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Ma reconnaissance va à ceux qui ont plus particulièrement assuré le soutien
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Chapter 1

Introduction

The elementary components of computer algebra consist in numbers and polynomials,
and the basic domains are the integers, rational numbers, finite fields and polynomial
rings. Motivated by a large range of applications, ranging from symbolic manipula-
tion, algebraic cryptanalysis, computational number theory, linear programming, and
formal proof verification, computation in this field is required to be exact. In general,
it boils down to computations over prime fields Z/pZ through the use of RNS or p-
adic lifting techniques. Therefore, sequential exact linear algebra over prime fields of
machine word size has been developed [36, 22].

The classic computation of the product of two n × n dense matrices over a field
is done with O(n3) operations. In 1969, Strassen [83] showed that it is possible to
perform the same computation with only O(n2.807). This sub-cubic complexity opened
a new area of research with two main axes. The first one focuses on finding the best
exponent ω such that two n × n matrices can be multiplied in O(nω). Currently the
best known value for ω is approximately 2.3728639 [71]. The second axis aims at
reducing all dense linear algebra problems to the matrix multiplication operation to
reduce their complexity. This is done by considering block algorithms that gather
arithmetic operations in matrix multiplication.

In this process, dense linear algebra has become an optimized building block for
problems that are dense by nature but also for large sparse problems that are reduced
to smaller dense problems that are still large. Indeed, sparse elimination switches to
dense elimination on blocks after fill-in, in the case of sparse direct methods [30], or
induces dense elimination on blocks of iterated vectors when using sparse iterative
methods [66].

Computing efficiently in dense exact linear algebra does not only rely on optimized
time and space complexities. It also depends on algorithms that can be made relevant
in practice. It is thus important to design algorithms that are sensitive to nowadays
machine architectures. The latter performance have shown an extremely rapid evo-
lution in the past decades by doubling every 18 months. Nonetheless, the pace of
advancement has slowed drastically a decade ago due to physical limitations such as
energy consumption and heat dissipation. In order to carry on in terms of performance
growth, the solution has been to increase the number of cores per processor. Hence, in
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order to take advantage of the new architecture of parallel processing units, sequential
algorithms need to be adapted and parallelism needs to be introduced. The key chal-
lenge is to deliver powerful implementations of algorithms in computer algebra within
this high-performance context.

This manuscript summarizes our contributions to the design of high performance
computer algebra and shows the thorough encroachment between two areas: exact
linear algebra and numerical linear algebra. A large body of research efforts addressing
these two areas has resulted in efficient sequential implementations and mature software
in numerical [59, 50, 88, 3, 1] and exact linear algebra [22, 35, 14, 43, 12, 79]. Moreover,
parallel implementations in numerical computation have been intensively studied and
reported in the literature [27, 7, 77, 70, 87, 53]. However, in dense exact linear algebra,
very few parallel implementations exist and the design aspects in this field are still to
be investigated.

1.1 Issues in the design of parallel dense exact linear algebra

Triangular matrix decomposition is a fundamental building block in computational
linear algebra. It is used to solve linear systems, compute the rank, the determinant,
the null-space or the echelon form of a matrix.

The LU decomposition, defined for matrices whose leading principal minors are all
nonzero, can be generalized to arbitrary ranks and rank profiles by introducing piv-
oting on sides, leading e.g. to the LQUP decomposition of [58] or the PLUQ decom-
position [49, 63]. Many algorithmic variants exist allowing fraction free computations
[63], in-place computations [36, 62] or sub-cubic rank-sensitive time complexity [82,
62]. More precisely, the pivoting strategy is the key difference between these PLUQ
decompositions.

In numerical linear algebra [49], pivoting is used to ensure a good numerical stability,
good data locality, and reduce the fill-in. In the context of exact linear algebra, the
computation of the echelon form is crucial in many applications using exact Gaussian
elimination, such as Gröbner basis computations [44] and computational number the-
ory [81]. Indeed, only certain pivoting strategies for these decompositions will reveal
the echelon form or the rank profile of the matrix [62, 39].

Computation over a finite field shapes the heart of exact linear algebra. Yet, it
implies performing additional arithmetic operations through modular reductions. The
latter operations can be costly depending on the algorithm used and should be taken
into account in a delayed design.

In exact computation, one can benefit from asymptotically faster complexities by
using Strassen [83] and Strassen-Winograd [29] variants for matrix multiplication, es-
pecially when applied on sufficiently large blocks. This implies using recursive algo-
rithms that on one hand insures coarser grain cutting than iterative algorithms and on
the other hand implies multiple level of parallelism. Moreover, over a finite field, the
elimination algorithms can discover rank deficiencies during the computation and im-
plies having heterogeneous tasks. Thus, these problems should be addressed by using
work-stealing based schedulers that handle unbalanced workloads and parallel runtime
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systems that handle efficiently the management of recursive tasks.
Nevertheless, the design of a parallel software in numerical linear algebra differs from

that in exact linear algebra. These differences are detailed in 1.2.1.

1.2 Exact and Numerical linear algebra

Efficient sequential exact linear algebra routines benefit from the experience in numer-
ical linear algebra. In particular, a key point there is to embed the finite field elements
in integers stored as floating point numbers [36], and then rely on the efficiency of the
floating point matrix multiplication dgemm of the BLAS. Hence a natural ingredient in
the design of efficient dense linear algebra routines is the use of block algorithms that
result in gathering arithmetic operations in matrix-matrix multiplications. Those can
take full advantage of vector instructions and have a high computation per memory
access rate, allowing to fully overlap the data accesses by computations and hence
deliver close to peak performance efficiency.

1.2.1 Main differences between Exact and Numerical linear algebra

Computation in exact and in numerical linear algebra shares similarities in algorithmic
aspects as well as in implementation aspects. The use of block algorithms is important
to ensure better data locality. Thus iterative and recursive block algorithms are inves-
tigated. A key common point is to reduce as much as possible the data movements
that leads to distant memory accesses in parallel especially when computation are per-
formed on Non-Uniform Memory Access machines. The latter machine architecture is
explained in section 1.3.3.

However, we illustrate here how numerical and exact LU factorization mainly differ
in the following aspects:

• the pivoting strategies,

• the cost of the arithmetic (of scalars and matrices),

• the treatment of rank deficiencies.

Those have a direct impact on the shape and granularity of the block decomposition
of the matrix used in the computation.

1.2.1.1 The cost of the arithmetic

In numerical linear algebra, the cost of arithmetic operations is more or less associa-
tive: with dimensions above a rather low threshold (typically a few hundreds), the
BLAS sequential matrix multiplication attains about 80% of the peak efficiency of the
processor. Hence the granularity has very little impact on the efficiency of a block
algorithm run sequentially. On the contrary, over a finite field, a small granularity can
imply a larger number of costly modular reductions, as we will show in Section 4.5.
Moreover, numerical stability is not an issue over a finite field, and asymptotically fast
matrix multiplication algorithms, like Winograd’s variant of Strassen algorithm [45,
§12] can be used on top of the BLAS. The cost of sequential matrix multiplication over
finite field is therefore not associative: a larger granularity delivers a better sequential
efficiency [17].
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1.2.1.2 Pivoting strategies and rank deficiencies

In dense numerical linear algebra, a pivoting strategy is a compromise between the two
competing constraints: ensuring good numerical stability and avoiding data movement.
In the context of dense exact linear algebra, stability is no longer an issue. Instead,
only certain pivoting strategies will reveal the echelon form or, equivalently, the rank
profile of the matrix. These strategies are detailed in Chapter 5.

In the case of numerical LU factorization, most often all panel blocks have full rank.
Therefore the splitting can be done statically according to a granularity parameter.
Over exact domains, on the contrary, depending on the application, the large blocks
can be rank deficient. Thus, the tiles or slabs have unpredictable dimensions and the
block splitting necessarily dynamic, as will be illustrated in Chapter 5.

1.2.2 Consequences on the design of exact matrix multiplication

Consequently the design of an exact matrix factorization necessarily differs from the
numerical algorithms as follows:

• granularity should be as large as possible, to reduce modular reductions and ben-
efit from fast matrix multiplication;

• exact algorithms should preferably be recursive, to group arithmetic operations
in matrix products as large as possible;

• block splitting and pivoting strategies must preserve and reveal the rank profile
of the matrix.

• block dimensions depend on rank deficiencies which are unknown in advance.
This leads to dynamic computation of block size when input matrices are rank
deficient.

• modular reduction can be costly and should be delayed as much as possible.

1.3 Parallel linear algebra libraries

We list in this section the state of the art numerical and exact linear algebra parallel
libraries. This is not an exhaustive list of all existing high performance libraries. We
present the most commonly used libraries in numerical linear algebra to which we will
compare.

1.3.1 State of the art numerical linear algebra libraries for shared memory archi-
tectures

We focus first on high performance numerical linear algebra libraries that are designed
for shared memory architectures:

1.3.1.1 Intel MKL

Intel Math Kernel Library (Intel MKL) [60, 86] is a computing math library of highly
optimized, threaded routines. The library provides Fortran and C programming lan-
guage interfaces. It includes highly vectorized and threaded Linear Algebra, Fast
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Fourier Transforms (FFT), Vector Math and Statistics functions. It is the reference
library in numerical computation and it is parallelized using OpenMP standard and
Intel Threading Building Blocks (TBB).

1.3.1.2 OpenBLAS

OpenBLAS is an open source implementation of the BLAS (Basic Linear Algebra
Subprograms) API. It is a continuation of GotoBLAS2 [50] that adds optimized im-
plementations of linear algebra kernels for several processor architectures achieving
performance comparable to the Intel MKL on Intel Sandy Bridge [87] and Loong-
son [91]. OpenBLAS can be compiled sequentially, or using a multithreaded version.
It provides parallelism using pthreads or using OpenMP standard.

1.3.1.3 PLASMA-Quark

The Parallel Linear Algebra Software for Multicore Architectures [77, 70, 69, 26] is a
dense linear algebra package at the forefront of multicore computing. PLASMA cur-
rently offers a collection of routines for solving linear systems of equations, least square
problems, eigenvalue problems, and singular value problems. It uses the QUARK
(QUeuing And Runtime for Kernels) 1 library as a parallel runtime. QUARK provides
a library that enables the dynamic execution of tasks with data dependencies in a
multi-core and multi-socket shared-memory environment. QUARK infers data depen-
dencies and precedence constraints between tasks from the way that the data is used,
and then executes the tasks in an asynchronous, dynamic fashion in order to achieve a
high utilization of the available resources. PLASMA-QUARK also supports different
data mapping and block storage strategies that helps to deliver the highest possible
performance.

1.3.1.4 High performance numerical linear algebra libraries for distributed memory
architectures

All the following libraries are designed for distributed memory architectures and will
not be used to compare with our shared-memory oriented implementations. We thus
don’t give an exhaustive description of these libraries, we list the most important of
them:

ScaLAPACK

The ScaLAPACK (or Scalable LAPACK) library2 is a high-performance linear algebra
library written in Fortran and includes a subset of LAPACK [3, 2] routines. The latter
is a standard software library for sequential numerical linear algebra. The ScaLAPACK
library deals with dense and banded linear systems, least squares problems, eigenvalue
problems, and singular value problems. However, it is only designed for distributed
memory parallel computers.

1http://icl.cs.utk.edu/quark
2http://www.netlib.org/scalapack

http://www.netlib.org/scalapack
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Elemental

Elemental [78] is an open-source library for distributed-memory dense and sparse-direct
linear algebra . It’s build on top of BLAS, LAPACK, and MPI using modern C++
and additionally exposes interfaces to C and Python. It supports a wide collection of
distributed-memory operations.

MTL

The Matrix Template Library [80] is a high performance library that includes a large
number of data formats and algorithms, including most popular sparse and dense
matrix formats and functionality. Benchmarks with MTL4 showed good performance
on the parallel Supercomputing Edition 3 where it was tested on an HPC cluster.

1.3.2 State of the art exact linear algebra libraries

1.3.2.1 NTL

Victor Shoup’s NTL [79] is a Library for Number Theory that provides implementations
of state-of-the-art algorithms for:

• basic linear algebra over the integers, finite fields, and arbitrary precision floating
point numbers.

• arbitrary length integer arithmetic and arbitrary precision floating point arith-
metic; NTL can be used in conjunction with GMP (the GNU Multi-Precision
library) for enhanced performance;

Recently, it its latest releases, NTL focused on parallelization and multithreading.
As of version 9.5, NTL has thread boost feature. Yet, for now, this feature is only
supported for polynomial factorization.

1.3.2.2 MAGMA

Magma [12] is a large, well-supported software designed for computations in algebra,
number theory, algebraic geometry and algebraic combinatorics. It has developed
its own mathematically rigorous environment for defining and working with structures
such as groups, rings, fields, modules, algebras, schemes, curves, graphs, designs, codes
and many others. Magma often sets the reference in efficiency. Moreover, LinBox li-
brary, detailed in 1.3.2.3 and where implementation contributions of this thesis are de-
veloped, has been constructed recently with close comparisons to Magma on sequential
matrix multiplication [31] and on the computation of the characteristic polynomial [41,
65].

1.3.2.3 LinBox

Project LinBox [15] is a collaborative effort among researchers at a number of loca-
tions. The goals are to produce algorithms and software for symbolic linear algebra,
particularly using black box matrix methods, i.e. iterative methods requiring only the

3http://www.simunova.com/en/node/186
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linear transform property of the matrix (that one can compute Ax → y). The LinBox
project relies on several libraries, such as Givaro for finite fields and also FFLAS-FFPACK

for dense linear algebra over a finite field.

1.3.2.4 Givaro

Givaro [32] is a C++ library for arithmetic and algebraic computations. Its main
features are implementations of the basic arithmetic of many mathematical entities:
primes fields, extensions fields, finite fields, finite rings, polynomials, algebraic num-
bers, arbitrary precision integers and rationals (C++ wrappers over gmp) It also pro-
vides data-structures and templated classes for the manipulation of basic algebraic
objects, such as vectors, matrices (dense, sparse, structured), univariate polynomials
(and therefore recursive multivariate).

1.3.2.5 The FFLAS-FFPACK library

The FFLAS-FFPACK [14, 36] is a LGPL-2.1+ source code library for basic linear algebra
operations over a finite field. It is inspired by BLAS interface (Basic Linear Algebra
Subprograms) and the LAPACK library for numerical linear algebra, and shares part
of their design. Yet it differs in many aspects due to the specifities of computing over
a finite field. It is generic with respect to the finite field, so as to accommodate a large
variety of field sizes and implementations.

1.3.3 Parallelization of the FFLAS-FFPACK library

We are interested in the parallelization of the FFLAS-FFPACK library in this thesis.
However, parallelism also introduces additional concerns. A sequential module en-
capsulates the code that implements the functions provided by the module’s interface
and the data structures accessed by those functions. In parallel programming, we
need to consider not only code and data but also the tasks created by a module, the
way in which data structures are partitioned and mapped to processors, and internal
communication structures. The latter depends greatly on the machine architecture.

Shared machine architectures

The computer architecture, microprocessor or supercomputers, is strongly influenced
by the harness of a fundamental property of applications: parallelism. Today, most
servers are distributed memory machines (clusters) or shared memory machines (mul-
tiprocessors). Multiprocessor shared memory architectures can be:

• Uniform Memory Access (UMA): all the processors share the physical memory
uniformly. UMA architectures mainly use bus-based Symmetric MultiProcessing
(SMP) architectures. SMP is the processing of programs by multiple processors
that share a common operating system and memory. In symmetric (or ”tightly
coupled”) multiprocessing, the processors share memory and the I/O bus.

• Cache-only memory architecture (COMA): the local memories for the processors
at a node is used as cache. The hardware transparently replicates the data and
migrates it to the memory module of the node that is currently accessing it. This
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increases the chances of data being available locally. One can refer to [23] for
more details.

• Non-Uniform Memory Access (NUMA): memory access time depends on the mem-
ory location relative to a processor. A NUMA system is a multiprocessor system
in which memory areas are separated and placed in different locations (and differ-
ent buses). Depending on each processor access times therefore differ according
to the accessed memory area.

In the SMP architecture all the memory space is accessible through a single bus.
This causes a performance bottleneck when different processors try to access concur-
rently the bus. The NUMA is a more suitable architecture for systems with many
processors and is designed to overcome the limitations of the SMP architecture. In a
NUMA architecture, processors may access local memory quickly and remote memory
more slowly. This can dramatically improve memory throughput as long as the data
are localized to specific processes (and thus processors). NUMA represents a middle
position between the SMP and clustering (various machines).

A dedicated interface to parallel exact linear algebra

As will be explained in Chapter 2, an efficient parallelization of exact linear alge-
bra libraries can attain good performance using a high level runtime system. Today,
many high level runtime systems exist with various parallel programming models and
paradigms. We want to offer the option of using different runtime systems and be able
to compare and achieve high speed-up. To do so, the user needs to be able to plug
a parallel runtime system into the library. This helps not only to benchmark parallel
performance using different runtime systems but also to be able to deal with spe-
cific problems by using the most adapted runtime system to the type of computation
performed. The user thus needs an interface that fills the following requirements:

• genericity and portability

• performance and scalability

• high enough level of abstraction

• take into account large range of machine architectures

But also:

• to support runtime system with good performance for recursive tasks

• to handle efficiently unbalanced workloads

• to use optimized and efficient range loop cutting for parallel for

In chapter 2 we describe how we tackled these issues by presenting the PALADIn
language that is an interface with runtime system as a pluggin.
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1.4 Methodology of experiments

All experiments have been conducted on a 32 cores (4 NUMA nodes with 8 cores each)
Intel Xeon E5-4620 2.2Ghz (Sandy Bridge) with L3 cache(16384 KB). All implemented
routines are in the FFLAS-FFPACK library4 with git repository #6d0c995 relying on
givaro #44a003a. The numerical BLAS used is OpenBLAS r0.2.9. MKL version is
sp1.1.106, LAPACK version is v3.4.2 and PLASMA version is v2.5.0. We used the X-
KAAPI runtime version 2.1 with last git commit: xkaapi 40ea2eb. The gcc compiler
version is 5.3 (supporting OpenMP 4.0 and higher versions), the clang compiler version
is 3.5.0 and the icpc compiler version is sp1.1.106 (using some gcc 4.7.4).

In our experiments, we use the effective Gfops (Giga field operations per second)
metric defined as Gfops = # of field ops using classic matrix product

time . This is 2mnk
time for the

product of an m×k by a k×n matrix, and 2n3

3time for the Gaussian elimination of a full
rank n × n matrix. We note that the effective Gfops are only true Gfops (consistent
with the Gflops of numerical computations) when the classic matrix multiplication
algorithm is used. Still this metric allows us to compare all algorithms on a uniform
measure: the inverse of the time, normalized by an estimate of the problem size; the
goal here is not to measure the bandwidth of our usage of the processor’s arithmetic
instructions.

1.5 Contributions

This work has been vastly supported by the collaboration framework of the HPAC5

project, funding this Ph.D. program. Its research focuses on the design of efficient
parallel dense exact linear algebra kernels. The contribution to most algorithmic and
implementation aspects of the parallel Gaussian elimination and the computation of
rank profiles will be presented here.

In this essay, we emphasize our contribution to algorithmic aspects and to imple-
mentation by advocating three thesis:

• Sub-cubic exact linear algebra algorithms scale up in parallel.

• While recursive algorithms are undesired in numerical linear algebra they are good
candidates to maintain scalability of sub-cubic algorithms with the help of opti-
mized runtime systems in exact linear algebra, where they scale better than itera-
tive algorithms.

• PALADIn proves that we are able to develop a generic parallel linear algebra
library with runtime system as a plugin.

The project of this thesis is to develop high performance shared memory parallel im-
plementations of exact Gaussian elimination algorithm. We propose in this manuscript
a recursive Gaussian elimination that can compute simultaneously the row and column
rank profiles of a matrix as well as those of all of its leading sub-matrices, in the same

4http://linalg.org/projects/fflas-ffpack
5High Performance Algebraic Computing, ANR 11 BS02 013

http://linalg.org/projects/fflas-ffpack


20 Chapter 1. Introduction

time as state of the art Gaussian elimination algorithms. We also studied the condi-
tions to make a Gaussian elimination algorithm reveal this information by defining a
new matrix invariant, the rank profile matrix.

