A port is visible from
both, the outside and the inside of the component. It identifies the data
that can cross a component boundary. Component encapsulation is strict. A
component can not be directly contained into two parent components.

4.2 Links

A link connects two component ports. It cannot directly cross a component
membrane. A link between 2 ports is allowed only for the 2 following cases:

– A descendant link connects a port of a parent composite component to a port
of one of its child component. Such links must always connect an input/input
or output/output pair of ports.

– A sibling link connects two ports of two components having the same parent
component. Such a link must always connect an input/output pair of ports.

Port typing can be enforced if required, putting more constraints on the ports
that can be linked. For instance, link could be restrained to connect only ports
corresponding to the same data type.



4.3 Example

Fig. 2. Application example. Computes simulates the dynamics of a ball falling into
a water tank. Results transit up to Render for rendering. Capture forwards mouse
positions to Render that uses them to render the simulation scene with the point of
view requested by the user.

Throughout this paper, we use a simple example (Fig. 2). It shows the clas-
sical structure of a basic interactive application. In this iterative simulation,
component Computes publishes its state at each iteration. We can for instance
consider that this simulation computes the dynamics of a ball falling into a
water tank. Each simulation state is received by a Render component. For a
given point of view, this component computes an image giving a view on the
simulation scene. The user can control this point of view with a mouse. A Cap-
ture component is in charge of reading the mouse position and forwarding it to
Render.

For sake of simplicity, we keep this application synchronous, i.e. the Render
component can only start the next iteration if it receives data from Computes
and Capture. Often real applications loose this synchronization by introducing
data sampling components (a sampling pattern is presented in section 5).

Using the hierarchical component model, the example is structured as follows
(Fig. 2):



Fig. 3. a) Two levels of hierarchy for the Connect component. The skeleton defined by
NtoOne is generated according to the number of Computes primitive components. b)
The flat data flow graph for the application. Dashed sets show the composite compo-
nents the graph elements are related to (connections are arrows, modules are in green
and filters in blue).



– As the Capture and Render components are closely related, they are stored
in a composite component called Visualization. This encapsulation is a com-
modity that enables to easily reuse this assembly having just to handle the
Visualization component.

– The Computes component is actually a parallel application that spawns n

processes. The goal is to be able to speed-up the simulation involving more
processors if available. Computes is modeled as a composite component with
one output port out to send its simulation state at each iteration. It con-
tains n child components Compute/0,..., Compute/n-1. These are primitive
components, each one having an output port out linked to the out port of
Computes. The value n and where these n processes are mapped on a target
architecture is unknown at the time of the application design. They will be
instantiated later when traversing the application to call configuration con-
trollers. Notice that communications can take place between the different
parallel processes, but they are not modeled here. We consider that they are
under the responsibility of the programming environment used to parallelized
the application, MPI for instance.

– Computes being a parallel component, each process spawned computes one
part of the simulation state. The Visualization component is not designed to
received partial results. We could modify the Visualization component, but
we actually prefer to manage this issue outside of this component. Applica-
tion modularity is enforced by delegating data redistribution issues to spe-
cialized components. We use an extra component, called Connect, between
Computes and Visualization. Connect is in charge of gathering the partial
results from the various Compute/i processes to forward a single message
containing a full simulation state to Visualization. Connect is a composite
component (Fig. 3.a). It is built from the NtoOne component. This com-
ponent encapsulates a generic tree pattern for data redistribution. Connect
just set the parameters of NtoOne: the arity of the tree (2) and the type
of the component used for the tree nodes (Merge). The actual content of
NtoOne is only known once Computes is properly instantiated. Only at this
point NtoOne knows how many pieces of data it has to gather to set the
tree depth. The NtoOne configuration controller must be executed after the
Computes configuration controller. We see here that the traverse algorithm in
charge of executing the configuration controllers has to respect a given pro-
cessing order. A possible traverse order is: Computes, Visualization, Connect,
NtoOne, Merge/0, Merge/1, Merge/2, Compute/0, Compute/1, Compute/2,
Compute/3, Capture, Render. Merge is a primitive component that builds
one message sent on its out port from the 2 messages it reads on its in/0 and
in/1 ports.

