
High Performance Interactive Computing with FlowVR

Jean-Denis Lesage ∗

INRIA
Laboratoire d’Informatique

de Grenoble (LIG)

Bruno Raffin †

INRIA
Laboratoire d’Informatique

de Grenoble (LIG)

ABSTRACT

This paper introduces the FlowVR suite, a set of softwares targeted
at high perfomrance interactive computing, in particular virtual re-
ality applications, to be executed on clusters. The FlowVR middle-
ware supports coupling of heterogeneous parallel codes and is com-
ponent oriented to favor code reuse. After introducing the FlowVR
main concepts, we details the different tools associated and several
applications.

1 INTRODUCTION

Developing VR applications that include numerous simulations, an-
imations and advanced user interactions is a challenging problem.
We can distinguish two strong difficulties:

• Software engineering issues where multiple pieces of codes
(simulation codes, graphics codes, device drivers, etc.), de-
veloped by different persons, during different periods of time,
have to be integrated in the same framework to properly work
together.

• Hardware limitations bypassed by multiplying the units avail-
able (CPUs, GPUs, cameras, video projectors, etc.), but with
the major drawback of introducing extra difficulties, like task
parallelization or multi devices calibration (cameras or pro-
jectors).

Software engineering issues have been addressed in different
ways. Scene graphs offer a specific answer to graphics applica-
tion requirements. They propose a hierarchical data structure where
the parameters of one node apply to all the nodes of the sub-tree.
Such hierarchy creates dependencies between nodes that constrain
the graph traversal order. These dependencies make efficient scene
graph distribution difficult on a parallel machine [12, 16]. Several
scientific visualization tools adopt a data-flow model [8]. An ap-
plication corresponds to an oriented graph with tasks at vertices
and FIFO channels at edges. This graph clearly structures data de-
pendencies between tasks. It eases task distribution on different
processing hosts [6].

Hardware limitations have been tackled first by developing
graphics supercomputers integrating dedicated hardware [15]. Fo-
cus was on increasing the capabilities through different paralleliza-
tion schemes [14]. Today, such approaches are facing difficulties
to keep pace, regarding price and performance, with commodity
component based platforms like graphics PC clusters [17]. But ag-
gregating commodity components requires an extra effort on the
software side. Chromium [10] proposes a highly optimized stream-
ing protocol, primarily aimed at transporting OpenGL primitives
on PC clusters to drive multi display environments. To improve la-
tency, virtual reality oriented libraries duplicate the application on
each rendering host. A synchronous broadcast of all input events

∗email: jean-denis.lesage@imag.fr
†email: bruno.raffin@imag.fr

ensures copies stay coherent [9, 7, 18]. VR applications can also
take advantage of a cluster to distribute input devices or simulation
tasks. For instance new complex devices, like multi-camera sys-
tems [13], increase the number of components to manage and the
need for parallel processing. Distributed code coupling have been
experimented for VR applications with tools like Covise [6], Open-
Mask [1] or Avango [20].

All the mentioned algorithms and tools are useful in different ap-
plication scenarios. Large scale applications often require a number
of these technics but it is difficult to choose the most efficient ones
and combine them in a single application. In this paper we present
a software framework for the development of large distributed VR
applications. The goal is to favor the application modularity in an
attempt to alleviate software engineering issues while taking advan-
tage of this modularity to enable efficient executions on PC clusters.
We developed the FlowVR suite [3, 5], a software suite dedicated
to distributed interactive applications.

It is composed of FlowVR (section 2), a middleware that reuses
and extends the classical data-flow model, FlowVR Render (sec-
tion 3), a shader based framework for distributed rendering and
VTK FlowVR (section 4) that enables rendering VTK applications
with FlowVR Render.

FlowVR comes with a complete set of tools to develop dis-
tributed applications, to map an application on a cluster, to launch it
and control its execution. FlowVR also comes with tools for graph
visualization, trace capture and visualization to analyze an execu-
tion.