In Chapter 2 we deal with the parallelization of linear algebra routines. In order to ab-
stract the computational code from the parallel programming environment, we develop
a domain specific language, PALADIn: Parallel Algebraic Linear Algebra Dedicated
Interface, that is based on C/C++ macros. This domain specific language allows the
user to write C++ code and benefit from sequential and parallel executions on shared
memory architectures using the standard OpenMP, TBB [61] and X-Kaapi [46] paral-
lel runtime systems and thus providing data and task parallelism. Depending on the
runtime system, task parallelism can use explicit synchronizations or data-dependency
based synchronizations. Also, this language provides different matrix cutting strate-
gies according to one or two dimensions. Moreover, block algorithms, such as block
iterative and recursive matrix multiplication, can involve splitting according to three
dimensions. The latter is also a feature that is provided to the user. The PALADIn
interface can be used in any C++ library for linear algebra computation and gets the
best performance from the three supported parallel runtime systems.

In Chapter 3 we present algorithms (matrix multiplication and triangular solving
matrix algorithms) that are the building blocks for the design of parallel Gaussian
elimination over a finite field on shared memory architectures. Specificities of exact
computations over a finite field include the use of sub-cubic matrix arithmetic and of
costly modular reductions. As a consequence coarse grain block algorithms perform
more efficiently than fine grain algorithms and recursive algorithms are preferred. We
incrementally build efficient kernels, for matrix multiplication first, then triangular
system solving, on top of which a recursive PLUQ decomposition algorithm is built.
We study the parallelization of these kernels using several algorithmic variants: ei-
ther iterative or recursive and using different splitting strategies. Experiments show
that recursive adaptive methods for matrix multiplication, hybrid recursive-iterative
methods for triangular system solve and recursive versions of PLUQ decompositions,
together with various data mapping policies, provide the best performance on 32 cores
NUMA architecture.

Chapter 4 explores a panorama of block algorithms for the computation of Gaussian
elimination. We study existing algorithms, present a new recursive algorithm for block
Gaussian elimination and compare the implementations of the most important of them.
We then study the cost of modular reduction for these algorithms in terms of arithmetic
complexity.

In Chapter 5, we focus on the computation of echelon forms regardless of the parallel
aspects. The row (resp. column) rank profile of a matrix describes the stair-case shape
of its row (resp. column) echelon form. We propose a recursive Gaussian elimination
that can compute simultaneously the row and column rank profiles of a matrix, as
well as those of all of its leading sub-matrices, in the same time as state of the art
Gaussian elimination algorithms. Here we first study the conditions making a Gaus-
sian elimination algorithm reveal this information. We propose the definition of a new
matrix invariant, the rank profile matrix, summarizing all information on the row and
column rank profiles of all the leading sub-matrices. We also explore the conditions
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for a Gaussian elimination algorithm to compute all or part of this invariant, through
the corresponding PLUQ decomposition. As a consequence, we show that the classi-
cal iterative CUP decomposition algorithm can actually be adapted to compute the
rank profile matrix. Used, in a Crout variant, as a base-case to our recursive Gaussian
elimination implementation, it delivers a significant improvement in efficiency. Second,
the row (resp. column) echelon form of a matrix are usually computed via different
dedicated triangular decompositions. We show here that, from some PLUQ decompo-
sitions, it is possible to recover the row and column echelon forms of a matrix and of
any of its leading sub-matrices thanks to an elementary post-processing algorithm.

In Chapter 6 we propose efficient parallel algorithms and implementations on shared
memory architectures of LU factorization over a finite field. It is thus important to
design parallel algorithms that preserve and compute the rank profile of the matrices.
Moreover, as the rank profile is only discovered during the algorithm, block size has
then to be dynamic. We propose and compare several block decompositions: tile
iterative with left-looking, right-looking and Crout variants, slab and tile recursive.
Overall, we show that the overhead of modular reductions is compensated by the fast
linear algebra algorithms and that exact dense linear algebra matches the performance
of full rank reference numerical software even in the presence of rank deficiencies.





Chapter 2

The PALADIn domain specific language

The aim of this chapter is to study how the FFLAS-FFPACK library can be updated to
support parallelism. As mentioned in the introduction of this thesis, the FFLAS-FFPACK
library relies on the BLAS interface and implements all basic linear algebra routines
over finite fields. It provides:

• high performance implementations of basic linear algebra routines over word size
prime fields,

• exact alternative to the numerical BLAS library,

• exact triangularization, system solving, determinant computation, rank compu-
tation, matrix inversion, polynomial characteristic.

To parallelize the FFLAS-FFPACK library, one needs to :

• explore several algorithms and variants adapted for parallel computation,

• investigate parallel runtime systems that provides abstraction to the user and that
has scheduling as a plugin,

• and study the trade-off between using parallel loops of parallel tasks

The parallel computation constraints in numerical linear algebra and in exact linear
algebra differ. First, the state of the art numerical libraries often deal with non singular
matrices with fixed static cutting. This allows the user to manually map and schedule
tasks or threads easier. Second, the use of iterative algorithms in numerical compu-
tation often implies one or two levels of parallelism. Whereas in exact computation,
one can benefit from sub-cubic algorithms, such as Strassen algorithms for matrix mul-
tiplication, by using recursive algorithms. This implies multiple level of parallelism.
Moreover, over finite fields, the elimination algorithms can discover rank deficiencies
during the computation and implies having heterogeneous tasks. This issue can be
treated using schedulers that handle unbalanced workloads. This motivated us to look
for high level parallel programming environments to write a parallel FFLAS-FFPACK
library.

Thus, we need a parallel programming environment that preserves portability, scal-
ability and performance and also that offers features that can tackle the constraints
that arise from the computation in exact linear algebra. However, no existing parallel
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environment offers all these functionalities. We thus need to design a code that is
independent from the parallel programming environment used and that uses runtime
systems as a plugin.

We present here PALADIn [48] that stands for Parallel Algebraic Linear Algebra
Dedicated Interface which is a specific language for parallel exact linear algebra. We
first describe existing parallel environments and then focus on the parallelization is-
sues in exact linear algebra. This allows to refine the search and select the most
suited parallel environments for the computation over finite fields. Afterwards we give
the description, the grammar and the implementation of the PALADIn language. The
comparison of the parallel behavior of two runtime systems are then presented.

2.1 State of the art of parallel shared memory environments

2.1.1 Native threads parallel programming environments

POSIX Threads, usually referred to as pthreads, is a POSIX standard that defines
an API for creating and manipulating threads. It is a set of C programming language
types, functions and constants that allows individual threads of execution to be created,
synchronized, and terminated manually. Most of high level parallel runtime systems
(e.g. OpenMP [9], TBB [61] and xKaapi [46], . . . ) are implemented using pthreads at
least in some of their implementation. This standard is considered as building block
for high level parallel programming environments.

Porting a native threads-based solution onto another OS often requires code changes
and increases the initial development/debugging effort and the maintenance burden,
especially if one user wants portability. POSIX threads are typically used in Unix OS
and Windows threads are typically used in Windows OS.

Pthreads allows the user to benefit from data parallelism and task parallelism,
whereas using a high level library, one can also benefit from dataflow parallelization.
The latter is a programming style based on scheduling tasks that relies on computing
data dependencies. This allows to have finer synchronizations between tasks.

2.1.2 Parallel shared memory high level programming environments

The multitasking and multithreading parallelization has long existed in some manufac-
turers systems (CRAY, NEC, IBM, ...), but each had its own set of instructions. The
resurgence of multiprocessor machines with shared memory pushed to define a stan-
dard. A significant majority of manufacturers and builders have adopted OpenMP [9]
(Open Multi Processing) as a standard for shared memory parallelization.

Many parallel programming libraries exists alongside OpenMP, and can be pooled in
two groups. We do not give here an exhaustive list of parallel shared memory libraries
but we focus on the most used of them:

• Annotation based API:

– OpenMP is an API that supports multi-platform shared memory multipro-
cessing programming on most processor architectures and operating systems.
It consists of a set of compiler directives, library routines, and environment
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variables that influence run-time behavior. OpenMP is still considered as
standard for shared-memory architecture thanks to several advantages:

∗ good performance and scalability,

∗ maturity,

∗ portability,

∗ simple syntax, requiring little programming effort,

∗ allows incremental parallel implementation.

– SMPSS - SMP SuperScalar is a task based programming environment for par-
allel applications based on function level parallelism. Tasks are defined with
a pragma annotation right before their function definition. This annotation
indicates that the following function is a task and specifies the directionality
of each of the task parameters.

• Function-class based libraries

– TBB [61] implements work stealing to balance a parallel workload across
available processing cores. It is a library that implements task parallelism
(fork-join) and data parallelism (parallel for)

– CILK++ [8] is an extension to the C and C++ languages to support data
and task parallelism using work-stealing policy.

– xKaapi [46], as CILK++, implements both data and task parallelism using
work-stealing policy but also with dataflow dependency between tasks.

– StarPU is a task programming library for hybrid architectures

2.1.3 Parallel programming environments supported in the PALADIn interface

We focus here on three parallel programming environments that are supported in the
PALADIn language: The standard OpenMP, TBB and xKaapi. We chose TBB and
xKaapi along with the OpenMP standard for different reasons:

• The xKaapi runtime proved to be more efficient than OpenMP especially for
recursive tasks [18].

• Nested parallelism is supported by OpenMP but it may be hard to avoid resource
over-utilization. TBB has been designed to naturally support nested and recursive
parallelism. A fixed number of threads are managed by the TBB task scheduler’s
task stealing technique.

2.1.3.1 OpenMP

The OpenMP standard specification started in 1997 and was mainly based on loop
parallelization. The concept of tasks appeared in the OpenMP standard in the version
3.0 released in 2008. Thanks to these features both coarse-grain and fine-grain par-
allelism are possible. The latest release of OpenMP in 2013, version 4.0, adds some
new features: mainly support for accelerator, thread affinity and tasking extensions by
adding new OpenMP clauses. In the OpenMP standard various types of clause exist
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to help the user set data environment management. In this work, we are interested in
only few of them mostly in data sharing attribute clauses, synchronization clauses and
some scheduling clauses.

OpenMP 3.0 allows two types of parallelization: Parallel loops and Fork-join using
OpenMP tasks. In both types, data sharing attributes can be set using mainly the
following clauses:

• shared: data within a parallel region are visible and accessible by all threads
simultaneously.

• private: the data within a parallel region is private to each thread, which means
each thread will have a local copy and use it as a temporary variable.

• firstprivate: like private clause except that data are initialized to original value.

• lastprivate: like private clause except that original value is updated after con-
struct.

• reduction: a safe way of joining work from all threads after construct.

By default OpenMP passes all data as firstprivate. So, if needed, shared data can
be specified by the user. One can refer to [9] for more details.

In the latest release of OpenMP 4.0 [10], dataflow parallelization model is supported
via the depend clause, but is implemented in version 4.9 or newer of gcc, or version
3.7 or newer of Clang++ compiler.

OpenMP scheduler uses libgomp runtime library to handle thread and task creation
and management.

2.1.3.2 TBB

Soon after the introduction of the first multicore CPU pentium D, Intel releases the
first version of Threading Building Blocks (TBB) in 2006. TBB is a C++ template
library that provides parallel algorithms and data structures avoiding to the user the
need to deal with native threading. Unlike OpenMP, the TBB library does not use an
extension of the language and can be used with any compiler.

The library implements task parallelism with work stealing strategy to circumvent
unbalanced work load. Moreover, TBB algorithms (parallel_for, parallel_reduce,
. . . ) are designed using fork-join tasks. Hence, every algorithm benefits from the work
stealing strategy, unlike OpenMP parallel for. In TBB every loop based algorithm
takes a functor that decides the cutting strategy of the loop range.

Since version 2.1 release in 2008, TBB integrates many C++ 11 features to simplify
the interface. For example, one can easily create a task by using a C++ 11 lambda
function, hence avoiding the need to define a specific functor.

Finally, the last feature provided by TBB is a memory allocator that takes into
account many parameters to allow better scaling.
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2.1.3.3 xKaapi

KAAPI stands for ”Kernel for Adaptative, Asynchronous Parallel and Interactive pro-
gramming”. It is a C++ library that allows to execute fine/medium grain multi-
threaded computation with dynamic data flow synchronizations. It is a work-stealing
based parallel library that originally [46] aimed to exploit with great efficiency the com-
putation resources of a multiprocessor cluster. The latter is an efficient work-stealing
algorithm for a macro data flow computation based on a minor extension of the POSIX
thread interface.

Expressing parallelism using tasks allows the programmer to choose a finer grain
parallelization. But the success of such an approach depends greatly on the runtime
system used. Today, the KAAPI project focuses on shared memory and CPU/GPU
computation. The xKaapi [47] library relies on the libkomp [18] runtime that pro-
vides an implementation of the OpenMP norm to be used as a replacement of the
libgomp [64] library. Thus, it takes OpenMP directives and generates xKaapi tasks.

The libkomp runtime handles task creation and scheduling better than the libgomp

runtime for recursive tasks [18]. Using the libkomp runtime, the xKaapi library thus
supports also dataflow parallelism as the OpenMP standard. Using the version 4.9
of gcc or newer data dependencies are detected thanks to the ”depend” clause of the
OpenMP environment.

2.2 Parallelization issues in Exact linear algebra

In parallel exact linear algebra we focus on the use of high level parallel environments.
This is motivated by several aspects that need to be taken into account during the
parallelization of some routines in exact linear algebra:

• Recursion: In parallel numerical linear algebra, routines are mainly iterative
algorithms [7] with fine-grain parallelization. This induces invariable block size
with fixed cutting according to the matrix dimension, which makes it easier for
the programmer to map and schedule tasks or threads manually.

In exact linear algebra, one can benefit from asymptotically faster complexities by
using Strassen [83] and Strassen-Winograd [29] variants for matrix multiplication,
especially when applied on sufficiently large blocks. This implies using recursive
algorithms that insures coarser grain cutting than iterative algorithms.

• Unbalanced load and communication: In parallel computation, the role of
the scheduler of a runtime system is to assign jobs on available processors in order
to optimize some criteria: maximizing the average workload and minimizing the
overall completion time.

In the case of numerical Gaussian elimination, the selection of pivots takes a sig-
nificant amount of time in complete or full pivoting. In practice this is rarely
done, because the improvement in stability is marginal. As a result, partial piv-
oting is used in practice. Thus, input matrix does not have a generic rank profile
i.e. all it’s leading principal minors are non zero. Therefore the splitting of the
matrix can be done statically according to a granularity parameter. Whereas
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triangular decomposition over finite fields often discovers rank deficiencies upon
computation, thus generating tasks of unbalanced workloads. Hence, the runtime
system used to parallelize exact linear algebra algorithms needs to have a sched-
uler that handles this issue, namely a work-stealing based scheduler. The more
the scheduler is advanced the better it is, including dataflow dependency-based
task scheduling. This allows to have finer synchronizations between tasks.

• Routine composition: In numerical linear algebra, the use of parallel iterative
algorithms implies often a single level of parallelism. Thus, the scheduling of tasks
can be done manually by the programmer.

Since recursive algorithms are used in parallel exact linear algebra, parallel rou-
tines are called in each level of recursion. The composition of parallel routines
implies many levels of parallelism. Task dataflow parallel programming languages
rely on runtime schedulers that are aware of dependencies between tasks. By
detecting these dependencies, resources utilization can be improved for composed
tasks.

We thus want to avoid an API with low-level management and instead use runtime
systems with dataflow-based synchronizations for the parallelization of exact linear
algebra libraries. Consequently, a high level description of parallelism is required as the
one used for instance in OpenMP [9], TBB [61] and xKaapi [46] parallel programming
environments.

To solve exact linear algebra problems in parallel, the user needs a high-level library
where genericity, performance and portability are the main concern. The goal of such
a library should be :

• to allow the user to work at a high level of abstraction, thus avoiding some com-
plications arising from the use of native threading

• to hide many details specific to parallel programming,

• to take into account large range of machine architectures.

2.3 PALADIn language

We present here PALADIn which is a domain specific language dedicated to parallel
computations in exact linear algebra. It is included in the FFLAS-FFPACK library [14],
but it can be used in any C++ linear algebra library. It supports OpenMP, TBB
and xKaapi parallel environments and also allows the execution of the program in
sequential.

For the sake of simplicity, lightness and portability, no precompilation phase is needed
to use the PALADIn library. Indeed, domain specific languages can use precompilers
to generate C/C++ programs. The PALADIn library does not need to use any pre-
compiler, it can be compiled with any C/C++ compiler (g++, clang++, . . . ). By
using g++ compiler with the release version 4.9, or Clang++ version 3.7, or newer
versions, the user can benefit from a dataflow parallelization.
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A domain specific language can be implemented in C++ by using either C/C++
macros or by C++ template meta-programming. Many aspects led us to implement a
macros-based language:

• By adding macros, no important modifications are to be done to the original
program.

• Macros can be used also for C-based libraries.

• Simpler for the programmer and the user.

• No function call runtime overhead when using macros.

Nevertheless, using a macro-based language implies some challenges:

• To give a simple interface to the user, some macros need to be overloaded. C++
allows to specify more than one definition for a function name in the same scope,
which is called function overloading. When an overloaded function is called, the
compiler determines the most appropriate definition to use by comparing the
argument types used to call the function with the parameter types specified in
the definitions. However, the compiler cannot detect overloaded macros in the
preprocessing step as it would do with functions.

• To give the user more freedom, the PALADIn library allows to give a variable
number of parameter. This leads to treat with variadic macros that make it more
complex to iterate over arguments or count the list of arguments.

PALADIn focuses on four mains aspects:

1. Give an optimized parallel interface for exact linear algebra computation.

2. Be able to use sequential C++ and parallel implementation using different runtime
systems with a unique syntax.

3. Provide the user the choice of different range cut strategies.

4. Allow switching between a dataflow model and an explicit task synchronization
model with one implementation.

2.3.1 Implementation examples

By using the PALAD-Interface, the user can benefit from data or task parallelism. We
do not intend to explain the PALADIn keywords here. Further explanation on the
grammar and description are given in sections 2.3.2 to 2.3.5. In this section, we only
give two code examples using PALADIn to illustrate its syntax. The first example
shows the parallel loop syntax, and the second example illustrates the task syntax.

• Parallel loop:
Let us consider three arrays T, T1 and T2. The arrays can be any C/C++ structure.
In this example, we sum T1 with T2 and store the result in T component-wise. A
simple C++ code performing this operation is:
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Listing 2.1: Loop summing of two arrays in C++

1 for(size_t i = 0 ; i < n ; ++i){

2 T[i] = T1[i] + T2[i];

3 } �
The translation of the above code in the PALALDIn syntax is:

Listing 2.2: Loop summing of two arrays with PALADIn

1 PARFOR1D(i, n, SPLITTER (),

2 T[i] = T1[i]+T2[i];); �
Using PALADIn parallel for, the user can set the keyword SPLITTER() to spec-
ify the desired strategy to cut chunks of the loop range iterated with it. In
this example, since no arguments are given to the SPLITTER keyword the cutting
strategy used is the default. More details on setting this keyword and the cutting
strategies can be found in the PALADIn description in sections 2.3.4 and 2.3.5.3.

• Task parallelism:
In this example we illustrate the PALADIn task syntax. Let us consider a free
function axpy that uses three parameters a, x and y and computes y+= ax.

Listing 2.3: Task call with PALADIn

1 void axpy(const Element a, const Element b, Element y){

2 y += a*x;

3 }

4

5 TASK(MODE(READ(a,x) READWRITE(y)),

6 axpy(a,x,y)); �
The READ macro specifies that the arguments a and x are only read in the task
execution. The READWRITE macro indicates that the variable y is in read and write
mode during the task execution.