Notice that if the application is configured with only one component Com-
pute/0, Merge becomes a simple point-to-point connection between Compute/0
and Render.

The model we propose first target applications with static components, i.e.
without components created while the application is running. Because of their



iterative nature, interactive applications tend to be mostly static. However, if
required for some parts of the application, a component can dynamically create
or kill threads or processes as long as it implements a proxy that hides this
dynamic behavior. We are also working on extending the model to support some
level of run-time reconfiguration.

4.4 Controllers

To improve the application genericity and thus its portability, instantiation of
some component aspects are deferred to controllers. A controller is local to a
component. It can only modify the state of its component. It can read the state
of other components its owner is linked to (directly or not). A component can
have several controllers. It usually enforces modularity to have multiple specialize
controllers. We distinguish 2 types of controllers:

– An introspection controller just get data from its component. For instance
an introspection controller can be dedicated to print its component name in
a file.

– A configuration controller modifies its component state. In the example ap-
plication, the child components of Computes are generated by such a con-
troller.

Controllers are called during an application traverse. Usually one traverse
just calls one controller per component. During a traverse, parameters can be
exchanged between controllers. It enables for instance to exchange a file descrip-
tor where each controller appends the name of its component. The final result
of the traverse is a list of all application components. The result may of course
depend on the execution order of the different traverses.

Our model imposes one configuration controller, called execute. This con-
troller creates child components. For example, in the Computes component, the
execute controller creates all Compute/i primitive components and links them to
Computes. Data distribution components usually have execute controllers that
need to get data from the neighbor components. For instance, the execute con-
troller of NtoOne needs to get the number of Compute/i components to create
the merging tree.

Developers can create controllers dedicated to a given aspect. A controller
can be in charge of mapping primitive components to the target architecture
processors. Implementing mapping in a controller enables to keep the application
description independent of the mapping. In FlowVR, the application is first
traversed to call the execute controller, then a mapping controller is called, and
a third controller generates the flat data flow graph.

An other example of introspection controller used for FlowVR is the com-
mand line generator. The construction of command lines to launch modules is
delegated to an introspection controller. This controller builds a command line
using data related to the FlowVR network (hosts list, number of processes), con-
figuration files (target architecture description) or user parameters (application



specific parameters). This specific controller is embedded into composite com-
ponents called metamodules. A metamodule handles modules that are logically
related, in particular when they are all started from a single command. This is
for instance the case for a MPI code that uses mpirun to start all its processes.

Notice that a controller can be seen as an aspect (in the Aspect Oriented
Programming way). Nevertheless, we do not have code weaving. Controllers are
embedded in components by the programmer.

4.5 Traverse Algorithm

As seen for the example (Section 4.3), in a traverse the execution of controllers
may need to obey a certain order to respect data dependencies. We propose
a simple algorithm that guarantees to complete the traverse when possible or
return the list of misprogrammed components if some data dependencies cannot
be solved whatever the execution order is.

The traverse algorithm is a greedy process. The algorithm manages a queue
of non-executed components, initialized with the top-level components of the ap-
plication. For each component in this queue, the algorithm tries to execute the
associated controller. If the controller is successfully executed, then all of its chil-
dren are pushed in the queue. Otherwise, the algorithm restores the component
initial state and push it at the end of the queue. The traverse ends successfully
when the queue is empty. If no controller can be called on the rest of the com-
ponents in the list, then the algorithm stops in a fail state. The controller of the
remaining components cannot be executed either because at least one of these
components is misconfigured (a parameter is not instantiated for instance), or
because a cycle of dependencies has been introduced when assembling the com-
ponents.

4.6 Traverse Proof

We prove the traverse algorithm always ends, with success if a solution exists,
and that the number of controller calls, successful or not, is at most quadratic
in the number of components.