2 THE FLOWVR MIDDLEWARE

2.1 Overview

FlowVR is an open source middleware, currently ported on Linux
and Mac OS X platforms. In this section we present its main fea-
tures. Refer to [3] for more details.

An application is composed of modules exchanging data through
a FlowVR network. A module is usually an existing code that has
been updated to call FlowVR functions. A module runs in its own
independent process or thread, thus reducing the effort required to
turn an existing code into a module.

From the FlowVR point of view, modules are not aware of the
existence of other modules. A module only exchanges data with
the FlowVR daemon that runs on the same host. The set of dae-
mons running on a PC cluster are in charge of implementing the
FlowVR network that connects modules. The daemons take care
of moving data between modules using the most efficient method.
This approach enables to develop a pool of modules that can next
be combined in different applications, without having to recompile
the modules.

The FlowVR network defined between modules can implement
simple module-to-module connections as well as complex message
handling operations. For instance the network can implement syn-
chronizations, data filtering operations, data sampling, dead reck-
oning, frustum culling, collective communications schemes like
broadcasts, etc. This fine control over data handling enables to take
advantage of both the specificity of the application and the under-
lying cluster architecture to optimize the latency and refresh rates.



To execute an application on a cluster the user maps the mod-
ules on the different hosts available. The FlowVR network is im-
plemented by a daemon running on each host. A module sends a
message on the FlowVR network by allocating a buffer in a shared
memory segment managed by the local daemon. If the message has
to be forwarded to a module running on the same host, the daemon
only forwards a pointer on the message to the destination module
that can directly read the message. If the message has to be for-
warded to a module running on a distant host, the daemon sends it to
the daemon of the distant host. The target daemon retrieves the mes-
sage, stores it in its shared memory segment and provides a pointer
on the message to the receiving module. Using a shared memory
enables to reduce data copies for an improved performance.

Daemons can load custom classes (plugins) to extend their func-
tionalities. For instance, the current version loads a TCP plugin to
implement inter-host communications. Custom plugins can be de-
veloped to support other protocols for high performance networks
like Infiniband or Myrinet.

2.2 Messages

Each message sent on the FlowVR network is associated with a list
of stamps. Stamps are lightweight data that identify the message.
Some stamps are automatically set by FlowVR. The user can also
define new stamps if required. A stamp can be a simple ordering
number, the id of the source that generated the message or a more
advanced data like a 3D bounding volume. To some extent, stamps
enable to perform computations on messages without having to read
the message contents. A stamp can be routed separately from its
message if the destination does not need it. It enables to improve
performance by avoiding useless data transfers on the network.

2.3 Modules

Computation tasks are encapsulated into modules. Each module
defines a list of input ports and output ports. During its execution
a module endlessly iterates reading input data from its input ports
and writing new results on its output ports. For that purpose it uses
the following three main methods:

• The wait defines the transition to a new iteration. It is a block-
ing call that ensures each connected input port holds a new
message. Notice that this semantics requires that at each
iteration a module receives a new message on each of its con-
nected input ports. This constraint can be loosen by using
specific FlowVR network components, as we will see in the
following (section 2.4).

• The get function enables a module to retrieve the message
available on a port.

• The put function enables a module to write a message on an
output port. Only one new message can be written per port
and iteration. This is a non-blocking call, thus allowing to
execute computations and communications in parallel.

Each module has two predefined ports called beginIt and endIt.
The input activation port beginIt is used to lock the module to an
external event. The output activation port endIt is used to signal
other components that the module has started a new iteration.

A module does not explicitly address any other FlowVR compo-
nent. Its only exchange channel with the outside FlowVR world is
through its ports. This ensures modules can be reused in different
applications without code modification or recompilation.