2.3.2 PALADIn grammar

PALADIn extends the instruction set of C++ with new instructions; the following
grammar defines the sequences of those instructions (traces) that are considered not
only valid syntactically but also at execution. In particular, it doesn’t allow not only
incorrect syntax constructions but also incorrect in term of the performance of execu-
tions, as for instance preventing nesting of PARFOR or PAR_BLOCK.

Any trace (full instruction stream) of a valid PALADIn program is an instance of
PALADIN INSTR. In this grammar, SEQ INSTR denotes any sequential instruction
(at any level of trace) resulting from the execution of a standard C++ block of instruc-
tion, excluding the new PALADIn keywords.

We extend this grammar by adding new set of instructions (lexicographic units are
in bold):
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PALADIN INSTR −→ SEQ INSTR
| PAR_BLOCK{SYNCH INSTR}
| PARFOR1D( INTERVAL1D, SYNCH INSTR)
| PARFOR2D( INTERVAL2D, SYNCH INSTR )
| PARFORBLOCK1D( INTERVAL1D, SYNCH INSTR)
| PARFORBLOCK2D( INTERVAL2D, SYNCH INSTR )
| (PALADIN INSTR;)*

SYNCH INSTR −→ SEQ INSTR
| SYNCH_GROUP( ASYNCH INSTR)
| (SYNCH INSTR;)*

ASYNCH INSTR −→ SYNCH INSTR
| TASK(DEPENDENCIES, ASYNCH INSTR)
| FOR1D(INTERVAL1D, ASYNCH INSTR)
| FOR2D(INTERVAL2D, ASYNCH INSTR)
| FORBLOCK1D(INTERVAL1D, ASYNCH INSTR)
| FORBLOCK2D(INTERVAL2D, ASYNCH INSTR)
| CHECK_DEPENDENCIES
| (ASYNCH-INSTR;)*

DEPENDENCIES −→ MODE((CONSTREF STATE)?
| (REF STATE)?
| (READ STATE)?
| (WRITE STATE)?
| (READWRITE STATE)?)

INTERVAL1D −→ IDF, INT EXPR, SPLITTER

INTERVAL2D −→ IDF, INT EXPR, INT EXPR, SPLITTER

CONSTREF STATE −→ ε | CONSTREFERENCE(VAR)+

REF STATE −→ ε | REFERENCE(VAR)+

READ STATE −→ ε | READ(VAR)+

WRITE STATE −→ ε | WRITE(VAR)+

READWRITE STATE −→ ε | READWRITE(VAR)+

SPLITTER−→ SPLITTER(INT EXPR*, CUTTING STRATEGY*, STRATEGY PARAMETER*)
| NOSPLIT()

CUTTING STRATEGY −→ SINGLE

| ROW

| COLUMN

| BLOCK

| RECURSIVE
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STRATEGY PARAMETER −→ THREADS

| FIXED

| GRAIN

| TWO_D

| TWO_D_ADAPT

| THREE_D

| THREE_D_INPLACE

| THREE_D_ADAPT

2.3.3 PALADIn description

The PALADIn extends the C++ language with new keywords that enables two com-
plementary parallel programming paradigms:

• Data parallelism (i.e. SPMD Single Program Multiple Data), thanks to parallel
regions defined by PARFOR keywords.

• Task parallelism:

– serial-parallel computations (i.e. fork-join ) with PAR_BLOCK and SYNCH_GROUP

keywords;

– asynchronous task parallelism (i.e. tasks which synchronizations are defined
by data dependency instead) inside the TASK keyword with READ, WRITE and
READWRITE keywords and also between dependent tasks by CHECK_DEPENDENCIES

keyword.

PARFOR

To enable parallelism in the main sequential stream of instructions, PARFOR1D(i, f, l,
SPLITTER, I) declares a new parallel loop where the variable i ranges the interval [f, l[
to execute the body I. At each step, the interval is split (eventually recursively), thanks
to SPLITTER methods, in sub-intervals that are concurrently computed. The PARFOR1D
is terminated when all sub intervals are computed. Note that, like in conventional
SPMD programming, I may contain branching according to the current iteration value
i. The PAR_BLOCK{I} is the special case where the interval contains only one element.

PARFOR1D, PARFOR2D or PAR_BLOCK define a new parallel region. Like in OpenMP,
parallel region shall not be nested within another parallel region.

TASK

SYNCH_GROUP(I) – with I denoting a block of instructions – enables to declare a new
synchronization point (i.e. local barrier) : at execution, the SYNCH_GROUP(I) instruc-
tion is passed only after completion of all parallel computations forked by I.

Indeed, within a SYNCH_GROUP, the instruction TASK(D, I) forks the execution of
the instruction I. The default synchronization (local barrier) after I is at the end
of the SYNCH_GROUP. Moreover, D defines additional synchronizations from expressing
dataflow dependencies; indeed D optionally defines the access mode to objects through
four lists of variables:
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• REFERENCE( variables list ) : those variables are passed by reference to I (by de-
fault, variables are passed by value, similarly to mod firstprivate in OpenMP);

• READ( variables list ) : those variables are read by I, but not modified;

• WRITE( variables list ) : those variables are written, but not read;

• READWRITE( variables list ) : those variables are read then written (update).

Note that MODE enables to describe any DAG of tasks in a sequential way; but only
those explicit dependencies define synchronizations within a group, before the local
barrier at the end of the group.

While OpenMP4 and xKaapi supports data dependencies, environments like OpenMP3
or TBB do not. Also, to guarantee synchronizations related to data dependencies in a
language with no support of it, we have defined a new instruction CHECK_DEPENDENCIES

that forces the dependencies previously defined in the current group. This implemen-
tation may be pessimistic but ensures PALADIn independence from the underlying
parallel environment. In our OpenMP4 and xKaapi implementations, since dependen-
cies are ensured at task creation, CHECK_DEPENDENCIES has no effect. But in OpenMP3
and TBB it is compiled as a synchronization barrier within the group.

2.3.4 Cutting strategies

The SPLITTER keyword in the previous grammar gives the range cut strategy used to
execute the corresponding program inside the loop. It uses three parameters to define
explicitly each strategy: (nt, CUTTING STRATEGY, STRATEGY PARAMETER).
The first parameter nt is an integer value that refers to the number of threads to
be used. We present here all the cutting strategies defined by the parameters CUT-
TING STRATEGY and STRATEGY PARAMETER that are used in the following
macros: PARFOR1D PARFOR2D, FOR1D and FOR2D.

2.3.4.1 Iterative split strategies

PALADIn implements 3 cutting strategies that cuts over one dimension or two dimen-
sions of the output matrices. The keywords ROW or COLUMN defines cutting strategies
that cuts respectively over the rows or columns of the output matrix. The BLOCK

cutting strategy cuts over the two dimensions. Each cutting strategy has a strategy
parameter that specifies how the grain size of the cutting is set.

Thus, PALADIn implements an overall of 9 different matrix cutting strategies for
iterative algorithms set by the SPLITTER() keyword and are grouped in two categories:

• The one dimension cutting where the cutting strategy is enabled on only one
dimension of the output matrix. The SPLITTER keyword can be defined in 6
different ways:

SPLITTER(nt, ROW, THREADS): This cutting take into account the number of pro-
cessors nt, and splits the rows of the matrix into exactly nt row slabs.

SPLITTER(nt, ROW, FIXED): This cutting strategy cuts the rows of the matrix
with a fixed grain size. The latter could be optimized during the installation
of the library. It is set to 256 (optimized value on many systems).
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SPLITTER(gr, ROW, GRAIN): This cutting strategy cuts the rows of the matrix
with a fixed grain size that can be set by the user. The gr parameter in this
case plays the role of the grain size set by the user. If gr is set to 256 using
the GRAIN strategy parameter, this cuts the matrix into row blocks of size
256.

SPLITTER(nt, COLUMN, THREADS): As the (ROW,THREADS) strategy, this cutting
take into account the number of processors nt but splits the columns of the
matrix into exactly nt column slabs.

SPLITTER(nt, COLUMN, FIXED): This cutting strategy cuts the columns of the
matrix with a fixed grain size set by default to 256.

SPLITTER(gr, COLUMN, GRAIN): This cutting strategy cuts the columns of the
matrix with a fixed grain size that can be set by the user. As the SPLITTER(gr,
ROW, GRAIN) cutting strategy, here the user sets the grain size in the gr pa-
rameter.

• The two dimension cutting

SPLITTER(nt, BLOCK, THREADS): This cutting strategy cuts the two dimensions
of the output matrix. When performing the operation C ← A×B, it splits A
in s row slabs and B in t column slabs, and thus splits the matrix C in s× t
tiles. The values for s and t are chosen such that their product equals the
number of threads given by nt. When no argument is given to SPLITTER(),
this cutting strategy is set as the default.

A

B

Cs

t

Figure 2.1: (nt, BLOCK, THREADS) cutting strategy for iterative matrix-matrix multiplication algorithm

SPLITTER(nt, BLOCK, FIXED): This cutting strategy cuts the two dimensions of
the matrix C as the previous cutting strategy but with a fixed grain size set
to 256. This gives tiles of size 256× 256.

SPLITTER(gr, BLOCK, GRAIN): This strategy allows the user to give a block size
gr. Thus, tiles of the output matrix are of size gr × gr.

The SPLITTER(nt, SINGLE, THREADS) strategy is the strategy that does not cut the
matrices and thus allows to execute a task sequentially inside a parallel program. This
allows the user to call sequential tasks over small dimensions while preserving the
dependencies settings inside the parallel program. The NOSPLIT() keyword provides a
standard sequential behavior of the loop with no task creation.
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2.3.4.2 Recursive split strategies

In the case of recursive matrix multiplication algorithms that involve splitting of three
dimensions, one can use 5 different recursive cuttings provided by PALADIn. We
show here these cutting strategies, that are dedicated for the parallel general matrix
multiplication (pfgemm) operation: computing C ← αA × B + βC, where A, B and
C are dense matrices with dimensions respectively (m, k), (k, n) and (m,n). These
recursive cutting strategies can be applied to other linear algebra routines involving
splittings over three dimensions. Recursive splits can be done on three dimensions:
inner, outer and third dimensions. Cuttings corresponds to the number of recursive
calls.

SPLITTER(nt, RECURSIVE, TWO_D): The 2D recursive partitioning performs a 2 × 2
splitting of the matrix C at each level of recursion. Each recursive call is then
allocated a quarter of the number of threads available. This constrains the total
number of tasks created to be a power of 4 and the splitting will work best when
the number of threads is also a power of 4. The TWO_D cuts the inner and outer
dimensions

A1

A2

B1 B2

C11 C12

C21 C22

Figure 2.2: TWO_D cutting strategy for recursive matrix-matrix multiplication algorithm

SPLITTER(nt, RECURSIVE, TWO_D_ADAPT): The 2D recursive adaptive partitioning cuts
the largest dimension between m and n, at each level of recursion, creating two
independent recursive calls. The number of threads is then divided by two and
allocated for each separate call (with a discrepancy of allocated threads of at most
one). This splitting better adapts to an arbitrary number of threads provided.

The 3D strategy splits the three dimensions m, n and k.

SPLITTER(nt, RECURSIVE, THREE_D_INPLACE): The 3D in-place recursive cutting strat-
egy performs 4 multiply calls, waits until blocks elements are computed and then
performs 4 multiply and accumulation. This variant is called inplace since blocks
of matrix C are computed in place.

SPLITTER(nt, RECURSIVE, THREE_D): performs 8 multiply calls in parallel and then
performs the add at the end. To perform 8 multiplications in parallel we need
to store the block results of 4 multiplications in temporary matrices. As in the
previous routine, each task calls recursively the routine.
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Figure 2.3: TWO_D_ADAPT cutting strategy for recursive matrix-matrix multiplication algorithm
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Figure 2.4: The 3D cutting strategy for recursive matrix-matrix multiplication algorithm

SPLITTER(nt, RECURSIVE, THREE_D_ADAPT): The 3D recursive adaptive cutting strat-
egy cuts the largest of the three dimensions in halves. When the dimension k is
split, a temporary is allocated to perform the two products in parallel. As the
split of the k dimension introduces some overhead, one can introduce a weighted
penalty system to only split this dimension when it is largely greater than the
other dimensions: with a penalty factor of p, the dimension k is split only when
max(m,n) < pk.

2.3.5 Implementation of PALADIn language

The PALADIn language is implemented by macro definitions with implementations
provided for sequential C++ programs and several target parallel environments. Cur-
rently for the C++ language the libraries OpenMP, TBB and xKaapi are targeted.
Thus syntax of C++ is not modified, enabling to use PALADIn for any program writ-
ten in C++.

2.3.5.1 Macro definitions

We list below all implemented macros in the PALADIn language and give their speci-
fication and usage:

• NUM_THREADS : gives the number of current threads set by default.
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• MAX_THREADS: gives the number of maximum threads in a parallel region (gives
the max number of threads of the machines if not in a parallel region).

• PAR_BLOCK{...}: Defines a parallel region creating a team of threads that are
launched in parallel (code inside will be executed by a single thread in the team).

• SYNCH_GROUP(I): This macro is used to synchronize a group of tasks. It adds
a synchronization point at the end of the block of instructions I. SYNCH_GROUP

macro is effective when the block of instructions I is a block of tasks, each defined
by the macro TASK. This macro can be used only once inside a routine to get the
maximum parallel performance using TBB. CHECK_DEPENDENCIES can be used to
add explicit synchronizations between tasks.

• CHECK_DEPENDENCIES: In an explicit synchronization environnement behaves as a
local synchronization (waits for all children of a current task), does nothing in a
dataflow environnement.

• TASK(MODE(...), I): creates a task for the block of instructions I.

• MODE(Di): defines access mode for variables. Five access modes are defined for
the MODE macro, (0 ≤ i ≤ 5):

– READ(variables) access mode sets the variables that are read

– WRITE(variables) access mode sets the variables that are written

– READWRITE(variables) access mode sets the variables that are read and
written

– CONSTREFERENCE(variables) and REFERENCE(variables) access mode sets
the variables that are captured by reference

– all variables are captured by value if macros CONSTREFERENCE and REFERENCE

are not specified inside the MODE macro.

• FOR1D(i, dim, SPLITTER(), I) : Cutting matrix in blocks over one dimension
(dim). The cutting strategy is defined by the SPLITTER parameter. The splitting
strategy is applied on the block of instruction I. The user doesn’t have access to
internal chunk dimensions and to the internal iterator used to range each chunk.
Instructions inside the FOR1D have the same syntax as if inside a for loop. This is
not the case for the FORBLOCK1D.

• FORBLOCK1D(iterator, dim, SPLITTER(), I) : Cutting matrix in blocks over
one dimension (dim). The cutting strategy is defined by the SPLITTER parameter.
The splitting strategy is applied on the block of instruction I. On the contrary to
the FOR1D, the user has access to internal chunk dimensions and to the internal it-
erator used to range each chunk(using iterator.begin() and iterator.end()).

• FOR2D(iterator, dim1, dim2, SPLITTER(), I): Cutting matrix in blocks over
two dimensions (dim1 and dim2). The cutting strategy is defined by the SPLITTER
parameter. The splitting strategy is applied on the block of instruction I. As the
FOR1D, the FOR2D does not give access to the user to the internal iterator.
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• FORBLOCK2D(iterator, dim1, dim2, SPLITTER(), I): Cutting matrix in blocks
over two dimensions (dim1 and dim2). The cutting strategy is defined by the
SPLITTER parameter. The splitting strategy is applied on the block of instruc-
tion I. Internal iterator has two dimensions that can be accessed thanks to it-

erator.ibegin() and iterator.iend() for the row dimension, and itera-

tor.jbegin() and iterator.jend() for the column dimension.

• PARFOR1D(i, dim, SPLITTER(), I): As the FOR1D but the PARFOR1D opens a
parallel region.

• PARFORBLOCK1D(iterator, dim, SPLITTER(), I): As the FORBLOCK1D but the
PARFORBLOCK1D opens a parallel region.

• PARFOR2D(iterator, dim1, dim2, SPLITTER(), I): As the FOR2D but the PAR-
FOR2D opens a parallel region.

• PARFORBLOCK2D(iterator, dim1, dim2, SPLITTER(), I): As the FORBLOCK2D

but the PARFORBLOCK2D opens a parallel region.

2.3.5.2 Complementary class functions

Inside a for loop (sequential or parallel loop) the PALADIn interface sets a cutting
strategy and iterates over dimensions. Thus we need to store the iterators which cannot
be done using C++ macros. Therefore, we added complementary class functions to
the PALADIn language. Using template C++ functions we implemented the different
cutting strategies and stored the iterators.

The SPLITTER macro that is used in the FOR1D, FOR2D, PARFOR1D, PARFOR2D, FOR-
BLOCK1D, FORBLOCK2D, PARFORBLOCK1D and the PARFORBLOCK2D gives the number of
threads or the grain size and the cutting strategy to be used. It can be set for sequential
or for parallel executions.

We show here the implementation of the SPLITTER cutting strategies using c++
struct functions. This is implemented in the blockcuts.inl file given in appendix D.
Inside the namespace FFLAS we define a Helper that specifies whether the program
will be executed in parallel or in sequential. This is implemented inside the namespace
ParSeqHelper. There two struct functions are defined:

• The Parallel(size_t n, CuttingStrategy m, StrategyParameter p) struct
function contains three members:

– The first member is an unsigned integer. It is used to set the number of
threads or the grain size depending on the strategy used.

– The CuttingStrategy member is an enum − specifier that declares the
BLOCK, ROW, COLUMN, SINGLE and the RECURSIVE enumerators inside an un-
scoped enumeration.

The StrategyParameter member is also a enum − specifier that declares in-
side an unscoped enumeration the THREADS, FIXED, GRAIN, TWO_D, TWO_D_ADAPT,
THREE_D, THREE_D_INPLACE and the THREE_D_ADAPT enumerators.
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• The Sequential() struct function that sets the number of threads to 1 using no
cutting strategy (the SINGLE keyword).

The NOSPLIT() keyword is defined by FFLAS::ParSeqHelper::Sequential() and
used for sequential execution. For parallel execution the user can give more infor-
mation on the method of cutting of the for loops using the SPLITTER(t, meth, strat)
macro. The latter is defined by FFLAS::ParSeqHelper::Parallel(t, meth, strat)
where meth is the method of cutting the matrix (i.e. BLOCK, ROW, COLUMN, SINGLE
or RECURSIVE), strat is the strategy parameter (i.e. THREADS, FIXED, GRAIN, TWO_D,
TWO_D_ADAPT, THREE_D, THREE_D_INPLACE or THREE_D_ADAPT) and t is the number of
threads or the grain size that is taken into account for the given cutting strategy.

2.3.5.3 Code examples

We show here the PALADIn semantics and its equivalence in OpenMP and TBB on
the axpy example given in section 2.3.3. The task that performs this operation is
invoked by :

1 void axpy(const Element a, const Element b, Element y){

2 y += a*x;

3 }

4

5 SYNCH_GROUP(

6 TASK( MODE( READ(x, y) READWRITE(y)),

7 axpy(a, x, y));); �
We show its equivalent implementation with OpenMP 3 syntax:

1 #pragma omp task

2 axpy(a, x, y);

3 #pragma omp taskwait �
With OpenMP 4 syntax using the ”depend” clause:

1 #pragma omp task depend(in:a,x) depend(inout:y)

2 axpy(a, x, y);

3 #pragma omp taskwait �
Using lambda function, the syntax with tbb becomes:

1 tbb:: task_group g;

2 g.run([&y, a, x](){axpy(a, x, y);});

3 g.wait(); �
The SYNCH_GROUP macro ensures that a local synchronization is set at the end of the

axpy task.

xKaapi tasks are created using the OpenMP3.1 and OpenMP4.0 task when using the
libkomp runtime library. The user can thus benefit from different programming envi-
ronments and also xKaapi parallel library when using task parallelism. But since data
parallelism (i.e. parallel loops) is not supported in the libkomp runtime library, the
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user can only benefit from OpenMP and TBB implementations when using PARFOR1D

and PARFOR2D macros.

Below we illustrate two examples using the PALADIn syntax, and show, in section
2.4, how the cutting strategy can have an impact on the parallel performance.