Let C be the set of all components in an application and Ncomp the size
of C. The goal of the algorithm is to iterate on all components in C with a
consistant order. We put in the non-executed queue a marker that denotes the
starting point. Each time the marker comes back to the front of the queue, it
is appended at the end of the queue. We count the number of times the marker
has reached the front since the algorithm started. It denotes what we call in the
following the number of iterations.

Let NonExecutedk = {c ∈ C/ the controller of c has not been executed
at the iteration k } and Executedk = {c ∈ C/ the controller of c has been
successfully executed during the iteration k }. We call N the iteration that
reaches a fixed point, i.e. the first iteration where ExecutedN = ∅. In this case,
the algorithm stops. The misconfigured components or dependency cycles are
contained in NonExecutedN .



Let Ek =
⋃k

i=1
(Executedi) be the set of components successfully executed

from the first to the kth iteration. Let Ek =
⋃∞

i=k (NonExecutedi) be the set of
components that have to be executed after the iteration k.

We call E∞ =
⋂∞

i=1
Ei the set of components that cannot be executed.

Thus we have:

– ∀k,C = Ek ⊕ Ek

– E0 = C and E0 = ∅

We first prove the algorithm always ends.

Proposition 1. The traverse algorithm reaches a fixed-point with N ≤ Ncomp

and NonExecutedN = E∞

Proof. During execution of traverse, we are assured that ExecutedN 6= ∅, so for
all k we have Ek+1 =

⋃∞

i=k+1
(NonExecutedi) ⊂

⋃∞

i=k (NonExecutedi) ⊂ Ek.

So EN decreases to E∞. The algorithm reaches a fixed-point where limk→∞Ek =
E∞.

As C = Ek ⊕ Ek, if at the iteration k we have Ek = Ek+1 then Ek = Ek+1.
So the algorithm reaches the fixed-point at k.

Consequently Ek strictly decreases to E∞ ⇒ N ≤ |E0| = Ncomp.

We now focus on the complexity of the algorithm.

Proposition 2. The traverse algorithm performs at most N2
comp calls to con-

trollers.

Proof. Let Calls be the total of calls to controller. Calls =
∑

k≤N |NonExecutedk|.
Previously, we proved:

– N ≤ Ncomp

– ∀k,NonExecutedk ⊂ C ⇒ |NonExecutedk| ≤ Ncomp

So Calls ≤ N2
comp

The overhead due to unsuccessful controller calls can be significant. But
implementing an algorithm that solves all constraints to identify an acceptable
execution order would be complex or it would require the application developer
to encode extra information into its program to help that algorithm. Our solution
is a good trade-off between scalability and complexity of the implementation. We
experimented applications with 200 components. Traverse computation time is
about one second only.

We now characterize E∞, the set of remaining components. Let Data = {c ∈
C / c cannot be executed because a data is missing } and Dep = {c ∈ C /
c cannot be executed because it depends on a component that has not been
executed yet }. No other reason can lead to a controller call failure. So we have
E∞ = Data ∪ Dep.

Proposition 3. If Data = ∅ and E∞ = Dep 6= ∅ then there is at least one
dependency cycle in E∞



Proof. Assume there is no dependence cycle in Dep. So there is a longest de-
pendency path. Let c and d be the components at the extremities of one of the
longest dependency paths.

But because c belongs to Dep and not to Data (Data = ∅), there exists e in
Dep such as c depends on e. So the path from e to d is longer than the longest
path from c to d. It contradicts the assumption: there is a dependence cycle in
Dep.

This proposition shows the traverse algorithm can help debugging an appli-
cation. If the traverse fails, the user should first fix the components with missing
data. Usually such flaws are detected when the controller fails if error raising
has been properly programmed. Next, if the algorithm still fails, the user should
look at suppressing the cyclic dependencies. In our implementation we rely on
exceptions to signal when controller fail.

4.7 The FlowVR Front-end

The hierarchical component model only affects the front-end of FlowVR (Fig. 4).
The run-time engine is not modified. Components are written in C++ and com-
piled into shared libraries. An application is also a composite component com-
piled into a shared library. It can thus be reused in other applications without
being recompiled. The FlowVR front-end loads the application and applies a
sequence of several traverses to produce the list of commands to start the mod-
ules and the instructions to forward to the different daemons to implement the
application network. The flat data flow graph is usually saved as it is useful for
debugging purpose.