Usually a module is build using an existing piece of code that is
modified to include the required FlowVR function calls. It runs in
its own process or thread as it would before becoming a module. A
module can be programmed in any language as long as the FlowVR

library provides the required language binding. The current imple-
mentation only provides a C++ binding. Other languages will be
supported in the future.

2.4 The FlowVR Network

The FlowVR network specifies how the ports of the modules are
connected. The simplest primitive used to build a FlowVR network
is a connection. A connection is a FIFO channel with one source
and one destination.

To perform high performance and complex message handling
tasks we introduce a new network component called filter. Like
a module, a filter is a computation task that has typed ports. But
filters are deeply different from modules in two different ways:

• A filter is not constrained to receive one and only one message
per input port and per iteration. A filter has access to the full
list of incoming messages. It has the freedom to select, com-
bine or discard the ones it wants. It can also create new mes-
sages. For instance, a filter can discard incoming messages
which 3D bounding box falls outside of a given volume.

• A filter does not run in its own process. It is a plugin loaded
by FlowVR daemons. The goal is to favor the performance by
limiting the required number of context switches.

As such, a filter is more difficult to program than a module re-
garding message handling. Usually, a user only selects the filters
it needs amongst the ones that come with FlowVR.

Amongst filters, we call routing nodes the filters that simply for-
ward all incoming messages on one or several outputs. They are
useful to set custom routing graphs.

We also distinguish another special class of filters, called syn-
chronizers. A synchronizer implements coupling policies by cen-
tralizing data from other filters or modules to take a decision that
will then be executed by other filters. A synchronizer differs from
standard filters because all input and output connections only carry
the message stamps alone.

Assembling synchronizers and filters can lead to complex data
distribution strategies. For instance, a synchronizer is able to limit
frequency of a component or to synchronize iterations from two
components. Some networks are able to change the default FIFO
connection strategy and enable to couple components running at
different frequencies.

Each FlowVR application is managed by one special module
called a controller. The controller first starts the application’s mod-
ules using the launching command computed by flowvr-module.
Once modules are launched, they register themselves to their local
daemon which sends an acknowledgment to the controller. Then,
the controller forwards a description of FlowVR network to the dae-
mons. They create this network by configuring themselves (load
plugins, set parameters, etc.). The execution of the application can
then start.

2.5 Hierarchical components

FlowVR includes a C++ library dedicated to the design of large
networks. This library implements a hierarchal components
model [11]. Hierarchy eases modularity and reusability of FlowVR
networks. Two kinds of components are defined in this model:

• Primitive component is a basic FlowVR object (ie module,
filter, connection, synchronizer or routing node).

• Composite component contains other components (primitive
or composite). Links connect ports between different compo-
nents. These links can connect two components of the same
level of hierarchy or connect a composite to one of his chil-
dren components. Links can not cross a component hull, en-
capsulation is strict.



A library of composite components for the development of large
parallel applications is provided with FlowVR. It contains:

• Parallel patterns. They ease the interface with parallel mod-
ules implemented with threads, MPI or other parallel middle-
wares. From the user’s view, component encapsulation hides
some parallelism issues such as communications between par-
allel processes for instance.

• Communication patterns. They implement efficient commu-
nication schemes between parallel components.

• Synchronization patterns. They are used with a FlowVR syn-
chronizer to sample messages along a connection. They en-
able to couple two components that runs at different frequen-
cies.

• High level components. They are usually implemented by the
FlowVR community. They encapsulate a part of a FlowVR
network that can be used directly in different applications.
Some of them make the interface with external libraries such
as VRPN [19] (VR devices library) or SOFA [2] (physical
simulation library).

3 FLOWVR RENDER

FlowVR Render [5] is a shader based parallel rendering frame-
work relying on FlowVR. It takes advantage of the power offered
by graphics clusters to drive display walls or immersive multi-
projector environments like Caves. It defines graphics primitives
using shader programs to propose a high performance communica-
tion protocol:

• Shaders are used to specify the visual appearance of graphics
objects. They require only a few parameters and not the full
complexity of the fixed-function OpenGL state machine. It
leads to a simpler protocol that does not have to manage state
tracking. Those primitives are self-contained.