Example 1: Matrix addition

The first example depicts three different implementations to write a parallel loop of a
C++ program: one using the OpenMP parallel loop syntax, Listing 2.4, the other one
using TBB parallel_for, Listing 2.5, and the PALADIn syntax, Listing 2.6, for the
parallelization of the same loop by using different cutting strategies. In this example
we attempt to perform the operation C ← A+B, where the matrices A,B and C are
stored in a row major manner. The pfadd routine processes this operation on several
pairs of operands simultaneously which allows each thread to execute a vectorized add
operation.

Listing 2.4: parallel fadd with OpenMP parallel loop

1 void pfadd(const Field & F, const Element *A, const Element *B,

Element *C, size_t n){

2 #pragma omp parallel for

3 for(size_t i = 0 ; i < n ; ++i){

4 FFLAS ::fadd(F, 1, n, A+i*n, n, B+i*n, n, C+i*n, n);

5 }

6 } �
Listing 2.5: parallel fadd with TBB

1 void pfadd(const Field & F, const Element *A, const Element *B,

Element *C, size_t n){

2 parallel_for(blocked_range <size_t >(0, n),

3 [&]( blocked_range <size_t > & r){

4 for(size_t i = r.begin() ; i < r.end() ; ++i){

5 FFLAS ::fadd(F, 1, n, A+i*n, n, B+i*n, n, C+i*n, n);

6 }

7 });

8 } �
Listing 2.6: parallel fadd with PALADIn

1 void pfadd(const Field & F, const Element *A, const Element *B,

Element *C, size_t n){

2 PARFORBLOCK1D(it, n, SPLITTER (32, ROW , THREADS),

3 FFLAS ::fadd(F, it.end()-it.begin(), n, A+it.begin()*n, n, B+

it.begin()*n, n, C+it.begin()*n, n););

4 } �
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The SPLITTER parameter, in Listing 2.6, can be defined as a parallel or a sequential
helper. In the sequential case, no cutting strategy will be used. In this example it is set
as a parallel helper with FFLAS::ParSeqHelper::Parallel and takes three arguments
to specify a cutting strategy: the number of threads, the strategy method of splitting
and the strategy parameter (i.e. in this example the (32, ROW, THREADS) strategy
that cuts rows of the matrix into 32 slabs).

Example 2: The sparse matrix-vector product

As a second example, we use the sparse matrix-vector product over a finite field. In this
operation, the matrix is stored in the classical Compress Sparse Rows (CSR) format
[16], see Figure 2.5. The CSR format is composed of 3 arrays: the first one to store
the value of non zeros, the second one to store the column indices of the non zeros
elements, and a third one containing pointer of where the ith rows start in the two
previous arrays. Hence the CSR save some memory which increase performance as the
SpMV operation is memory bound.

The OpenMP implementation is shown in Listing 2.7, the TBB implementation in
Listing 2.8 and the PALADIn implementation in Listing 2.9. In the latter implemen-
tation the SPLITTER() keyword is set with no arguments, this will choose the default
cutting strategy which is (nt, BLOCK, THREADS), where nt here is the number of pro-
cessors of the machine.

The performance behavior of this operation and its implementations are explained
in section 2.4.

M =



1 7

2 5 8

4 6

1 −1

9

1 1

4 6

7 9


(2.1)

Val
Col

RowPtr

1 7 2 5 8 4 6 1 -1 9 1 1 4 6 7 9
1 6 3 5 9 4 7 1 2 5 4 5 1 6 7 9
1 3 6 9 111212131517

Figure 2.5: CSR storage of the matrix M .

We illustrate, in this example, the implementation of a simple parallel loop with
OpenMP and TBB on a sparse matrix-vector multiplication operation.
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Listing 2.7: Parallel implementation of SpMV with OpenMP

1 void spmv(const Field & F, const CSRMat & A, const Element *x,

Element *y){

2 #pragma omp parallel for

3 for(size_t i = 0 ; i < n ; ++i){

4 size_t start = M.rowPtr[i], stop = M.rowPtr[i+1];

5 for(size_t j = start ; j < stop ; ++j){

6 y[i] += M.val[j] * x[M.col[j]];

7 }

8 }

9 } �
Listing 2.8: Parallel implementation of SpMV with TBB

1 void spmv(const Field & F, const CSRMat & A, const Element *x,

Element *y){

2 parallel_for(blocked_range <size_t >(0, A.m),

3 [&]( blocked_range <size_t > & r){

4 for(size_t i = r.begin() ; i < r.end() ; ++i){

5 size_t start = M.rowPtr[i], stop = M.rowPtr[i+1];

6 for(size_t j = start ; j < stop ; ++j){

7 y[i] += M.val[j] * x[M.col[j]];

8 }

9 }

10 });

11 } �
We show below the PALADIn syntax to implementing the same sparse matrix-vector

operation.

Listing 2.9: Parallel implementation of SpMV with PALADIn

1 void spmv(const Field & F, const CSRMat & A, const Element *x,

Element *y){

2 PARFORBLOCK1D(it, 0, A.m, SPLITTER (),

3 for(size_t i = it.begin () ; i < it.end() ; ++i){

4 size_t start = M.rowPtr[i], stop = M.rowPtr[i+1];

5 for(size_t j = start ; j < stop ; ++j){

6 y[i] += M.val[j] * x[M.col[j]];

7 }

8 }

9 } �
2.4 Performances of linear algebra routines using the PALADIn language

In this section we show the performance of the PALADIn library for the data paral-
lelism programming style (i.e. using parallel loops). Performance of task parallelism
will be presented in chapter 3 and chapter 6.
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Parallelizing loops with OpenMP can be very simple using #pragma omp parallel

for. This lets the scheduler of OpenMP to choose the default mode for cutting loop
iterations in chunks and distribute them on available resources. The user can set the
strategy for the scheduler to specify the size of chunks that can be executed statically or
dynamically. Using the PALADIn cutting strategies one can have better performance
without important modification of the program.

We show here the performance of the two examples described in the previous section.

2.4.1 Matrix Addition

Table 2.1 shows the performance of Listing 2.4, Listing 2.5 and Listing 2.6 described
before. For the PALADIn implementation two cutting strategies are used, (ROW,

THREADS) and (ROW, FIXED), according to one dimension to show that for a simple
parallel loop one can achieve better performance using the PALADIn cutting strategy
than the default cutting strategies given by a standard parallel model such as OpenMP
and TBB. We execute the PALADIn cutting strategies with OpenMP and TBB. Table
2.1 demonstrates that the best performance is obtained with the (ROW, THREADS)

cutting strategy for the parallel dense matrix-matrix addition operation. Even when
using the same cutting strategy (ROW, THREADS) we can see that TBB is slower than
OpenMP. Since the executions are done on 32 cores of a NUMA machine architecture,
TBB does not choose obviously the best cutting strategy adapted to the machine
hierarchy in this case.

Matrix dimension 1000 2000 3000 4000

omp parallel for 1.7 4.2 8.4 15.0

omp PARFORBLOCK1D(ROW, THREADS) 1.2 3.6 8.2 14.0

omp PARFORBLOCK1D(ROW, FIXED) 1.9 5.8 9.8 17.0

TBB parallel for 5.0 16.0 28.0 160.0

TBB PARFORBLOCK1D(ROW, THREADS) 1.4 6.6 15.0 30.0

TBB PARFORBLOCK1D(ROW, FIXED) 2.6 11.0 23.0 34.0

Table 2.1: Timings in milliseconds of the PALADIn language using two different cutting strategies

compared to openmp ”parallel for” for the fadd operation of two square matrices on 32 cores

of the HPAC machine

2.4.2 SpMV Operation

For the experiments we used two matrices:

• ffs619 of dimensions 653365 × 653365 with an average of 100 non zeros elements
by row

• ff809 of dimensions 3602667× 3602667 with an average of 110 non zeros elements
by row

The non zeros elements of the matrices are not uniformly distributed, more than 90 %
of the non zeros elements are in the first thousand rows and the last rows have at most
3 elements. The computation is done over the finite field Z/524309Z, using 8 cores.
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Results are reported in table 2.2. The SpMV operation using OpenMP implementation
with default loop strategy does not perform well because the scheduling strategy cannot
deal with unbalanced workload caused by the particular distribution of the non zero
elements. The SpMV operation using TBB default loop strategy performs better
because TBB uses task parallelism with a work stealing strategy when computing
chunks of the loop. This allows balancing the workloads more efficiently over the
cores. However, by using default loop strategy, the TBB tasks are composed of at most
two rows. This means that for the sparsest part of the matrix, a task only computes 8
multiplications and 8 additions. Hence, the overhead of TBB task management greatly
impacts the performance. With the PALADIn implementation, the (ROW, THREADS)

using OpenMP and TBB cutting strategy produces only 8 tasks from the loop range
on 8 cores but only the first task does the majority of the computation. This strategy
is not adapted for the structure of the input matrices, since all arithmetic operations
are grouped in the first rows.

The (ROW, FIXED) cutting strategy splits the loop into a fixed number of iterations
(256 in these benchmarks) allowing the scheduler to efficiently balance the workload
over the cores and the tasks are big enough to cover the management overhead.

Matrix ffs619 ff809

OpenMP 0.49 0.26

omp FORBLOCK1D(ROW, THREADS) 0.40 0.24

omp FORBLOCK1D(ROW, FIXED) 2.00 0.95

TBB 0.95 0.43

tbb FORBLOCK1D(ROW, THREADS) 0.44 0.26

tbb FORBLOCK1D(ROW, FIXED) 1.99 0.90

Table 2.2: Performance in Gfops of PALADIn compared to OpenMP and TBB ”parallel for” for the

CSR spmv operation of two sparses matrices arising in the discrete logarithm problem [5]

on the HPAC machine.

We can see clearly, in this table, that using the cutting strategy (ROW, FIXED) one
can achieve at least a speed-up of 2 to perform a sparse matrix-vector multiplication
operation.

The performances of fork-join parallelism and dataflow synchronizations using the
PALADIn language will be detailed in chapters 3 and 6.

2.5 PALADIn in FFLAS-FFPACK

The PALADIn is implemented inside the FFLAS-FFPACK library in the folder ”paladin”
of the ”trunk/fflas-ffpack” repository. Hereafter we list the files existing in this folder
and their contents:

• The template class functions:

– pfgemm variants.inl contains all recursive cuttings strategies.

– blockcuts.inl contains all iterative cutting strategies.

• Macros definitions are all in the parallel.h file.
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• Auxiliary files: kaapi routines.inl is an attempt to write some functions with
the xKaapi syntax. This work is postponed since the implementation of the
libkomp [18] runtime system: xKaapi tasks can be simply written in OpenMP
tasks via the libkomp runtime system.

In this manuscript, the parallel implementation of all routines will be given using
the PALADIn syntax to allow testing with the different supported runtime systems.
In chapter 3, mainly the FORBLOCK keywords are used in the implementation of the
iterative algorithms. Task parallelism is then used in all other recursive routines, using
TASK keyword, in chapters 3 and 6.

2.6 Conclusion

We presented in this Chapter, the PALADIn interface that allows the user, using
mainly C macros, to write C++ code and benefit from sequential and parallel exe-
cutions on shared memory architectures. We have shown three parallel environment
libraries: OpenMP, TBB and xKaapi, that are supported in this domain specific lan-
guage. This interface provides data parallelism and task parallelization. Hence, de-
pending on the runtime system used, the task parallelization can be performed either
by using explicit synchronizations or using data-dependency based synchronizations.

We have proved that, comparing to OpenMP and TBB parallel for, the diversity of
matrix cutting strategies provided in this language, helps the user to obtain always
better performance.

The PALADIn interface can be used in any C++ library for linear algebra compu-
tation and gets the best parallel performance from three supported runtime systems.

Further extensions of the PALADIn library can be implemented, especially when
detecting dependencies between tasks. For now, data dependencies are detected thanks
to the pointer passed in parameters. The computation of data dependencies could be
affected and the result could be incorrect when treating with overlapping blocks. In
the latter case, the range of the blocks can be passed in parameter in the macros READ,
WRITE and READWRITE. This feature relies on the latest versions of OpenMP where
dependencies can be expressed by specifying the range of blocks. Still not all structure
types are supported.

The PALADIn syntax will be used in the next chapters to be able to switch and
compare between OpenMP, xKaapi and TBB runtime systems and to get the best
performances from each.





Chapter 3

Parallel building blocks in exact computation

This chapter focuses on the parallelization of building block kernels in exact linear
algebra. These kernel routines are matrix multiplication and triangular solving matrix
routines on top of which efficient parallel Gaussian elimination implementations are
built in chapter 6. We look into parallel implementations of these routines in order to
compose them into higher level parallel algorithms.

Thus, we studied classical and fast-variants for the computation of the matrix mul-
tiplication operation. We denote by classical algorithms the cubic time complexity
algorithms performing a standard matrix multiplication. We also denote by fast vari-
ants the algorithms that have sub-cubic time complexity (O(nω), with ω < 3) for the
same computation such as Strassen [83] algorithm. Classical matrix multiplication has
attained a great maturity in numerical linear algebra and resulted in the implementa-
tion of the dgemm routine that has been intensively studied [88, 50, 59]. The parallel
implementations of fast-variants have been also studied in numerical linear algebra.
For shared memory architectures, Strassen’s fast matrix multiplication has been ex-
plored in parallel and implemented for instance in [24, 68, 6, 4, 29]. Optimization
tools were presented for finding many fast algorithms based on factoring bilinear forms
and were used by [6] to automatically translate a fast matrix multiplication algorithm
to high performance sequential and parallel implementations. For their parallel algo-
rithms, they use the ideas of breadth-first and depth first traversals of the recursion
trees, which were first considered by [68] and [4] for minimizing memory footprint and
communication.

First, we examine the ingredients for the design of parallel kernels in exact linear
algebra. We show the impact of the grain size, the runtime system used and the
data mapping strategy used. We also propose in this section a new data mapping
strategy on NUMA architecture. Then, we study the most common existing parallel
implementations and algorithms to compute general matrix multiplication. We also
propose new implementations that are adapted for the computation in exact linear
algebra using the cutting strategies provided by the PALADIn language. Different
variants and algorithms are investigated:

• Classical algorithms that compute the matrix product with cubic complexity. Here
iterative and recursive algorithms are studied with different implementations to
pick the best parallel implementation of classical matrix multiplication operation
on shared memory machines.
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• Fast algorithms that compute the matrix product with sub-cubic complexities are
then studied. We restrict ourselves to the parallelization of the Strassen-Winograd
algorithm [90]. Here we looked into the trade-off of using asymptotically faster
algorithms but that introduce more synchronizations between tasks and managed
to find a parallel implementation of Strassen-Winograd algorithm that surpasses
the performance of reference parallel numerical libraries (such as the MKL and
the PLASMA-Quark libraries).

• Parallel hybrid variants that combine classical and fast algorithms are also ex-
plored. Here we focus on mixing our best implementations of classical and fast
variants to find the best threshold above which algorithms can be switched. The
Strassen-Winograd algorithm parallel implementation switches to the classical al-
gorithm on modest size base cases and give the best performance between all our
implemented variants.

In Section 3.1 we present the ingredients that need to be considered in exact linear
algebra. In section 3.2 we first show a panorama of parallel classical matrix multipli-
cation algorithms in § 3.2.1 where we propose recursive and iterative implementations.
In § 3.2.2, we present a parallel implementation of a Strassen-Winograd variant and
attempt to mix the algorithms together to obtain the best parallel implementation in
terms of performance and parallel speed-up. We then compare with the existing state
of the art libraries in § 3.2.3.

Last, iterative, recursive and hybrid algorithm implementations are explored for the
computation of triangular solving matrix of [38]. The parallel implementations of these
algorithms are studied and are compared with the state of the art numerical libraries.
We prove that the iterative parallel variant has a better parallel speed-up than the
recursive variant. Moreover, the hybrid variant improves over the iterative variant
when the column dimension of the right hand side is small.

3.1 Ingredients for the design of parallel kernels in Exact linear algebra

Over a finite field, while some aspects are similar to numerical computation there
remain some specificities that are different. We list concisely these specificities on
which parallel efficiency of exact algorithms relies.

3.1.1 Impact of modular reductions

Computations over prime finite fields such as Z/pZ, with p less than 23 bits, are done
in [36], first, by embedding finite field elements in integers stored as floating point
numbers. Then, modular reduction operations are applied to convert back elements
over the finite field. To minimize the number of modular reductions in these algorithms,
the technique is to accumulate several multiplications before reducing while keeping
the result exact. Moreover, for further improvement we consider block algorithms that
have better cache efficiency as mentioned in section 1.2. This approach is only valid
as long as integer computations do not exceed the size of the mantissa. For instance
in the multiplication of A×B over Z/pZ, with n the common dimension and elements
are in J0..p−1K, no overflow occurs if n(p−1)2 < 2mantissa. Further explanation of the
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impact of modular reductions is given in the case of sequential block LU factorization
in the next chapter (section 4.5).

3.1.2 Fast variants for matrix multiplication

As numerical stability is not an issue over a finite field, asymptotically fast matrix
multiplication algorithms, like Winograd’s variant of Strassen algorithm [90] can be
systematically used on top of the BLAS.

Table 3.1 shows the impact on sequential performance of fast variants compared to
standard matrix multiplication. Here the fast variant corresponds to the Strassen-
Winograd implementation of [17].

1024 2048 4096 8192 16384

sgemm OpenBLAS 27.30 28.16 28.80 29.01 29.17

O(n3)-fgemm Mod 37 21.90 24.93 26.93 28.10 28.62

O(n2.81)-fgemm Mod 37 22.32 27.40 32.32 37.75 43.66

dgemm OpenBLAS 15.31 16.01 16.27 16.36 16.40

O(n3)-fgemm Mod 131071 15.69 16.20 16.40 16.43 16.47

O(n2.81)-fgemm Mod 131071 16.17 18.05 20.28 22.87 25.81

Table 3.1: Effective Gfops (2n3/time/109) of matrix multiplications: fgemm vs OpenBLAS d/sgemm

on one core of the HPAC machine

In this table we compare the sequential speed obtained by the classical fgemm algo-
rithm of the FFLAS-FFPACK library. The efficiency of the fgemm routine rely on the
efficiency of the BLAS. We compile our codes linking with OpenBLAS. In table 3.1
computations are done over a small finite field, a large finite field and without modular
reductions, to see the impact of modular reductions compared to openBLAS dgemm
sequential execution.

We can also enable or disable the option to allow the use of fast variants in fgemm

Mod 37 and fgemm Mod 131071. The difference between the small and large moduli is
that the routine realizes that for a small modulus, it can use floats instead of doubles:
thus over small moduli (here modulo 37), field elements are stored in single precision
floating point numbers. Table 3.1 shows that in both cases, single or double precision,
a speed-up of more than 40% can easily be attained when using fast variants.

We of course can also benefit from Strassen-Winograd algorithms in parallel ver-
sions of matrix multiplication. In practice, we will for now restrict ourselves to a
parallel cutting of blocks that uses the classical algorithm, but when it degenerates
to a sequential call, then it can use Strassen-Winograd variants. In the following, we
thus mainly study the trade-off between having fine grain parallelization for load and
communication balancing and the best size of blocks suited for the fast variants.
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3.1.3 The impact of the grain size

The granularity is the block dimension (or the dimension of the smallest blocks in
recursive splittings). Matrices with dimensions below this threshold are treated by a
base-case variant. It is an important parameter for optimizing parallel efficiency: a
finer grain allows more flexibility in the scheduling when running on numerous cores,
but it also challenges the efficiency of the scheduler and can increase the bus traffic.

Over a finite field, we showed that using fast variants improves greatly the compu-
tation performance for matrix multiplication, when called on sufficiently large blocks.
With fixed number of resources, rather than fixing a small grain, we fix the number of
threads to be executed i.e. having fixed cutting for iterative variants and fixed num-
ber of recursion for recursive variants. If the matrix dimension gets larger, with fixed
number of threads, the granularity is larger. Calling fast variants on these large blocks
gives even better performance than considering small granularity and counting on an
optimized runtime system that executes more tasks efficiently.