5 Skeletons

We present four base parametric composite components, i.e. skeletons, that
proved to be very useful for developing interactive applications. These skeletons
provide users an easy way to handle parallel processing patterns or complex
communication schemes. These skeletons fully take advantage of the component
hierarchy and modularity provided by the controller based approach. They are
templated to enforce their genericity. Their instantiation is deferred to their
execute controller (Sect. 4.4):

Pipeline This is a very simple skeleton modeling a sequence of precessing steps.
It is modeled by a composite component containing an arbitrary sequence
of linked components (primitives or composite).

Parallel This skeleton creates N instances of a component passed as a tem-
plate. The skeleton creates the same ports than the template component.
Once the internal components created, their ports are linked to their equiv-
alent skeleton ports. The Computes component in our example could have
been alternatively designed by encapsulating a Parallel component pattern
using Compute as template component. This skeleton can be used as a shell



Fig. 4. The FlowVR front-end. Components (left to righ) are compiled, loaded and
traversed to provide the module launching commands and the instructions for deamons.
Once compiled, modules (top to bottom) are started as requested by the application.



for duplicating a given component. It can also be used to encapsulate a
static parallel program. In this case communications due to parallelization
are not visible from the component point of view. We consider the parallel
programming environment used for the parallelization takes care of these
communications.

Tree A tree skeletons has two ports, the root and the leaves. The number of
leaves in the tree is defined a traverse time according to the number of
neighbors connected to the leaves port. We distinguish 2 specializations of the
tree depending on the data propagation direction, either from root to leaves
(the OnetoN component) or from leaves to root (the NtoOne component).
The arity of the tree is a parameter to be instantiated. The node type used to
build the tree is a template pattern. Here are some examples of components
pattern built from Tree:

Broadcast The simplest skeleton that can be built from the tree. It uses
the OnetoN skeleton instantiated with a primitive component, a rout-
ing node, that forwards the messages it receives on its input to each of
its outputs. The arity of the broadcast tree depends on the number of
outputs of the template component.

Scatter Similar to the Broadcast except that the template component splits
the input message into sub-messages forwarded on its outputs. For in-
stance, a classical 3D rendering parallelization approach, called sort-
first [29], consists in having a task responsible for one area of the screen
(Fig. 5.a). Thus, a task only requires to execute the graphics primi-
tives that will contribute to its screen area. To distribute the graphics
primitive, we can use a Scatter with a Culling component that uses a
fast method to test if a graphics primitive contributes to a given screen
area [27].

Gather A OneToN tree that uses a message merging template pattern.
Using a template component that sorts the integers it receives, it creates
a distributed merge sort (Fig. 5.b). This skeleton is also used by the
Connect component of our example (Fig. 3).

Sampling This skeleton is specific to interactive applications where tasks may
run at different frequencies. For example, a physical simulation has to run at
high frequency to be stable, while graphics rendering usually runs between 30
and 60 Hz. If the two tasks are directly connected with a FIFO connection, it
will force both tasks to run a the frequency of the slowest one, the rendering
task in this case. To avoid this issue a common approach is to sample the
incoming signal. This sampling could be performed by the rendering task,
making the rendering task less generic. To enforce the modularity, we design
a special skeleton that samples data streams under the control of their desti-
nation tasks. With this approach neither the source neither the destination
tasks need to be modified or even recompiled. The sampling skeleton is an
assembly of 2 composite components (Fig. 5.c):

– The Filter composite component analyzes and samples the incoming data
stream according to an external policy. It has four ports : in receives the



incoming data stream, out produces the sampled signal, freq sends the
frequency of the incoming stream and order receives sampling orders.

– The Sampler composite component controls the sampling policy. It has
two ports : freq receives the frequency of the incoming stream and order
sends orders about the stream sampling. Using the incoming stream fre-
quency, it decides the messages that have to be discarded and the ones
to replay.