• Shaders enables to easily take advantage of all features offered
by programmable graphics cards.

• FlowVR Render works in retained-mode. Only updates of
primitives need to be sent.

The rendering framework is based on several viewers creating
the scene and distributed renderers rendering the scene. A viewer
describes primitives sent to a renderer using the FlowVR Render
protocol. The renderer is in charge of rendering this set of primi-
tives. All of them are FlowVR modules.

We developed a wrapper that reads back the image computed
by an OpengGL application, turn it into a FlowVR Render primi-
tive using the image as a texture. It enables to render unmodified
OpenGL applications on multi display environments with FlowVR
Render.

FlowVR Mplayer is a port of the MPlayer Movie Player that
uses FlowVR Render. This enables to play movies on multi display
environments. It aims at taking advantage of the high resolution of
screen walls, and allows to play high resolution videos.

4 VTK-FLOWVR

VTK FlowVR enables to perform VTK data visualization using
FlowVR Render with minimal modifications of the original code. It
also enables to encapsulate VTK code into FlowVR modules to get
access to the FlowVR capabilities for modularizing and distributing
VTK processings.

5 MAKING DEVELOPMENT EASIER

FlowVR provides tools to ease the development or the debugging
of an application:

• FlowVR-GLGraph, an OpenGL based FlowVR network
viewer, gives users the opportunity to display the network of
the instanciated application. It features color handling, zoom,
hiding of uninteresting parts to make the network more read-
able (Fig. 1).

Figure 1: FlowVR OpenGL graph viewer

• FlowVR-GLTrace is a trace visualization tool. FlowVR sup-
ports capture of predefined or user-defined events. Capture
is performed with minimal impact on the execution perfor-
mance. Once stored on disk, FlowVR-GLTrace enable to pro-
cess and display the execution trace. This tool helps debug-
ging by showing the user the chronology of events, the mes-
sages exchanged between the various components involved in
an application.

6 APPLICATION EXAMPLE

One large VR application developed with FlowVR aggregates:

• a parallel real-time multi-camera 3D modeling algorithm di-
rectly implemented with FlowVR

• SOFA [2], a physical simulation library. SOFA is not de-
veloped with FlowVR, but it has been encapsulated into a
FlowVR component

• distributed rendering implemented with FlowVR-Render.

It runs on a PC cluster, some nodes of the cluster being dedicated
to computations, some nodes are attached to video cameras and the
others drive displays or video-projectors. A light version of this
application has been demonstrated at Siggraph Emerging Technolo-
gies 2007 [4]. An user puts his hands in a reconstruction area filmed
by cameras (figure 2). The images from the different view points
are processed online to provide a 3D model of the user’s hands.
This 3D model is sent to SOFA [2] to compute in real time inter-
actions between the 3D model and the pure virtual objects. The
scene is them rendered on displays, after texturing the 3D model
with photometric data extracted from the camera images (1).

1videos available at http://www.inrialpes.grimage.fr



Figure 2: GrImage: interactions with soft virtual objects

7 CONCLUSION

We presented the FlowVR suite. It provides a middleware for high
performance interactive computing favoring code reuse and modu-
larity. On top of this middelware FlowVR Render defines a com-
munication protocol for graphics primitives. It enables an efficient
remote rendering on multi display environments. The suite is com-
plemented by a video player based on Mplayer, an OpenGL wrap-
per and components for coupling VTK, FlowVR and FlowVR ren-
der.

ACKNOWLEDGMENT

The main contributors to FlowVR and its components are Jrmie
Allard, Jean-Denis Lesage, Clment Mnier, Sabastien Limet, Em-
manuel Melin, Bruno Raffin and Sophie Robert.

This work was partly funded by Agence Nationale de la
Recherche contract ANR-06-MDCA-003.