3.1.4 The impact of the runtime system and dataflow parallelism

Generating a large number of tasks causes overheads that severely impacts parallel
execution, if the runtime does not handle it efficiently. This penalizes the use of fine-
grain parallelization. Based on the xKaapi library, the libkomp runtime [18] system
comes with fast task creation and small scheduling overheads and implements recursive
tasks in a very efficient way. In table 3.2 we show the overhead of using libkomp

and libgomp runtime systems on one core compared to a sequential execution of a
block algorithm. We use for this comparison the best recursive algorithm for matrix
multiplication, the TWO_D_ADAPT recursive variant, that is presented in §2.3.4.2 , with
eight recursive calls. But even if we use optimized runtime systems for OpenMP
tasks, such as libkomp, the cost of creating tasks should not be neglected. Indeed,
the performance results using the libkomp runtime system on 1 core are nonetheless
slower than the sequential execution as shown by the fourth column of table 3.2.

matrix dimension block sequential 1 core libgomp 1 core libkomp

2000 13.87 13.58 13.67

4000 15.10 14.63 14.68

6000 15.50 15.44 15.47

Table 3.2: Execution speed(Gfops) on 1 core: overhead of using runtime systems on block algorithms

(using 128 tasks).

Using the version 4.9 of gcc compiler we can also benefit from the dataflow dependen-
cies model implemented in OpenMP-4.0. In our experiments we use the depend clause
of OpenMP-4.0 to express dependencies between data produced and/or consumed by
tasks which makes it possible to construct the DAG (directed acyclic graph) of depen-
dencies between tasks before execution. This feature helps to reduce the idle time of
resources by removing unnecessary synchronizations. We will see in the next sections
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the impact of dataflow parallelization using the libkomp runtime that also implements
the latest norm of OpenMP-4.0.

3.1.5 Distance-aware mapping policy optimization on NUMA architecture

The efficiency of computations on a NUMA machine architecture can be disrupted due
to remote accesses between different NUMA nodes as explained in § 1.3.3. This led us
to focus on data placement strategies to reduce as much as possible distant memory
accesses.

In our experiments data are allocated, initialized and then computed. Recall that
the mapping of data to a specific node is only determined at their initialization. Hence
in order to experiment with different mapping strategies, it suffices to choose how the
initialization phase is done. Data is initialized with two for loops. Each iteration is
incremented with a fixed chunk size. We show in Listing 3.1 the algorithm implemented
using the PALADIn language to dispatch chunks on available processors in a round and
robin manner. Hence, a FORBLOCK2D is used to set the cutting strategy of the nested
for loops and the initialization of each block of the matrix is done inside a PALADIn
task.

Listing 3.1: Parallel data mapping on NUMA architecture

1

2 BS=std::max(BS, (size_t)Protected :: WinogradThreshold(F) );

3 SYNCH_GROUP(

4 FORBLOCK2D(iter , m, n, SPLITTER(BS, Block , Grain),

5 TASK(MODE(CONSTREFERENCE(F)),

6 fzero(F,

7 iter.iend()-iter.ibegin (),

8 iter.jend()-iter.jbegin (),

9 C+iter.ibegin ()*n+iter.jbegin (), n)

;

10 );

11 );

12 ); �
To see the impact of remote accesses, we conducted experiments on the matrix-

matrix multiplication operation with different mapping strategies of matrices A, B
and C. First we map all the data on a single NUMA node, and execute the program
on all processors. Then we conduct the same experiment by mapping on two, three
and then all four NUMA nodes while the execution is still launched on all processors.

For the sake of clarity and simplicity we show only the different mapping strategies
for one variant of matrix multiplication TWO_D_ADAPT, with four levels of recursion,
in Table 3.3. By placing data on a single node, computation speed is affected by the
time data are accessed from distant NUMA nodes whereas by dispatching all matrices
on different NUMA nodes execution time is faster. Moreover, when 32 threads try
to access data on the same NUMA node, contentions on data access also degrade
execution performance.
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matrix dimension 1 node 2 nodes 3 nodes all nodes numactl -i all

4000 233.99 275.97 291.18 307.68 295.60

6000 247.10 303.44 329.05 347.21 310.119

8000 265.66 292.02 342.85 350.72 310.147

Table 3.3: Execution speed(Gfops): with different data mapping.

The NUMA control policy (numactl) runs processes with a specific NUMA scheduling
or memory placement policy. Used with ”–interleave” policy setting, memory will be
allocated using round robin on specified nodes. In Table 3.3 the policy is set on all
nodes to compare with our mapping strategy. The overall performance of our mapping
policy is better. This is explained by the size of the mapped chunks. Using the numactl
policy data are mapped by page in each processor. Our mapping policy has the same
strategy but maps larger blocks on each core. This means that data contiguous chunks
in memory are larger using our mapping strategy.

3.2 Parallel matrix multiplication over finite fields

In this section we explore various variants of classical and fast algorithms and combine
them together to pick out the best in terms of parallel speed-up. We thus switch be-
tween parallel and sequential routines for cubic and sub-cubic algorithms. We consider
that a parallel version of matrix multiplication can be performed within two levels:

• a first level of parallelism where we call a parallel variant (Classical or fast variant),

• then a second level where the parallel algorithm switches on smaller blocks to
sequential variant or another parallel variant.

With this assumption, we refine our search to only 6 different variants.

level 1 level 2

sequential fast
parallel classical variant sequential classical

parallel fast

sequential classical
parallel fast variant sequential fast

parallel classical

3.2.1 Classical parallel algorithms

In this section we study the classical parallel implementations as the first level of
parallelism. The second level of parallelism is considered as a black box. This allows
us to focus on the cutting strategies of the classical parallel algorithms regardless of
what algorithm is used as a kernel routine.

Here we recall the classical algorithms for the computation of matrix multiplica-
tion presented in Chapter 2. These algorithms are divided in two categories: iterative
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algorithms and recursive algorithms. Recursive algorithms are known to be more adap-
tive but could imply a harder control on threads/tasks binding in a parallel context.
Whereas iterative algorithms have static cutting of tasks, thus one can have a better
control on threads or task stack scheduling.

In the case of classical parallel block matrix multiplication, we explore a variety
of well known 1D, 2D and 3D cutting strategies, with their iterative and recursive
variants. The parallel classical MM implemented routines perform the same operation
as the sequential fgemm routine implemented in the FFLAS-FFPACK library which is:
C ← A × B, where A, B and C are dense matrices with dimensions respectively
(m, k), (k, n) and (m,n).

3.2.1.1 Iterative algorithms

In the iterative scheme, the matrices are split over the dimension m and/or n. We
recall that the 1D cutting is when the splitting occur over one dimension (m or n),
and the 2D cutting when both dimensions are split.

Figure 3.1 summarizes the 1D and the 2D cutting strategies. In the case of the 1D
cutting, only one dimension is split into p blocks, where p is the number of threads. In
figure 3.1 (left) we show only the 1D cutting over rows. The figure on the right shows
the 2D cutting over the dimensions m and n. Here we cut the rows of A in s blocks and
the columns of B in t blocks such that s× t equals p the number of available threads.
Using these cutting strategies the number of blocks in the output matrix equals the
number of processors. As mentioned in section 3.1.3, over a finite field, the grain size
should be as large as possible to reduce modular reductions and to benefit from fast
variants if used as kernel routines. However, using the PALADIn language, one can
also set the desired grain size for his cutting strategy.

A

B

Cp A

B

Cs

t

Figure 3.1: 1D and 2D iterative cutting

The 3D iterative cutting strategy splits over the three dimensions. Cutting over
the dimension k creates more tasks but also more synchronizations. The 3D cutting
scheme in figure 3.2 shows that cutting over the dimension k involves synchronizations
between tasks. This scheme is thus similar to the 2D cutting strategy. One can execute
these fgemm calls in parallel by introducing temporaries, but one needs to synchronize
at the end to perform the fadd operation. This addition phase can be done in two
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ways: adding all temporaries in a sequential way one after the other, or adding blocks
two by two following a binary tree scheme. The second method is actually the recursive
scheme of the 3D cutting strategy. It is detailed in § 3.2.1.2.

A

B

C

fgemm

Synchro.

fgemm fgemm

fgemm

Synchro.

Figure 3.2: The 3D iterative cutting

3.2.1.2 Recursive algorithms

Recursive algorithms have the same cutting strategies as the iterative algorithms. We
cut over one, two or three dimensions. However, we add an adaptive variant for the 2D
and the 3D cutting strategies. These adaptive variants cut only the largest dimension
at each recursion. Figures 3.3 and 3.4 illustrate these cuttings strategies.

A1

A2

B1 B2

C11 C12

C21 C22

A1

A2

B1 B2

C11 C12

C21 C22

1st recursion cutting

2nd recursion cutting

Figure 3.3: 2D recursive cutting

Fast variants that are efficient in practice and that can be composed with other
routines are all recursive algorithms. More precisely, fast variants such as Strassen or
Strassen-Winograd algorithms cut over three dimensions in each recursion and have a
similar pattern as the 3D recursive cutting of the classical algorithm. This motivated
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B11 B12
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3rd recursion cutting

Figure 3.4: 3D recursive cutting

us to look into various 3D cutting strategies for the classical algorithm. This allows
to better analyze the overhead of replacing one matrix multiplication call by several
matrix additions in a parallel scheme. Three variants have been implemented in the
3D recursive cutting. Figure 3.4 summarizes the 3D cutting strategy. The cutting
can occur over the three dimensions or over the maximum dimension at each level of
the recursion. When the three dimensions are cut simultaneously at each recursion, 8
recursive fgemm calls are generated.

3.2.1.3 Performance of classical algorithms

In this section we show performance of parallel exact linear algebra routines using
tasks with explicit synchronizations. All parallel implementations are done using the
PALADIn language. We compare here execution speed of different cutting strategies
for the matrix product operation using the implementation of OpenMP in the GNU
gcc compiler (via the libgomp runtime library) and xKaapi (using libkomp runtime
library).

In our experiments for classical algorithms we will focus on the design of a parallel
matrix multiplication routine, based on Strassen’s O(n2.81) sequential algorithm. In
order to parallelize the computation at the coarsest grain, our approach is to first apply
a classical block algorithm generating a prescribed number of independent tasks, each
of which will then use the sequential Strassen-Winograd algorithm.

Figures 3.6, 3.5 and 3.7, for sake of simplicity, show the behavior of the best 5 different
cutting strategies for the parallel matrix multiplication operation. Experiments are
conducted on square matrices with dimensions between 1000 and 15000 and elements
are over the finite field Z/131071Z, using 32 cores.

With the libgomp runtime, the iterative strategy using SPLITTER(nt, BLOCK, THREADS)

cutting is much faster, as recursive tasks seem to be poorly handled. Thanks to its
efficient management of recursive tasks, the libkomp runtime behaves better for the
recursive variants. Using TBB tasks, in figure 3.6, all cutting strategies have almost
the same behavior when matrix dimensions gets bigger. On smaller dimensions the 2D
recursive variants have the best behavior using TBB or xKaapi (libkomp).
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Figure 3.5: Speed of different matrix multiplication cutting strategies using OpenMP tasks

 0

 100

 200

 300

 400

 500

 0  2000  4000  6000  8000  10000  12000  14000

G
fo

p
s

matrix dimension

pfgemm on 32 cores Xeon E4620  2.2Ghz with TBB

BLOCK-THREADS
TWO-D

TWO-D-ADAPT
THREE-D

THREE-D-ADAPT

Figure 3.6: Speed of different matrix multiplication cutting strategies using TBB tasks (run on the

HPAC machine)

3.2.2 Parallel fast variants

We focus now on the parallelization of the Strassen-Winograd algorithm for the matrix
multiplication operation. We will first describe the sequential scheme of the Strassen-
Winograd algorithm [17] implemented in the FFLAS-FFPACK library. Then, we will
detail the parallel variant using the PALADIn language. We thus focus at the first
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Figure 3.7: Speed of different matrix multiplication cutting strategies using xKaapi tasks

level of parallelism in this case regardless of what are the base case routines used. In
§ 3.2.2.2 we show the performance of this variant for each chosen base case routine.

3.2.2.1 Parallelization of the Strassen-Winograd algorithm

We first review the Strassen-Winograd algorithm. We consider the following recursive
block operation: [

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
This algorithm performs the following 7 multiplications and 15 additions. We use

the same notations as in [17].

• A series of 8 preliminary additions:
S1 ← A21 +A22; S2 ← S1 −A11

S3 ← A11 +A21; S4 ← A12 + S2

T1 ← B12 +B11; T2 ← B22 + T1

T3 ← B22 +B12; T4 ← T2 +B21.

• The 7 recursive multiplications:
P1 ← A11 ×B11; P2 ← A12 ×B21

P3 ← S4 ×B22; P4 ← A22 × T4

P5 ← S1 × T1; P6 ← S2 × T2

P7 ← S3 × T3.

• The 7 final additions:
U1 ← P1 + P2; U2 ← P1 − P6

U3 ← U2 + P7; U4 ← U2 + P5

U5 ← U4 + P3; U6 ← U3 − P4

U7 ← U3 + P5.
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The output matrix C is constructed with blocks U1, U5, U6 and U7 as follows:

C =

[
U1 U5

U6 U7

]
The schedule of [17] used for the Strassen-Winograd sequential algorithm aims to

reduce memory allocation by allocating only two temporaries. However, one needs to
use more temporaries to allow the execution of the 7 multiplications in parallel. All
8 pre-additions are performed in 8 temporary blocks that are required for the compu-
tation of the 7 multiplications. Then to reduce the number of additional temporary
blocks we write 4 of the multiplication in the 4 blocks of the output matrix C and thus
require only 3 additional temporary blocks to perform the overall 7 multiplications in
parallel. We thus propose an implementation with 11 temporaries that manages to
execute the 7 multiplications in parallel once the 8 additions are computed for the
Strassen-Winograd algorithm. We call it the WinoPar variant of the pfgemm routine.

3.2.2.2 Performance of fast variants

As the WinoPar variant is set at the first level of parallelism, we can switch between
three base case algorithms that are: the classical sequential, the fast sequential or the
classical parallel base case algorithms.

Let p be the number of threads given to the WinoPar algorithm. The 7 multiplications
are run in parallel that is each of the recursive call executed on nt = p

7l
threads

concurrently where l is the current level of the recursion.

Thus, with a fixed number of threads, the number of recursive level in the WinoPar

implementation differs depending on the base case algorithm used. If the base case
algorithm used is the classical parallel matrix multiplication, l becomes smaller. This
allows to have a sufficient number of threads for the execution of the parallel base case
routine used.

Figure 3.8 shows the computation speed of our best parallel implementations on all
the 32 cores of the HPAC machine. In our experiments we compute experimentally
the number of recursive levels for the WinoPar algorithm depending on the matrix
dimensions and on the base case algorithms used:

• In figure 3.8 the number of recusive levels l for the WinoPar→ClassicSeq variant
is set manually in order to have the maximum performance for this variant for
large matrix dimensions. It is set as follows:

– For matrix dimensions between 1000 and 4000, l = 1.

– For matrix dimensions between 5000 and 8000, l = 2.

– For matrix dimensions between 9000 and 16000, l = 3.

– For matrix dimensions between 16000 and 32000, l = 4.

• In the case of the WinoPar→ClassicPar variant, experiments shows that our im-
plementation cannot achieve better performance than the WinoPar→ClassicSeq

variant. In figure 3.8, the WinoPar→ClassicPar variant switches at the base
case level to the TWO_D_ADAPT variant of the pfgemm routine. We thus give here a
smaller number of recursive levels l to the WinoPar algorithm but with a sufficient
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number nt of threads that execute the TWO_D_ADAPT base case calls concurrently.
These parameters are set as follows:

– For matrix dimensions between 1000 and 16000, l = 1 and at the base case
level nt = 32. This allows to execute the base case pfgemm routine on all avail-
able processors. Figure 3.8 shows that the WinoPar→ClassicSeq routine (red
curve) starts to have better performance than the pfgemm (ClasssicPar→WinoSeq)
routine (blue curve) when matrix dimension gets larger than 9000. Therefore
we increment the number of recursive levels l only when 9000 ≤ m

l+1 , with
m the matrix dimension. This gives l = 2 only when matrix dimension gets
larger than 18000.

– For matrix dimensions between 18000 and 32000, l = 2 and nt = 32.
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Figure 3.8: Speed of fast matrix multiplication variants (run on the HPAC machine)

Ideally, the number of recursive levels l should be computed automatically during
the configuration of the library to be able to pick the best performance depending on
the machine hierarchy and on the number of available processors. Thus this figure 3.8
demonstrates first that our parallel implementation WinoPar of the fast variant of the
Strassen-Winograd algorithm has the best performance for larger matrix dimensions
on the HPAC machine. Second, our implementation using the classical parallel matrix
multiplication that switches to Winograd’s algorithm has the best performance on
smaller dimensions.

Figure 3.9 shows the speed-up of our best parallel implementation of matrix multi-
plication which is the WinoPar→ClassicSeq variant for matrix dimension 24000 and
32000. This figure demonstrates that we can attain a speed-up of 23 on the HPAC
machine. We compare with our best sequential implementation of the fgemm routine
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that attained 26.7531 Gfops on one processor. Our parallel fast variant speed, executed
on 1 thread, is 23.4619 for matrix dimension 32000.
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Figure 3.9: Speed-up of our best parallel fast matrix multiplication (WinoPar) (run on the HPAC

machine)

3.2.3 Comparison with state of the art in parallel numerical linear algebra

We conducted experiments comparing with the state of the art numerical libraries:
Intel MKL, OpenBLAS, Plasma Quark and the Strassen implementation of [6] that we
called BensonBallard. The latter is a recursive implementation that cuts by halves
matrix dimensions at each recursion.

Figure 3.10 compares our parallel implementations with these state of the art nu-
merical libraries. This figure demonstrates that our WinoPar→ClassicSeq variant
achieves the best performance for large matrix dimensions. This variant, for the ma-
trix dimension 32000, is 30% faster than the MKL dgemm routine and the parallel
OpenBLAS, 45% faster than the PLASMA-QUARK dgemm routine and 53% faster
than the BensonBallard routine. Compared to all other variants, figure 3.10 shows
that our WinoPar→ClassicSeq and ClasssicPar→WinoSeq variants are asymptot-
ically faster on large dimensions thanks to the use of the sub-cubic fast algorithms.
Indeed, the ClasssicPar→WinoSeq variant that uses the TWO_D_ADAPT recursive im-
plementation switches to the sequential Winograd as a base case algorithm if the base
case block size is bigger than a fixed threshold. However, on small dimensions, be-
tween 1000 and 3000, the base case block size is smaller than the Winograd threshold
and therefore the classical algorithm for matrix multiplication is used on leafs on the
recursion tree. Thus, at these dimensions, the ClasssicPar→WinoSeq have the same
performance as the MKL dgemm since we rely on the same version of the sequential
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OpenBLAS. For the matrix dimension 4000, the base case Winograd algorithm is trig-
gered on blocks with dimensions 500× 1000. This means that the configuration of the
sequential Winograd threshold is not suited for parallel variants. This explains the
drop in performance of the ClasssicPar→WinoSeq compared to the MKL dgemm for
small dimensions higher than 4000. The parallel OpenBLAS dgemm that uses pthreads
has almost the same behavior as the MKL dgemm on large matrix dimensions. How-
ever, on small dimensions, with no data mapping strategy the OpenBLAS dgemm
performance are slower. The BensonBallard variant has almost the same speed as the
WinoPar→ClassicSeq for dimensions between 1000 and 4000 where we set only one
level of recursion for the Winograd parallel algorithm. Thus, it is possible that in the
Strassen implementation of the BensonBallard variant the number of recursion levels
is set to 1 for all dimensions. This explains the low performance of this variant.
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Figure 3.10: Comparison with state of the art numerical libraries (run on the HPAC machine)

3.3 Parallel triangular solving matrix: TRSM

In this section we study various cutting strategies for the computation of the ftrsm

routine in parallel. We call this parallel routine the pftrsm routine. We identify three
different types of parallelization: the block iterative, the block recursive and a hybrid
variant combining both. The latter proves to deliver the best efficiency in practice,
in particular when the unknown rectangular matrix is very skinny. We will consider
here, without loss of generality, the lower left case of the ftrsm operation: computing
X ← L−1B.
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3.3.1 Iterative variant

In the iterative variant (Algorithm 1), the parallelization is obtained by splitting the
outer dimension of the matrices X and B:[

X1 . . . Xk

]
← L−1

[
B1 . . . Bk

]
.