By changing the template components Sampler and Filter different sampling
strategies can be implemented.

Because there is no discontinuity from primitive components to high-level
composite ones, the developer can freely choose to combine, extend, specialize
or simply ignore these skeletons. In a sense the approach we propose is very close
to the one of the C++ Standard Template Library. This skeletons can also be
seen as a derivative of Cools skeletons [18] for a specific application domain.
One of the main difference is the absence of cost model.

Fig. 5. a) Sort-first scatter pattern. The Culling components route the graphics primi-
tive for rendering the bunny according to the screen area they project onto. b) Integer
merge-sort scatter pattern. c) Sampling pattern. Filter is the operative part of the com-
munication: it processes sampling on incoming messages flow. Sampler is the control
part: it decides the sampling policy.

6 Case Studies

In this section, we present two case studies taking advantage of the component
hierarchy and the skeletons presented in previous sections. The first application



shows an example of coupling MPI and FlowVR. The second example is an
interactive 3D modeling application using a camera network.

6.1 Case Study 1: MPI Fluid Simulation

We implemented a fluid simulation algorithm [30] using MPI (Fig. 6.a). This
application shows how to integrate a MPI code. The fluid simulation is based on
a 2D grid of cells. At each new iteration, a new state is computed for each grid
cell. This state depends on the state at the previous iteration of the considered
cell and its four neighbors. The simulation is parallelized by splitting the grid
cell into blocks distributed amongst the different MPI processes. Data exchange
between blocks are MPI communications, transparent to FlowVR. The MPI code
is modified so that each process is a FlowVR module with one output port to
send the result of each iteration. These modules are called Fluid/0 .... Fluid/N,
the number being assigned based on the rank provided by MPI. Beside the actual
MPI code of the modules, a Fluid primitive component is written. A metamodule
Metamodule-MPI implements the controller to generate the launching command
using mpirun. It also contain a parallel skeleton that creates the correct number
of instances of the Fluid module. It is important here that the ranking be the
same as the one assigned by MPI. The Metamodule-MPI component is linked to
a Gather skeleton (Fig. 5.b) using a 2DMerge filter as template. The goal here is
to gather the results of each MPI process into one full 2D grid forwarded to an
OpenGL renderer. For more implementation details refer to the fluid example
provided with the FlowVR source code.

A possible traverse order to generate the flat data flow graph and the launch-
ing commands is:

1. FluidSimulation instantiates the 3 components: MetaModule-MPI(Fluid),
MetaModule(OpenGLRender) and Gather(2DMerge).

2. MetaModule-MPI(Fluid) creates the PatternParallel(Fluid) component.
3. PatternParallel(Fluid) instantiates the 4 Fluid modules and set their ranks.
4. Gather(2DMerge) detects the 4 Fluid and creates the gather tree with 3

2DMerge filters. Each Fluid is connected to one leave of the gather tree
according to their rank.

5. MetaModule(OpenGLRender) creates the OpenGLRender module.
6. MetaModule-MPI(Fluid) generates the MPI command line with the appro-

priate list of hosts and ranks.
7. MetaModule(OpenGLRender) generates the UNIX command line to launch

the rendering in the appropriate X-server.

6.2 Case 2: Real-Time 3D Modeling

We ported a parallel real-time 3D modeling application. It consists in computing
in real-time a 3D model of a scene from the various 2D video-streams acquired
by multiple video cameras surrounding the scene [31] (Fig. 7.a). Real-time 3D



Fig. 6. a) Fluid application. Four MPI processes compute a fluid simulation on a 2D
grid. A gather skeleton merges results from MPI processes and sends the full grid
to an OpenGL renderer. b) C++ description of the FluidSimulation component that
encapsulates the application.

modeling enables full body interactions into a virtual environment [4]. 3D mod-
eling is both I/O and computation intensive. We typically use between 6 and



Fig. 7. a) A 3D model of a person computed from 6 cameras. b) Description of the
application. This composite contains 4 composite components.