REFERENCES

[1] OpenMASK. http://www.irisa.fr/siames/OpenMASK.

[2] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez,

H. Delingette, and L. Grisoni. SOFA: an Open Source Framework

for Medical Simulation. In Medicine Meets Virtual Reality (MMVR),

2007.

[3] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,

and S. Robert. FlowVR: a middleware for large scale virtual reality ap-

plications. In Euro-Par 2004 Parallel Processing: 10th International

Euro-Par Conference, pages 497–505, Pisa, Italia, August 2004.

[4] J. Allard, C. Ménier, B. Raffin, E. Boyer, and F. Faure. Grimage:

Markerless 3D Interactions. In Proceedings of ACM SIGGRAPH 07.

[5] J. Allard and B. Raffin. A shader-based parallel rendering framework.

In IEEE Visualization Conference, Minneapolis, USA, October 2005.

[6] A.Wierse, U.Lang, and R. Rhle. Architectures of Distributed Visual-

ization Systems and their Enhancements. In Eurographics Workshop

on Visualization in Scientific Computing, Abingdon, 1993.

[7] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C. Cruz-

Neira. VR Juggler: A Virtual Platform for Virtual Reality Application

Development. In IEEE VR 2001, Yokohama, Japan, March 2001.

[8] K. W. Brodlie, D. A. Duce, J. R. Gallop, J. P. R. B. Walton, and J. D.

Wood. Distributed and collaborative visualization. Computer Graph-

ics Forum, 23(2), 2004.

[9] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C.

Hart. The Cave Audio VIsual Experience Automatic Virtual Envi-

ronement. Communication of the ACM, 35(6):64–72, 1992.

[10] G. Humphreys, M. Houston, R. Ng, S. Ahern, R. Frank, P. Kirchner,

and J. T. Klosowski. Chromium: A Stream Processing Framework for

Interactive Graphics on Clusters of Workstations. In Proceedings of

ACM SIGGRAPH 02, pages 693–702, 2002.

[11] J.-D. Lesage and B. Raffin. A Hierarchical Programming Model for

Large Parallel Interactive Applications. In IFIP International Confer-

ence on Network and Parallel Computing, pages 516–525, 2007.

[12] B. MacIntyre and S. Feiner. A distributed 3D graphics library. In

M. Cohen, editor, Proceedings of ACM SIGGRAPH 98, pages 361–

370. Addison Wesley, 1998.

[13] W. Matusik and H. Pfister. 3D TV: A Scalable System for Real-Time

Acquisition, Transmission, and Autostereoscopic Display of Dynamic

Scenes. In Proceedings of ACM SIGGRAPH 04, 2004.

[14] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classifi-

cation of Parallel Rendering. IEEE Computer Graphics and Applica-

tions, 14(4):23–32, July 1994.

[15] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. In-

finiteReality : A Real-Time Graphics System. In Proceedings of ACM

SIGGRAPH 97, pages 293–302, Los Angeles, USA, August 1997.

[16] M. Roth, G. Voss, and D. Reiners. Multi-threading and clustering for

scene graph systems. Computers & Graphics, 28(1):63–66, 2004.

[17] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-

first and sort-last parallel rendering with a cluster of PCs. In ACM

SIGGRAPH/Eurographics Workshop on Graphics Hardware, August

2000.

[18] B. Schaeffer and C. Goudeseune. Syzygy: Native PC Cluster VR. In

IEEE VR Conference, 2003.

[19] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and

A. T. Helser. VRPN: a device-independent, network-transparent VR

peripheral system. In ACM Symposium on Virtual Reality Software &

Technology 2001, 2001.

[20] H. Tramberend. Avocado: A distributed virtual reality framework.

In P. A. L. Rosenblum and D. Teichmann, editors, Proceedings IEEE

Virtual Reality 99 ConferencE, pages 14–21, March 1999.