The computation of each Xi ← L−1Bi is independent from the others. Hence the
algorithm consists in a length k parallel iteration creating k sequential ftrsm tasks.
The cost of these sequential ftrsm is not associative, and one needs to maximize the
computational size of each of these tasks. Hence the number of blocks k is set as the
number of available threads.

Algorithm 1 Iterative pftrsm

Split
[
X1 . . . Xk

]
= L−1

[
B1 . . . Bk

]
for i = 1 . . . k do

Xi ← L−1Bi
end for

3.3.2 Recursive variant

This variant is simply based on the block recursive algorithm (Algorithm 2) where
each matrix multiplication is performed by the parallel matrix multiplication pfgemm

of section 3.2.1. The three tasks in Algorithm 2 can not be executed concurrently.

Algorithm 2 Recursive pftrsm

Split

[
X1

X2

]
=

[
L1

L2 L3

]−1 [
B1

B2

]
X1 ← L−1

1 B1

X2 ← B2 − L2X1

X2 ← L−1
3 BX2

3.3.3 Hybrid variant

Lastly, we propose to combine the two above variants into a hybrid algorithm. The
motivation is to handle the case when the column dimension of B is rather small:
the cutting of Algorithm 1 produces slices that may become too thin, and reduce
the efficiency of each of the sequential TRSM. Instead, the hybrid variant applies
the iterative algorithm with the restriction that the column dimension of the slices
Xi and Bi remains above a given threshold. Consequently, this splitting may create
fewer tasks than the number of available threads. Each of them then runs the parallel
recursive variant using an equal part of the unused remaining threads. More precisely,
the parameters are set so that the number of threads given to the recursive variant,
and henceforth to the matrix multiplications, is always a power of 2, in order to better
benefit from the adaptive recursive splitting.

Let T be the threshold, p the number of threads provided and n, the column di-
mension of B. Let ` = min{` ∈ Z≥0 : p

2`
T < n}. Then each recursive TRSM task is

allocated 2` threads and the iterative TRSM splits X and B in k = p/2` slices.
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3.3.4 Experiments on parallel ftrsm
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Figure 3.11 compares the computation speed of the iterative and the hybrid version
of the parallel ftrsm, on triangular systems of dimension 10000 but with right hand
side of varying column dimension. The hybrid variant clearly improves over the iter-
ative variant up to n = 3000. Moreover, the libkomp and libgomp runtimes perform
similarly on the iterative algorithm (which is essentially a parallel for loop), but for
the hybrid variant, libkomp reaches a higher efficiency because it handles more effi-
ciently recursive tasks. Lastly, the performances of the numerical dtrsm routines of
Intel-MKL and Plasma-Quark are shown, and appear to be consistently slower.

3.4 Conclusion

In this chapter we studied the implementation of efficient parallel block kernels in exact
linear algebra. At first we focused on the matrix multiplication operation and showed
a variety of algorithms that switch between classical/fast variants and parallel/sequen-
tial implementations. We picked the best parallel variant of our library which is an
efficient parallel implementation of the Strassen-Winograd algorithm that switches to
classical algorithm at the base case. The performance of this algorithm surpasses the
performance of state of the art numerical libraries. Then, we studied the parallel im-
plementation of triangular solving matrix routines. We presented iterative, recursive
and hybrid block variants. We proved that the iterative parallel algorithm has a better
speed-up then the recursive parallel algorithm that adds more synchronizations in each
recursion.
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In the next chapters we will focus on the Gaussian elimination algorithm in sequen-
tial and in parallel. Chapter 4 focuses on the design of block Gaussian elimination
where modular reductions are involved, presents a new state of the art recursive Gaus-
sian elimination algorithm and gives a panorama of existing block algorithms. Using
the latter algorithms chapter 5 introduces a new matrix invariant and shows how to
compute it. The parallel performance of those Gaussian elimination algorithms are
studied in chapter 6 where we show that their parallel speed-up depends greatly on
the parallelization of the kernel routines pfgemm and pftrsm.



Chapter 4

Exact Gaussian elimination

The design of efficient dense linear algebra routines, as mentioned in section 1.2, is done
by using block algorithms that gather arithmetic operations in matrix-matrix multi-
plications. In chapter 3 we showed that exact linear algebra routines involve modular
reduction operations that need to be delayed. These aspects, together with the use
of fast variants for matrix multiplication, imposes having coarse grain parallelization.
We thus need to take into account the blocking structure of Gaussian elimination al-
gorithm variants by considering sufficiently large blocks. This condition should not
compromise the parallelism of the block algorithm used. In this chapter we study the
impact of using block algorithms for the computation of Gaussian elimination over a
finite field, where modular reductions are involved in a delayed design. More precisely,
we explore a panorama of block algorithms that takes into account the arising condi-
tions in chapter 3. We study existing algorithms, present a new recursive algorithm
for block Gaussian elimination and give the implementations of the most important of
them. We then study the cost of modular reduction for these algorithms in terms of
arithmetic complexity.

We exploit these algorithms for any rank matrices, i.e. invertible matrices or matrices
having arbitrary rank profile. However, computing the rank profile or equivalently the
echelon form of the matrix can have an impact on the execution behavior and the
algorithm pattern. We will not study here properties related to the echelon form of
the matrix. These aspects will be detailed in the next chapter, where the focus is on
how to recover the rank profile or equivalently the echelon form of the matrix.

4.1 Gaussian elimination Algorithm block variants

Several schemes are used to design block linear algebra algorithms: the splitting can
occur on one dimension only, producing row or column slabs [67], or both dimensions,
producing tiles [21]. Note that, here, we denote by tiles a partition of the matrix into
sub-matrices in the mathematical sense regardless what the underlying data storage
is.

Algorithms processing blocks can be either iterative or recursive. Most numerical
dense Gaussian elimination algorithms use iterative algorithms and block (slab or tile)
iterative algorithms because it allows to have better control on data in memory. In
[21] they use tile iterative block algorithms. In [28] the classic tile iterative algorithm
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is combined with a slab recursive one for the panel elimination. In numerical linear
algebra, the arithmetic cost function is associative: any choice of block decomposition
yields the same amount of operations (the product A[B1B2] takes essentially the same
time as the two products A[B1] and A[B2] done in sequence) [67]. The block iterative
algorithms are preferred for their better control over the block sizes, used for cache
aware algorithms.

In dense linear algebra over a finite field, the use of not only sub-cubic algorithms
such as Strassen’s [83], but also of delayed modular reductions make the cost no longer
associative: the larger the matrix product, the more efficient the computation. Over
exact domains, recursive algorithms are therefore preferred to benefit from fast matrix
arithmetic.

Figure 4.1 summarizes some the four main block splittings obtained by combining
these two aspects.

Slab iterative Slab recursive Tile iterative Tile recursive

Figure 4.1: Main types of block splitting

4.2 Slab algorithms for PLUQ factorization

Slab algorithms are the most common block algorithms in exact linear algebra. This
is because until quite recently it was the only way to design block algorithms that
compute the echelon forms and the rank profiles. Algorithms computing the column
echelon form (or equivalently the row rank profile) used to share a common pivoting
strategy: to search for pivots in a row-major fashion and consider the next row only if
no non-zero pivot was found (see [62] and references therein). In this section, we give
the algorithm implementation of the slab recursive variant of [62] and then propose
the corresponding slab iterative variant.

4.2.1 The slab recursive algorithm

Most algorithms computing rank profiles are slab recursive [65, 82, 58, 62]. We present
here the CUP decomposition algorithm 3 of [62]. This slab recursive algorithm splits
the initial matrix in halves over rows. It works in place allowing for instance the
computation of the inverse of a matrix on the same storage as the input matrix.
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Algorithm 3 Slab recursive CUP decomposition

Input: A = (aij) a m× n matrix over a field

Output: r: the rank of A

Output: P : n× n permutation matrix

Output: A←
[
C\U V

M 0

]
where C is r × r unit lower triangular, U is r × r upper triangular, and

A =

[
C

M

] [
U V

]
P.

if m=1 then

if A =
[
0 . . . 0

]
then

i← the col. index of the first non zero entry of A

P ← T0,i the transposition of indices 0 and i, r ← 1

A← AP

for i from 2 to n do A1,i ← A1,iA
−1
1,1

end for

Return (1, P,A)

end if

Return (0, In, A)

end if

k ← bm
2
c . Splitting A =

[
A1

A2

]
where A1 is k × n.

Decompose A1 = C1[U1V1]P1 . (r1, P1, A1)← CUP (A1)

if r1 = 0 then

Decompose A2 = C2[U2V2]P2

Return (r2, P2, A2)

end if

A2 ← A2P
T
1 . [A′21A

′
22]← [A21A22]PT1

Here A =

 C1\
D1

U1

0

V1

0

A′21 A′22

 with

[
C1\
D1

U1

0

]
k × r1 and V1 r1 × (n− r1)

G← A′21U
−1
1 . ftrsm(A′21, U1)

H ← A′22 −GV1 . fgemm(A′22, G, V1)

Decompose H = C2[U2V2]P2 . (r2, P2, H)← CUP (H)

V ′1 ← V1P
T
2 . PermC(V1, P

T
2 )

Here A =


C1\
D1

U1

0

V ′1
0

G
C2\
D2

U2

0

V2

0

.

Move U2, V2 up next to V ′1 in A.

Here A =


C1\
D1

U1

0

V ′1
\U2 V2

G
C2\
D2

0

0

0

0

.

P ← Diag(Ir1 , P2)P1

Return (r1 + r2, P,A)

The first recursive call is done on the upper slab followed by a series of updates. Then
a second recursive call is made on the bottom slab. The matrix U is then reconstructed
by performing block permutations as shown in figure 4.2.

This algorithm computes the column echelon form of the input matrix. It can be
adapted to compute the row echelon form of the matrix by splitting into column slabs
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Figure 4.2: Slab recursive CUP decomposition and final block permutation.

and performing the pivot search in each column. This generates a PLE decomposition.

4.2.2 The slab iterative algorithm

The slab recursive algorithm can be translated into a slab iterative algorithm that
splits the row dimension creating slabs as shown in in Figure 6.4. Elimination in each
slab, called also panel factorization, is performed using a sequential algorithm. Then
at each iteration, it follows the same scheme as the slab recursive algorithm using the
same set of updates. Updates (using ftrsm and fgemm routines) can be done in slabs
or in tiles as shown in Figure 6.4. Using tiling to perform the update phase at each
iteration allows to fit more blocks into the cache memory and optimize the overall
performance by reducing distant memory accesses.

Figure 4.3: Slab iterative factorization of a matrix with rank deficiencies, with final reconstruction of

the upper triangular factor

4.3 Tile algorithms for Gaussian elimination

Tile algorithms are more adapted to cache-like memory architectures and are preferred
on slab algorithms. This helps reducing the dependency on the bus speed by reducing
the number of distant memory loads into cache levels. We will first present our new
tile recursive state of the art algorithm for computing a PLUQ decomposition. Then
we present the tile iterative algorithm with its three variants: the right-looking, the
crout and left-looking variants.
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4.3.1 The Tile recursive algorithm

Our tile recursive PLUQ algorithm 4 is the first algorithm that has the same constant
as the iterative algorithms for any rank. Moreover, compared to existing recursive
algorithms such as the TURBO algorithm [42], our new algorithm is proved to have
a rank sensitive complexity. The TURBO algorithm does not compute the lower
triangular matrix L and performs five recursive calls. It therefore implies an arithmetic
overhead compared to classic Gaussian elimination.

Our algorithm 4, computing a PLUQ decomposition, is based on a splitting of the
matrix in four quadrants. A first recursive call is done on the upper left quadrant
followed by a series of updates. Then two recursive calls can be made on the anti-
diagonal quadrants if the first quadrant exposed some rank deficiency. After a last
series of updates, a fourth recursive call is done on the bottom right quadrant.

1 2

3 4

Figure 4.4: Tile recursive PLUQ decomposition and final block permutation.

Figure 4.4 illustrates the position of the blocks computed in the course of Algorithm 4,
before and after the final permutation with matrices S and T .

This framework differs from the one in [42] by the order in which the quadrants are
treated, leading to only four recursive calls in this case instead of five in [42]. The
correctness of Algorithm 4 is proven in Appendix A.

Remark 1: Algorithm 4 is in-place (as defined in [62, Definition 1]): all operations of
the ftrsm, fgemm, PermC, PermR subroutines work with O(1) extra memory allocations
except possibly in the course of fast matrix multiplications. The only constraint is for
the computation of J ← L−1

3 I which would overwrite the matrix I that should be kept
for the final output. Hence a copy of I has to be stored for the computation of J . The
matrix I has dimension r3 × r2 and can be stored transposed in the zero block of the
upper left quadrant (of dimension (m2 − r1)× (n2 − r1), as shown on Figure 4.4).
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Algorithm 4 Tile recursive PLUQ decomposition

Input: A = (aij) a m× n matrix over a field

Output: P,Q: m×m and n× n permutation matrices

Output: r: the rank of A

Output: A←
[
L\U V

M 0

]
where L is r × r unit lower triangular, U is r × r upper triangular, and

A = P

[
L

M

] [
U V

]
Q.

if m=1 then

if A =
[
0 . . . 0

]
then P ←

[
1
]
, Q← In, r ← 0

else

i← the col. index of the first non zero elt. of A

P ←
[
1
]

;Q← T1,i, r ← 1

Swap a1,i and a1,1
end if

Return (P,Q, r,A)

end if

if n=1 then

if A =
[
0 . . . 0

]T
then P ← Im;Q←

[
1
]
, r ← 0

else

i← the row index of the first non zero elt. of A

P ←
[
1
]
, Q← T1,i, r ← 1

Swap ai,1 and a1,1
for j from i+ 1 to m do aj,1 ← aj,1a

−1
1,1

end for

end if

Return (P,Q, r,A)

end if

. Splitting A =

[
A1 A2

A3 A4

]
where A1 is bm

2
c × bn

2
c.

Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1 . PLUQ(A1)[

B1

B2

]
← PT1 A2 . PermR(A2, P

T
1 )[

C1 C2

]
← A3Q

T
1 . PermC(A3, Q

T
1 )

Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2 A4

.

D ← L−1
1 B1 . ftrsm(L1, B1)

E ← C1U
−1
1 . ftrsm(C1, U1)

F ← B2 −M1D . fgemm(B2,M1, D)

G← C2 − EV1 . fgemm(C2, E, V1)

H ← A4 − ED . fgemm(A4, E,D)

Here A =

 L1\U1 V1 D

M1 0 F

E G H

.

Decompose F = P2

[
L2

M2

] [
U2 V2

]
Q2 . PLUQ(F )

Decompose G = P3

[
L3

M3

] [
U3 V3

]
Q3 . PLUQ(G)[

H1 H2

H3 H4

]
← PT3 HQ

T
2 . PermR(H,PT3 ); PermC(H,QT2 )
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[
E1

E2

]
← PT3 E . PermR(E,PT3 )[

M11

M12

]
← PT2 M1 . PermR(M1, P

T
2 )[

D1 D2

]
← DQT2 . PermR(D,QT2 )[

V11 V12

]
← V1Q

T
3 . PermR(V1, Q

T
3 )

Here A =


L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2

M12 0 0 M2 0

E1 L3\U3 V3 H1 H2

E2 M3 0 H3 H4

.

I ← H1U
−1
2 . ftrsm(H1, U2)

J ← L−1
3 I . ftrsm(L3, I)

K ← H3U
−1
2 . ftrsm(H3, U2)

N ← L−1
3 H2 . ftrsm(L3, H2)

O ← N − JV2 . fgemm(N, J, V2)

R← H4 −KV2 −M3O . fgemm(H4,K, V2); fgemm(H4,M3, O)

Decompose R = P4

[
L4

M4

] [
U4 V4

]
Q4 . PLUQ(R)[

E21 M31 0 K1

E22 M32 0 K2

]
← PT4

[
E2 M3 0 K

]
. PermR

D21 D22

V21 V22

0 0

O1 O2

←

D2

V2

0

O

QT4 . PermC

Here A =



L1\U1 V11 V12 D1 D21 D22

M11 0 0 L2\U2 V21 V22

M12 0 0 M2 0 0

E1 L3\U3 V3 I O1 O2

E21 M31 0 K1 L4\U4 V4

E22 M32 0 K2 M4 0

.

S ←


Ir1+r2

Ik−r1−r2
Ir3+r4

Im−k−r3−r4



T ←



Ir1
Ir2

Ir3
Ir4

Ik−r1−r3
In−k−r2−r4


P ← Diag(P1

[
Ir1

P2

]
, P3

[
Ir3

P4

]
)S

Q← TDiag(

[
Ir1

Q3

]
Q1,

[
Ir2

Q4

]
Q2)

A← STATT . PermR(A,ST ); PermC(A, TT )

Here A =



L1\U1 D1 V11 D21 V12 D22

M11 L2\U2 0 V21 0 V22

E1 I L3\U3 O1 V3 O2

E21 K1 M31 L4\U4 0 V4

M12 M2 0 0 0 0

E22 K2 M32 M4 0 0


Return (P,Q, r1 + r2 + r3 + r4, A)
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4.3.2 The tile iterative variants

The tile iterative elimination consists in cutting each of the two dimensions of the
matrix in t parts. This implies that potentially an elimination may happen in any of the
t2 tiles depending on the rank deficiencies discovered. Thus, the matrix multiplication
updates generate a quartic number of fgemm calls most of which have dimension 0.
Instead we will call tile iterative, an adaptation of the above slab iterative algorithm,
where the panel factorization is performed in column tiles.

This splitting limits the search space on the column dimension to keep operations
more local. We will see later under which condition it is still possible to compute eche-
lon forms and rank profiles. Now with this splitting, the operations remain more local
and updates can be parallelized. This approach shares similarities with the computa-
tion of the panel elimination described in [28]. Figure 6.5 illustrates this tile iterative
factorization obtained by the combination of a row-slab iterative algorithm, and a
column-slab iterative panel factorization.

Figure 4.5: Panel PLUQ factorization: tiled sub-calls inside a single slab and final reconstruction

From now on, for the sake of simplicity and to focus on the problem of reducing the
modular reduction count, we assume that no rank deficiency occurs. This means that
in the sequential algorithm execution we will always find a invertible pivot during the
elimination and in a block algorithm execution no rank deficiency occurs in any of the
diagonal block. This hypothesis is satisfied by matrices with generic rank profile (i.e.
having all their leading principal minor non zero).

We will present here different variants of iterative Gaussian elimination. More pre-
cisely, tile iterative algorithms range in three categories: the right-looking, left-looking
and the Crout variant [27, §5.4]. They correspond to three ways of scheduling the
block operations: the panel LU decomposition and the corresponding updates using
triangular system solve (ftrsm and futrsm), and matrix products (fgemm). Table 4.1
sketches the different shapes of the associated routine calls in the main loop of each
variant. We denote by:

• futrsm (k,k,n) is the operation that solves X = A−1B where A is a unit diagonal
triangular k × k matrix and B is a dense k × n matrix. B can be on left or right
hand side

• ftrsm (k,k,n) is the operation that solves X = A−1B where A is a triangular k×k
matrix and B is a dense k × n matrix. B can be on left or right hand side

• fgemm (m,k,n) denotes the multiplication of an m×k matrix A by an k×n matrix
B in C: C ← αA×B + βC
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Left looking Crout Right looking

for i=1 to n/k do

futrsm ((i-1)k,(i-1)k,k)

fgemm (n-(i-1)k,(i-1)k,k)

pluq (k,k)

ftrsm (k,k,n-ik)

end for

for i=1 to n/k do

fgemm (n-(i-1)k,(i-1)k,k)

fgemm (k,(i-1)k,n-ik)

pluq (k,k)

futrsm (k,k,n-ik)

ftrsm (k,k,n-ik)

end for

for i=1 to n/k do

pluq (k,k)

futrsm (k,k,n-ik)

ftrsm (k,k,n-ik)

fgemm (n-ik,k,n-ik)

end for

Table 4.1: Main loops of the Left looking, Crout and Right looking tile iterative block LU factorization,

n and k are respectively matrix and block dimensions (see [27, Chapter 5])

The tile iterative right looking, left looking and Crout variants of LU decomposition
consist on cutting the input matrix into tiles of fixed size. In the following, we present
in details the block scheme of each variant. We will then detail the computation of the
number of modular reductions of these variants in the section 4.5.