15 cameras, each one acquiring 30 images per seconds. The computation of 3D
models must match the camera frequency and run in less than 100 ms per 3D
model to keep the overall latency small enough to enable interactions. A paral-
lelization is thus required. Parallelization is based on several steps. For sake of
conciseness we just give an overview of the parallel algorithm here. Refer to [32]
for details. First, the video stream of each camera is acquired and filtered to
subtract the background and compute the image silhouette. This pipeline is exe-
cuted in parallel on each machine a camera is connected to. Next silhouettes have
to be redistributed for computing the 3D model. 3D modeling is implemented
with 3 parallel processing steps separated by data redistributions.

This application contains 4 composite components (Fig. 7.b): a video ac-
quisition component, a 3D modeling component, a physical component and a
rendering one. The video acquisition component is a parallel pattern containing
a pipeline of the different steps from acquisition to silhouette extraction. The 3D
modeling component is another hierarchy of components making an intensive use
of various skeletons. Physical simulations are computed by SOFA [33], an exter-
nal framework. This framework computes collisions between virtual objects and
user 3D model. The rendering component renders all meshes (virtual objects
and user 3D model) and the virtual environment. The application designed is
independent from the number of processors available on the target machine, and
from the number of cameras and their mapping on the machines.

This application represents a significant development effort involving several
developers over several years. Developments started in 2002 using MPI. It was
quickly abandoned as MPI proved not to offer a sufficient level of modularity for
this type of interactive application. A computer vision specialist should be able
to work on the acquisition pipeline without having to worry about the MPI code



or the overall coherency of the communication schemes. We switched to FlowVR
that better separates the code of the tasks (the modules) from the task coor-
dination issues. But as the applications grew, for instance texturing of the 3D
model started in 2006 and SOFA was only added in 2007, the FlowVR network
became very complex and bugs difficult to track and solve. Switching to the
hierarchical component approach increased significantly the application main-
tainability, scalability and portability. It did not directly modify the flat data
flow graph and so the performance. But because the modularity improved, per-
formance enhancements proved easier to implement. Several videos are available
at http://flowvr.sf.net showing the evolution of the application and the level of
performance reached.

Let now focus on the acquisition component. The full pipeline from camera
to image silhouette is implemented in a composite component. Using the parallel
skeleton, we are able to instantiate this pipeline for all cameras (Fig. 8). These
pipelines can be driven from a user interface for on-line tuning of some parame-
ters. To implement this new feature we used 3 parallel skeletons and 1 sampling
skeleton (Fig. 9).

Controllers ease extensions of this basic implementation of the acquisition
component. For instance, we developed a controller that adds a supervision in-
terface to control these pipelines. This supervision consists in a graphic user
interface to set some parameters for the different modules in the pipeline. For
example, the user can set the acquisition rate. This interface also displays the
outputs from several stages of the pipeline. We use this interface to control and
debug the acquisition algorithms. We implemented this controller using a new
component that encapsulates the graphics interface. This controller also adds
several asynchronous communications that send parameters to pipeline com-
ponents (Fig. 9). These communications use the sampling skeleton. This imple-
mentation enables to separate the main implementation of the pipeline from this
supervision aspect. It improves the modularity and provides a simple solution
to extend the application.

Fig. 8. Flat data flow graph of the acquisition component for 6 cameras (50 nodes and
68 edges).



Fig. 9. Flat data flow graph of the acquisition component for 6 cameras and a super-
vision interface (105 nodes and 176 edges).

7 Conclusion

We presented a framework to use a hierarchical component model for interactive
applications. Our main goal was to ensure a high level of modularity for large
applications involving parallel components and advanced coupling schemes. Con-
figuration of components is deferred to controllers. It enables us to separate some
aspects of a component from its core functional nature. Controllers are called in
a traverse process. We presented a traverse algorithm that calls the controllers
in an appropriate order or produce an error if completion is not possible due to
cycles or missing data. This approach was implemented for the FlowVR middle-
ware and proved effective to leverage the modularity of applications.
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