4.3.2.1 The tile iterative Right Looking variant

The scheme of the tile iterative right looking variant is very similar to the numerical
tile iterative versions of the state of the art numerical libraries such as PLASMA-Quark
library [77]. In the first iteration, as shown in equation 4.1, LU factorization routine is
called on the upper left block, and then updates using ftrsm and fgemm are performed
on the remaining blocks.

A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

L1\ 0 0
A′21 Id 0
A′31 0 Id

\U1 A′12 A′13

0 A′22 A′23

0 A′32 A′33

 (4.1)

We recall the operations that are performed during this computation:

• LU decomposition on first block : A11 = L1 . U1

• ftrsm update:

– A′21 = A21.U
−1
1 ; A′31 = A31.U

−1
1 ;

– A′12 = L−1
1 .A12 ; A′13 = L−1

1 .A13 ;

• fgemm update:

– A′22 = A22 −A′21.A
′
12 ; A′23 = A23 −A′21.A

′
13

– A′32 = A32 −A′31.A
′
12 ; A′33 = A33 −A′31.A

′
13

Since LU decomposition is done in-place, matrices L and U are stored in A during the
computation as shown in figures 4.6, 4.7 and 4.8. In each iteration, LU factorization is
called on the upper left block and then update tasks such as ftrsm and fgemm routines
are executed on the remaining blocks. However, at the end of the call of each update
routine on a block, modular reductions are applied on the elements of the block. The
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number of modular reductions could be costly and should be delayed. Indeed, in this
example, the input matrix is splitted in 3×3 blocks and thus performing three iterations
for the computation of the final L and U matrices. On the last (bottom right) block
fgemm routine is called 2 times during the algorithm for 3× 3 splitting of the matrix.
If the number of iterations is k, this gives k − 1 calls of fgemm task on this (bottom
right) block and thus performs unnecessary modular reduction operations that could
be avoided.

A'12 A'13

A'22A'21

A'31 A'32 A'33

A'23

U1L1

Figure 4.6: Tiled LU right looking variant: first iteration on blocks in place

A'12 A'13

A'21

A'31 A''32A''33

A''23

U1
L1

U2L2

Figure 4.7: Tiled LU right looking variant: second iteration on blocks in place

A'12 A'13

A'21

A'31 A''32

A''23

U1
L1

U2L2

U3
L3

Figure 4.8: Tiled LU right looking variant: last iteration on blocks in place

This led us to investigate other tile variants such as the left-looking and the Crout
variant that has fewer modular reduction complexity. These variants allows to accu-
mulate several multiplications before reducing.
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4.3.2.2 The tile iterative CROUT variant

The tile iterative Crout variant delays the modular reductions for the fgemm calls. we
explain here-under the steps of this tile Crout variant for LU decomposition.

In each iteration, fgemm tasks are not called on all blocks, but only on adjacent tiles
on which depends the critical path of the tile LU decomposition (figure 4.9). Then
LU task is called on the current diagonal block. And then the series of ftrsm calls are
performed as in the right looking variant as shown in figure 4.10. This tile scheme
not only privileges tasks of the critical path but also insures that fgemm task is called
only once on each block during the overall computation. In this example, the matrix
is splitted in 4 × 4 blocks. For every block fgemm routine is called only once in all
iterations.

Figure 4.9: Tiled LU Crout variant in place (1)

Figure 4.10: Tiled LU Crout variant in place (2)

This variant performs less modular reductions than the right looking variant and has
a better performance behavior in a sequential execution.

4.3.2.3 The tile iterative Left Looking variant

The tile iterative left looking variant is similar to the Crout variant as it delays updates
but it privileges most left-hand side task execution: the iteration begins with the
update ftrsm task that is called on the first adjacent block on the right of the last
LU task as shown in figure 4.11. This allows to delay modular reductions also for
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the futrsm tasks. Indeed, in each iteration only one sequential task will perform the
futrsm call. Then, a series of fgemm tasks are performed only on the lower blocks.
Figure 4.12 shows the LU task followed by the last ftrsm call on the lower blocks.

Figure 4.11: Tiled left-looking variant in place (1)

Figure 4.12: Tiled left-looking variant in place (2)

Ideally tiles of a block algorithm should fit into the cache memory to reduce as
much as possible the dependency on the bus speed. At the cost of reducing modular
reductions, this tile left looking variant of LU decomposition compromises this aspect
of cache efficient tile algorithms. Indeed, the sequential ftrsm task gets bigger with
each iteration.

All three variants explained above aim to reduce modular operations during LU
decomposition. In a parallel execution context, the performance behavior of each
variant could differ since the size of tiles and the number of independent tasks generated
in each iteration are essential to get the best parallel speed-up. The parallel aspects
of these variants will be discussed in Chapter 6.

4.4 Complexity analysis of the new tile recursive algorithm

We study here the time complexity of Algorithm 4 by counting the number of field
operations. For the sake of simplicity, we will assume here that the dimensions m and
n are powers of two. The analysis can be extended to the general case for arbitrary m
and n.
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For i = 1, 2, 3, 4 we denote by Ti the cost of the i-th recursive call to PLUQ, on a
m
2 ×

n
2 matrix of rank ri. We also denote by Tftrsm(m,n) the cost of a call ftrsm on a

rectangular matrix of dimensions m×n, and by Tfgemm(m, k, n) the cost of multiplying
an m× k by an k × n matrix.

Theorem 1: Algorithm 4, run on an m × n matrix of rank r, performs O
(
mnrω−2

)
field operations.

Proof: Let T = Tpluq(m,n, r) be the cost of Algorithm 4 run on a m × n matrix of
rank r. From the complexities of the subroutines given, e.g., in [36] and the recursive
calls in Algorithm 4, we have:

T = T1 + T2 + T3 + T4 + Tftrsm(r1,
m

2
) + Tftrsm(r1,

n

2
) + Tftrsm(r2,

m

2
)

+Tftrsm(r3,
n

2
) + Tfgemm(

m

2
− r1, r1,

n

2
) + Tfgemm(

m

2
, r1,

n

2
− r1)

+Tfgemm(
m

2
, r1,

n

2
) + Tfgemm(r3, r2,

n

2
− r2) + Tfgemm(

m

2
− r3, r2,

n

2
− r2 − r4)

+Tfgemm(
m

2
− r3, r3,

n

2
− r2 − r4)

≤ T1 + T2 + T3 + T4 +K(
m

2
(rω−1

1 + rω−1
2 ) +

n

2
(rω−1

1 + rω−1
3 ) +

m

2

n

2
rω−2

1

+
m

2

n

2
rω−2

2 +
m

2

n

2
rω−2

3 )

≤ T1 + T2 + T3 + T4 +K ′mnrω−2

for some constants K and K ′ (we recall that aω−2 + bω−2 ≤ 23−ω(a + b)ω−2 for
2 ≤ ω ≤ 3).

Let C = max{ K′

1−24−2ω ; 1}.Then we can prove by a simultaneous induction on m and

n that T ≤ Cmnrω−2.
Indeed, if (r = 1,m = 1, n ≥ m) or (r = 1, n = 1,m ≥ n) then T ≤ m − 1 ≤

Cmnrω−2. Now if it is true for m = 2j , n = 2i, then for m = 2j+1, n = 2i+1, we have

T ≤ C

4
mn(rω−2

1 + rω−2
2 + rω−2

3 + rω−2
4 ) +K ′mnrω−2

≤ C(23−ω)2

4
mnrω−2 +K ′mnrω−2

≤ K ′
24−2ω

1− 24−2ω
mnrω−2 +K ′mnrω−2 ≤ Cmnrω−2.

�

In order to compare this algorithm with usual Gaussian elimination algorithms, we
now refine the analysis to compare the leading constant of the time complexity in the
special case where the matrix is square and has a generic rank profile: r1 = m

2 =
n
2 , r2 = 0, r3 = 0 and r4 = m

2 = n
2 at each recursive step.

Hence, with Cω the constant of matrix multiplication, we have

Tpluq = 2Tpluq(
n

2
,
n

2
,
n

2
) + 2Tftrsm(

n

2
,
n

2
) + Tfgemm(

n

2
,
n

2
,
n

2
)

= 2Tpluq(
n

2
,
n

2
,
n

2
) + 2

Cω
2ω−1 − 2

(n
2

)ω
+ Cω

(n
2

)ω
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Writing Tpluq(n, n, n) = αnω, the constant α satisfies:

α = Cω
1

(2ω − 2)

(
1

2ω−2 − 1
+ 1

)
= Cω

2ω−2

(2ω − 2)(2ω−2 − 1)
.

which is equal to the constant of the CUP and LUP decompositions [62, Table 1]. In
particular, it equals 2/3 when ω = 3, Cω = 2, matching the constant of the classical
Gaussian elimination.

The algorithm 4 is thus the first tile recursive algorithm after [42] but with rank
sensitive O

(
mnrω−2

)
complexity.

4.5 Modular reductions

When computing over a finite field, it is of paramount importance to reduce the num-
ber of modular reductions in the course of linear algebra algorithms. The classical
technique is to accumulate several multiplications before reducing, namely replacing∑n

i=1(aibi mod p) with (
∑n

i=1 aibi) while keeping the result exact. If ai and bi are
integers between 0 and p− 1 this is possible with integer or floating point units if the
result does not overflow, or in other words if n(p − 1)2 < 2mantissa, see, e.g., [36] for
more details.

This induces a splitting of matrices in blocks of size the largest n∗ satisfying the latter
condition. Now the use of block algorithms in parallel, introduces a second blocking
parameter that interferes in counting modular reductions. We will therefore compare
the number of modular reductions of the three variants presented in section 4.3.2 of
the tile iterative algorithm (left-looking, right-looking and Crout), the slab recursive
algorithm 3 of [36], and the tile recursive algorithm 4.

For the sake of simplicity, we will assume that the block dimensions in the parallel
algorithms are always below n∗. In other words operations are done with full delayed
reduction for a single multiplication and any number of additions: operations of the
form

∑
aibi are reduced modulo p only once at the end of the addition, but a · b · c

requires two reductions. For instance, with this model, the number of reductions
required by a classic multiplication of matrices of size m × k by k × n is simply:
Rfgemm(m, k, n) = mn. This extends also for triangular solving with an m×n unknown
matrix.

Theorem 2: Over a prime field modulo p, the number of reductions modulo p required
by ftrsm (m,n) with full delayed reduction is:

Rfutrsm(m,n) = (m− 1)n if the triangular matrix has a unit diagonal,
Rftrsm(m,n) = (2m− 1)n in general.

Proof: If the matrix has unit diagonal, then a fully delayed reduction is required
only once after the update of each row of the result. In the general case, we invert
each diagonal element first and multiply each element of the right hand side by this
inverse diagonal element, prior to the update of each row of the result. This gives mn
extra reductions. Actually, with unit diagonal, the computation of the last row of the
solution of UX = B requires no modular reduction as it is just a division by 1, we
will therefore rather use Rfutrsm(m,m, n) = (m− 1)n. With this refinement, this also
reduces to Rftrsm(m,m, n) = (2m− 1)n. �
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k
=

1 Iterative Right looking 1
3
n3 − 1

3
n

Iterative Left Looking 3
2
n2 − 5

2
n+ 1

Iterative Crout 3
2
n2 − 5

2
n+ 1

k
≥

1 Tile Iterative Right looking 1
3k
n3 +

(
1− 1

k

)
n2 +

(
1
6
k − 3

2
+ 1

k

)
n

Tile Iterative Left looking
(
2− 1

2k

)
n2 − 5

2
kn+ 2k2 − 2k + 1

Tile Iterative Crout
(
5
2
− 1

k

)
n2 +

(
−2k − 3

2
+ 1

k

)
n+ k2

Tile Recursive 2n2 − n log2 n− 2n

Slab Recursive (1 + 1
4

log2(n))n2 − 1
2
n log2 n

Table 4.2: Counting modular reductions in full rank block LU factorization of an n×n matrix modulo

p when np(p− 1) < 2mantissa, for a block size of k dividing n.

In table 4.2 The first three rows are obtained by setting k = 1 in the following block
versions. The next three rows are obtained via the following analysis where the base
case (i.e. the k × k factorization) always uses the best unblocked version, that is the
Left Looking variant. The last two rows of the table corresponds to the tile recursive
and slab recursive algorithms.

Theorem 3: Table 4.2 is correct.

Proof: We will first detail the computation of the number of modular reductions for
each variant of the first three rows of table 4.2. Following Table 4.1, we have for k=1:

Right looking Amount of modular reductions

for i=1 to n do

pluq (1,1)

futrsm (1,1,n-i)

ftrsm (1,1,n-i)

fgemm (n-i,1,n-i)

end for

0

0

n− i
(n− i)2

Table 4.3: Number of modular reduction at each iteration of the Right looking iterative block LU

factorization.

Table 4.3 gives the amount of modular reductions for the Right looking variant at
each step of the iteration. Thus:

RRightLooking =

n∑
i=1

(n− i) +

n∑
i=1

(n− i)2 =
1

3
n3 − n

3
.
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Left looking Amount of modular reductions

pluq (1,1)

ftrsm (1,1,n-1)

for i=2 to n do

futrsm ((i-1),(i-1),1)

fgemm (n-(i-1),(i-1),1)

pluq (1,1)

ftrsm (1,1,n-i)

end for

0

n− 1

i− 2

n− i+ 1

0

n− i

Table 4.4: Number of modular reduction at each iteration of the Left looking iterative block LU

factorization.

Table 4.4 gives the amount of modular reductions for the Left looking variant at each
step of the iteration. Thus:

RLeftLooking = n− 1 +

n∑
i=2

(i− 2) +

n∑
i=2

(n− i) +

n∑
i=2

i =
3

2
n2 − 5

2
n+ 1.

Crout Amount of modular reductions

pluq (1,1)

futrsm (1,1,n-1)

ftrsm (1,1,n-1)

for i=2 to n do

fgemm (n-(i-1),i-1,1)

fgemm (1,i-1,n-i)

pluq (1,1)

futrsm (1,1,n-i)

ftrsm (1,1,n-i)

end for

0

0

n-1

n− i+ 1

n− i
0

0

n− i

Table 4.5: Number of modular reduction at each iteration of the Crout iterative block LU factorization.

The amount of modular reductions for the Crout variant is thus:

RCrout = n− 1 +

n∑
i=2

(n− i+ 1) +

n∑
i=2

(n− i) +

n∑
i=2

(n− i) =
3

2
n2 − 5

2
n+ 1.

Now, for k ≥ 1:
The right looking variant performs n

k such k × k base cases, pluq(k, k), then, at it-
eration i, (nk − i)(futrsm(k, k, k) + ftrsm(k, k, k)), and (nk − i)

2 fgemm (k,k,k), for a

total of n
k (3

2n
2 − 5

2n+ 1) +
∑n

k
i=1(n− ik)

(
(3k − 2) + (nk − i)k

)
= 1

3kn
3 +

(
1− 1

k

)
n2 +(

1
6k −

3
2 + 1

k

)
n.

The Crout variant requires,
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• at each step, except the first one, to compute Rfgemm(n− ik, ik, k) reductions for
the pivot and below and Rfgemm(k, ik, n− (i− 1)k) for the other block;

• at each step, to perform one base case for the pivot block, to solve unitary trian-
gular systems, to the left, below the pivot, using (nk − i)Rfutrsm(k, k, k) reductions
and to solve triangular systems to the right, using (nk−i)Rftrsm(k, k, k) reductions.

Similarly, the Left looking variant requires Rfgemm(n− ik, ik, k) +Rpluq(k)
+Rfutrsm(ik, ik, k) +Rftrsm(k, k, n− ik) reductions in the main loop.

PLE and CUP are the slab recursive algorithms of [62] and pluq is the tile recursive
algorithm 4 explained in section 4.3.1.

Computation of the number of modular reductions for tile recursive pluq algorithm:
If the top left square block is full rank then pluq reduces to one recursive call, two
square ftrsm (one unitary, one generic) one square matrix multiplication and a final
recursive call. In terms of modular reductions, this gives: Rpluq(n) = 2Rpluq(

n
2 ) +

Rutrsm(
n
2 ,

n
2 )+Rftrsm(

n
2 ,

n
2 )+Rfgemm(

n
2 ,

n
2 ,

n
2 ). Therefore, using Theorem 2, the number

of reductions within pluq satisfies T (n) = 2T (n2 )+n2 so that it is Rpluq(n, n) = 2n2−2n
if n is a power of two.

Computation of the number of modular reductions for PLE and CUP algorithms:
For row or column oriented elimination this situation is more complicated since the
recursive calls will always be rectangular even if the intermediate matrices are full-rank.

RPLE(m,n) = RPLE(
m

2
, n) +RPLE(

m

2
, n− m

2
)

+Rftrsm(
m

2
,
m

2
) +Rfgemm(

m

2
,
m

2
, n− m

2
) (4.2)

From equation 4.2, the number of modular reductions of the PLE algorithm depends
only on the number of modular reductions caused by the ftrsm routine calls and by
the fgemm routine calls. Let Nftrsm and Nfgemm be the number of modular reductions
introduced respectively by the Rftrsm and the Rfgemm in all the recursion tree of the
slab recursive PLE algorithm. Thus, RPLE(m,n) = Nftrsm +Nfgemm.

In equation 4.2, there is two recursive calls of RPLE. Thus, each of the Rftrsm and
Rfgemm are called two times at each level of the recursion except for the first recursion.

This gives a total number of
∑log2(m)

i=1 2i−1 times of Rftrsm calls.

Now from theorem 2, Rftrsm(
m
2 ,

m
2 ) = (2m2 − 1)m2 = 2(m2 )2 − m

2 and Rftrsm(
m
4 ,

m
4 ) =

2(m4 )2 − m
4 , and so on.

Thus, Nftrsm = 2
∑log2(m)

i=1 2i−1(m
2i

)2 −
∑log2(m)

i=1 2i−1(m
2i

).

In the case of the fgemm routine calls, we perform a total number of modular reduc-
tions in the recursive PLE algorithm:



82 Chapter 4. Exact Gaussian elimination

Nfgemm =

log2(m)∑
i=1

2i−1∑
j=1

Rfgemm(
m

2i
,
m

2i
, n− (2j − 1)

m

2i
).

=

log2(m)∑
i=1

2i−1∑
j=1

m

2i
(n− (2j − 1)

m

2i
)

=

log2(m)∑
i=1

(2i−1n
m

2i
− m2

22i

2i−1∑
j=1

(2j − 1))

=

log2(m)∑
i=1

(n
m

2
− m2

22
) =

log2(m)∑
i=1

m

2
(n− m

2
)

We thus obtain:

RPLE(m,n) = 2

log2(m)∑
i=1

2i−1(
m

2i
)
2
−

log2(m)∑
i=1

2i−1(
m

2i
) +

log2(m)∑
i=1

m

2
(n− m

2
)

= m2 −m− m

2
log2(m) +

mn

2
log2(m) +

m

2
(n− m

2
) log2(m)

Thus if m = n, RPLE(n, n) = (1 + 1
4 log2(n))n2 − 1

2n log2 n− n
�

This shows that the tile recursive algorithm (algorithm 4) requires fewer modular
reductions, as soon as m is larger than 32. Over finite fields, since reductions can be
much more expensive than multiplications or additions by elements of the field, this is
a non negligible advantage. We show in Section 4.6 that this participates to the better
practical performance of the pluq algorithm.

In Table 4.2 we see that the left looking variant always performs less modular re-
ductions. Then the tile recursive performs less modular reductions than the Crout
variant as soon as 2 ≤ k ≤ n

2+
√

2
. Finally the right looking variant clearly performs

more modular reductions. This explains the respective performance of the algorithms
shown on Table 4.6 (except for larger dimensions where fast matrix multiplication
comes into play). Also, we see that even when the number of modular reductions is an
order of magnitude lower than that of the integer operations the cost of the divisions
is nonetheless not negligible. Moreover, the best algorithms here may not perform well
in parallel, as will be shown in chapter 6.

4.6 Experiments

In the following experiments, we measured the real time of the computation averaged
over 10 instances (100 for n < 500) of n × n matrices with rank r = n/2 for any
even integer value of n between 20 and 700. In order to ensure that the row and
column rank profiles of these matrices are uniformly random, we construct them as
the product A = LRU , where L and U are random non-singular lower and upper
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k = 212 k = n
3

Recursive

Right Crout Left Right Crout Left Tile Slab

n=3000 3.02 2.10 2.05 2.97 2.15 2.10 2.16 2.26

n=5000 11.37 8.55 8.43 9.24 8.35 8.21 7.98 8.36

n=7000 29.06 22.19 21.82 22.56 22.02 21.73 20.81 21.66

Table 4.6: Timings (in seconds) of sequential LU factorization variants on one core

triangular matrices and R is an m× n matrix with zeros except on r = n/2 positions,
chosen uniformly at random, set to one. The R matrix will be defined in the next
chapter. The effective speed is obtained by dividing an estimate of the arithmetic cost
(2mnr + 2/3r3 − r2(m+ n)) by the computation time.

During the Gaussian elimination algorithm the search of a pivot and the permutation
strategies is the key the recover the echelon form and even more information on the rank
profile of the matrix. These aspects are explained in chapter 5 where we propose an
implementation combining our tile recursive algorithm with an iterative base case.We
present in chapter 5 a new base case (algorithm 6) algorithm and its implementation
over a finite field that is written in the FFLAS-FFPACK library1. It is based on a
lexicographic order search and row and column rotations. Moreover, the schedule of
the update operations is that of a Crout elimination, for it reduces the number of
modular reductions, as shown in § 4.5. Figure 4.13 shows its computation speed (3),
compared to that of the pure recursive algorithm (6), and to the base case algorithm
6, using a product order search, and either a left-looking (4) or a right-looking (5)
schedule. At n = 200, the left-looking variant (4) improves over the right looking
variant (5) by a factor of about 2.14 as it performs fewer modular reductions. Then,
the Crout variant (3) again improves variant (4) by a factor of about 3.15. Lastly we
also show the speed of the final implementation, formed by the tile recursive algorithm
cascading to either the Crout base case (1) or the left-looking one (2). The threshold
where the cascading to the base case occurs is experimentally set to its optimum
value, i.e. 200 for variant (1) and 70 for variant (2). This illustrates that the gain
on the base case efficiency leads to a higher threshold, and improves the efficiency of
the cascade implementation (by an additive gain of about 2.2 effective Gfops in the
range of dimensions considered). One can execute the benchmark-pluq binary in the
benchmarks folder of the FFLAS-FFPACK library to reproduce the curve (1).

Algorithm 4 combined with the the best base case algorithm has been implemented in
the FFLAS-FFPACK library2 . We present here experiments comparing its efficiency with
the implementation of the CUP/PLE decomposition (the slab recursive algorithm),
called LUdivine in this same library.

Table 4.7 shows the cache misses reported by the callgrind tool (valgrind emulator
version 3.8.1). We also report in the last column the corresponding computation time
(without emulator). We used the same matrices as in Figure 4.13, with rank half the

1FFLAS-FFPACK revision 1193, http://linalg.org/projects/fflas-ffpack, linked against OpenBLAS-v0.2.8.
2http://linalg.org/projects/fflas-ffpack

http://linalg.org/projects/fflas-ffpack
http://linalg.org/projects/fflas-ffpack
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Figure 4.13: Computation speed of PLUQ decomposition base cases.

dimension. We first notice the impact of the base case on the tile recursive PLUQ
algorithm: although it does not change the number of cache misses, it strongly re-
duces the total number of memory accesses (fewer permutations), thus improving the
computation time. Now as the dimension grows, the amount of memory accesses and
of cache misses plays in favor of the tile recursive PLUQ which becomes faster than
LUdivine.
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Matrix Algorithm Accesses L1 Misses L3 Misses L3/Accesses Timing (s)

A4K

LUdivine 1.529E+10 1.246E+09 2.435E+07 .159 2.31

Tile-rec-no-base-case 1.319E+10 7.411E+08 1.523E+07 .115 5.82

Tile-rec-base-case 8.105E+09 7.467E+08 1.517E+07 .187 2.48

A8K

LUdivine 7.555E+10 9.693E+09 2.205E+08 .292 15.2

Tile-rec-no-base-case 6.150E+10 5.679E+09 1.305E+08 .212 28.4

Tile-rec-base-case 4.067E+10 5.686E+09 1.303E+08 .321 15.1

A12K

LUdivine 2.003E+11 3.141E+10 7.943E+08 .396 46.5

Tile-rec-no-base-case 1.575E+11 1.911E+10 4.691E+08 .298 73.9

Tile-rec-base-case 1.111E+11 1.913E+10 4.687E+08 .422 45.5

A16K

LUdivine 4.117E+11 7.391E+10 1.863E+09 .452 103

Tile-rec-no-base-case 3.142E+11 4.459E+10 1.092E+09 .347 150

Tile-rec-base-case 2.299+11 4.458E+10 1.088E+09 .473 98.8

Table 4.7: Cache misses for dense matrices with rank equal half of the dimension

4.7 Conclusion

The tile recursive PLUQ algorithm that we propose introduces a finer treatment of rank
deficiency that reduces the number of arithmetic operations, makes the time complexity
rank sensitive and allows to perform the computation in-place. It also performs fewer
modular reductions when computing over a finite field. Overall the new algorithm is
also faster in practice than previous implementations with large enough matrices.

Second, three base cases variants were studied for the tile recursive PLUQ algorithm:
the left-looking, the right-looking and the Crout variants. Modular reductions over
finite fields has an impact on each variant making the left-looking or the Crout variants
the best suited for a base case algorithm for the tile recursive algorithm. The right
looking variant with its cubic number of modular reductions is to be excluded as a
base case algorithm.

The new tile recursive algorithm computes the row and column rank profiles of the
matrix and of all of its leading sub-matrices. In Chapter 5 we define a new matrix
invariant, the rank profile matrix, that can be revealed by this algorithm. In chapter 6
we study the parallelization aspects of the tile/slab iterative and recursive algorithms
and show that the tile recursive algorithm has the best speed-up.





Chapter 5

Computation of echelon forms

In the previous chapter, we proposed a first Gaussian elimination algorithm, with a
recursive splitting of both row and column dimensions, which computes a PLUQ de-
composition with L a lower triangular matrix and U an upper unit triangular matrix
while preserving the sub-cubic rank-sensitive time complexity and keeping the com-
putation in-place. This algorithm also computes simultaneously the row and column
rank profiles. Consequently, we analyze in this chapter the conditions on the pivoting
that reveal the rank profiles and introduce a new matrix invariant, the rank profile
matrix. This normal form contains the row and column rank profile information of the
matrix and that of all its leading sub-matrices.

This normal form is closely related to a permutation matrix appearing in the Bruhat
decomposition [19] and in related variants [25, 51, 13, 73, 74]. Still, no connection to
the rank profiles were made. In another setting, the construction of matrix Schubert
varieties in [75, Ch. 15] defines a similar invariant, but presents neither a matrix
decomposition nor any computational aspects.

More precisely, in this chapter we gather the following key contributions:

• we define a new matrix invariant over a field, the rank profile matrix, summarizing
all information on the row and column rank profiles of all the leading sub-matrices;

• we study the conditions for a Gaussian elimination algorithm to compute all or
part of this invariant, through the corresponding PLUQ decomposition;

• as a consequence, we show that the classical iterative CUP decomposition algo-
rithm can actually be adapted to compute the rank profile matrix.

• we also show that both the row and the column echelon forms of a matrix can
be recovered from some PLUQ decompositions thanks to an elementary post-
processing algorithm.

We first recall the definitions of the row and column rank profiles and the matrix fac-
torizations that reveal them. We then decompose, in section 5.2, the pivoting strategy
of any PLUQ algorithm into two types of operations: the search of the pivot and the
permutation used to move it to the main diagonal. We propose a new search and a new
permutation strategy. Afterwards, we introduce in section 5.3 the rank profile matrix,
a normal form summarizing all rank profile information of a matrix and of all its leading
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sub-matrices. We show how algorithms can reveal this normal form. In particular we
show three new pivoting strategy combinations that compute the rank profile matrix
and use one of them, an iterative Crout CUP with rotations, as a base case for the tile
recursive Gaussian elimination algorithm. Finally, we show that preserving both the
row and column rank profiles, together with ensuring a monotonicity of the associated
permutations, allows us to compute faster several other matrix decomposition, such as
the LEU and Bruhat decompositions, and echelon forms.

5.1 Rank profile

5.1.1 The row and column rank profiles

The row rank profile (resp. column rank profile) of an m × n matrix A with rank r,
denoted by RowRP(A) (resp. ColRP(A)), is the lexicographically smallest sequence
of r indices of linearly independent rows (resp. columns) of A. An m × n matrix has
generic row (resp. column) rank profile if its row (resp. column) rank profile is (1, .., r).
Lastly, an m×n matrix has generic rank profile if its r first leading principal minors are
non-zero. Note that if a matrix has generic rank profile, then its row and column rank
profiles are generic, but the converse is false: the matrix [ 0 1

1 0 ] does not have generic
rank profile even if its row and column rank profiles are generic. The row support
(resp. column support) of a matrix A, denoted by RowSupp(A) (resp. ColSupp(A)), is
the subset of indices of its non-zero rows (resp. columns).

We recall that the row echelon form of an m × n matrix A is an upper triangular
matrix E = TA, for a non-singular matrix T , with the zero rows of E at the bottom
and the non-zero rows in stair-case shape: min{j : ai,j 6= 0} < min{j : ai+1,j 6= 0}. As
T is non singular, the column rank profile of A is that of E, and therefore corresponds
to the column indices of the leading elements in the staircase. Similarly the row rank
profile of A is composed of the row indices of the leading elements in the staircase of
the column echelon form of A.

5.1.2 Rank profile and triangular matrix decompositions

The rank profiles of a matrix and the triangular matrix decomposition obtained by
Gaussian elimination are strongly related. Any m×n matrix A of rank r with generic
rank profile has a unique LU decomposition: A = LU for L an m × m unit lower
triangular matrix with last m− r columns those of the identity, and U an m×n upper
triangular matrix with last m− r rows equal to zero. If A has generic row rank profile,
then it only takes a column permutation to produce a matrix AP T that has a generic
rank profile, with P a permutation matrix. It leads to an LUP decomposition: A =
LUP , where AP T = LU is the LU decomposition of AP T . Allowing row and column
permutations generalizes the LU decomposition to any matrix, with no restriction on its
rank profile: there always exist a pair of permutation matrices P,Q such that P TAQT

has generic rank profile, thus leading to the PLUQ decomposition A = PLUQ. These
relations, summarized in Table 5.1, suggest that the permutation matrices P and Q
may carry information on the rank profiles.

Note that various matrix decompositions exist that reveal row or column rank pro-
files. The reader may refer to [62] for a detailed treatment of how most of them are
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equivalent up to permutations. Hence we will stick to the PLUQ decomposition in the
remaining of the manuscript.

Decomposition Exists for Unique

A=LU Generic rank profile Y

A=LUP Generic row rank profile N

A=PLU Generic col rank profile N

A=PLUQ Any matrix N

Table 5.1: Triangular decompositions for given rank profiles

The elimination of matrices with arbitrary rank profiles gives rise to several matrix
factorizations and many algorithmic variants. In numerical linear algebra one often
uses the PLUQ decomposition, with P and Q permutation matrices, L a lower unit
triangular matrix and U an upper triangular matrix. The LSP and LQUP variants
of [58] are used to reduce the complexity rank deficient Gaussian elimination to that of
matrix multiplication. Many other algorithmic decompositions exist allowing fraction
free computations [63], in-place computations [36, 62] or sub-cubic rank-sensitive time
complexity [82, 62]. In section 4.3.1 we proposed a Gaussian elimination algorithm with
a recursive splitting of both row and column dimensions, and replacing row and column
transpositions by rotations. This elimination can compute simultaneously the row and
column rank profile while preserving the sub-cubic rank-sensitive time complexity and
keeping the computation in-place.

A common strategy in computer algebra to compute the row rank profile is to search
for pivots in a row-major fashion: exploring each row in order, moving to the next row
only when the current row is all zeros. Such a P̄LUQ̄ decomposition can be transformed
into a CUP decomposition (where P = Q̄ and C = P̄L is in column echelon form)
and the first r values of the permutation associated to P̄ are exactly the row rank
profile. A block recursive algorithm can be derived from this scheme by splitting the
row dimension in halves. Similarly, the column rank profile can be obtained in a
column major search: exploring the current column, and moving to the next column
only if the current one is zero. The P̄LUQ̄ decomposition can be transformed into a
PLE decomposition (where P = P̄ and E = UQ̄ is in row echelon form) and the first r
values of Q̄ are exactly the column rank profile [62]. The corresponding block recursive
algorithm uses a splitting of the column dimension.

This splitting in only one dimension results in operations with rectangular matrices
of unbalanced dimensions. This is a major cause of inefficiency due to poor locality
of the memory accesses. This problem is not specific to recursive algorithms, it also
arises in block iterative algorithms: to the best of our knowledge, no algorithm using
a splitting of both row and column dimension exists that computes echelon forms or
rank profiles.

Recursive elimination algorithms splitting both row and column dimensions include
the TURBO algorithm [42] and the LEU decomposition [73]. No connection is made to
the computation of the rank profiles in any of these algorithms. The TURBO algorithm
does not compute the lower triangular matrix L and performs five recursive calls. It
therefore implies an arithmetic overhead compared to classic Gaussian elimination.
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The LEU avoids permutations but at the expense of many additional matrix products.
As a consequence its time complexity is not rank-sensitive.

5.2 Ingredients of a PLUQ decomposition algorithm

Over a field, the LU decomposition generalizes to matrices with arbitrary rank profiles,
using row and column permutations (in some cases such as the CUP, or LSP decom-
positions, the row permutation is embedded in the structure of the C or S matrices).
However such PLUQ decompositions are not unique and not all of them will necessarily
reveal rank profiles and echelon forms. We will characterize the conditions for a PLUQ
decomposition algorithm to reveal the row or column rank profile or the rank profile
matrix.

We consider the four types of operations of a Gaussian elimination algorithm in the
processing of the k-th pivot:

Pivot search: finding an element to be used as a pivot,
Pivot permutation: moving the pivot in diagonal position (k, k) by column and/or

row permutations,
Update: applying the elimination at position (i, j):

ai,j ← ai,j − ai,ka−1
k,kak,j ,

Normalization: dividing the k-th row (resp. column) by the pivot.

Choosing how each of these operation is done, and when they are scheduled results in
an elimination algorithm. Conversely, any Gaussian elimination algorithm computing
a PLUQ decomposition can be viewed as a set of specializations of each of these
operations together with a scheduling.

The choice of doing the normalization on rows or columns only determines which of U
or L will be unit triangular. The scheduling of the updates vary depending on the type
of algorithm used: iterative, recursive, slab or tiled block splitting, with right-looking,
left-looking or Crout variants.Neither the normalization nor the update impact the
capacity to reveal rank profiles and we will thus now focus on the pivot search and the
permutations.

Choosing a search and a permutation strategy fixes the matrices P and Q of the
PLUQ decomposition obtained and, as we will see, determines the ability to recover
information on the rank profiles. Once these matrices are fixed, the L and the U factors
are unique. We introduce the pivoting matrix.

Definition 1: The pivoting matrix of a PLUQ decomposition A = PLUQ of rank r
is the r-sub-permutation matrix

ΠP,Q = P

[
Ir

0(m−r)×(n−r)

]
Q.

The r non-zero elements of ΠP,Q are located at the initial positions of the pivots in
the matrix A. Thus ΠP,Q summarizes the choices made in the search and permutation
operations.
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5.2.1 Pivot search

The search operation vastly differs depending on the field of application. In numerical
dense linear algebra, numerical stability is the main criterion for the selection of the
pivot. In sparse linear algebra, the pivot is chosen so as to reduce the fill-in produced
by the update operation. In order to reveal some information on the rank profiles, a
notion of precedence has to be used: a usual way to compute the row rank profile, as
already mentioned, is to search in a given row for a pivot and only move to the next
row if the current row was found to be all zeros. This guarantees that each pivot will be
on the first linearly independent row, and therefore the row support of ΠP,Q will be the
row rank profile. The precedence here is that the pivot’s coordinates must minimize
the order for the first coordinate (the row index). As a generalization, we consider the
most common preorders of the cartesian product {1, . . .m} × {1, . . . n} inherited from
the natural orders of each of its components and describe the corresponding search
strategies, minimizing this preorder:
Row order: (i1, j1) �row (i2, j2) iff i1 ≤ i2: search for any invertible element in the

first non-zero row.
Column order: (i1, j1) �col (i2, j2) iff j1 ≤ j2. search for any invertible element in the

first non-zero column.
Lexicographic order: (i1, j1) �lex (i2, j2) iff i1 < i2 or i1 = i2 and j1 ≤ j2: search for

the leftmost non-zero element of the first non-zero row.
Reverse lexicographic order: (i1, j1) �revlex (i2, j2) iff j1 < j2 or j1 = j2 and i1 ≤ i2:

search for the topmost non-zero element of the first non-zero column.
Product order: (i1, j1) �prod (i2, j2) iff i1 ≤ i2 and j1 ≤ j2: search for any non-zero

element at position (i, j) being the only non-zero of the leading (i, j) sub-matrix.

Example 1: Consider the matrix

[
0 0 0 a b
0 c d e f
g h i j k
l m n o p

]
, where each literal is a non-zero element.

The minimum non-zero elements for each preorder are the following:

Row order a, b
Column order g, l
Lexicographic order a
Reverse lexic. order g
Product order a, c, g

5.2.2 Pivot permutation

The pivot permutation moves a pivot from its initial position to the leading diagonal.
Besides this constraint all possible choices are left for the remaining values of the
permutation. Most often, it is done by row or column transpositions, as it clearly
involves a small amount of data movement. However, these transpositions can break
the precedence relations in the set of rows or columns, and can therefore prevent
the recovery of the rank profile information. A pivot permutation that leaves the
precedence relations unchanged will be called k-monotonically increasing.

Definition 2: A permutation of σ ∈ Sn is called k-monotonically increasing if its last
n− k values form a monotonically increasing sequence.
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In particular, the last n− k rows of the associated row-permutation matrix Pσ are in
row echelon form. For example, the cyclic shift between indices k and i, with k < i
defined as Rk,i = (1, . . . , k − 1, i, k, k + 1, . . . , i − 1, i + 1, . . . , n), that we will call a
(k, i)-rotation, is an elementary k-monotonically increasing permutation.

Example 2: The (1, 4)-rotation R1,4 = (4, 1, 2, 3) is a 1-monotonically increasing per-

mutation. Its row permutation matrix is

[
0 1
1

1
1 0

]
. In fact, any (k, i)-rotation is a

k-monotonically increasing permutation.

Monotonically increasing permutations can be composed as stated in Lemma 1.

Lemma 1: If σ1 ∈ Sn is a k1-monotonically increasing permutation and σ2 ∈ Sk1 ×
Sn−k1 a k2-monotonically increasing permutation with k1 < k2 then the permutation
σ2 ◦ σ1 is a k2-monotonically increasing permutation.

Proof: The last n−k2 values of σ2◦σ1 are the image of a sub-sequence of n−k2 values
from the last n− k1 values of σ1 through the monotonically increasing function σ2. �

Therefore an iterative algorithm, using rotations as elementary pivot permutations,
maintains the property that the permutation matrices P and Q at any step k are
k-monotonically increasing. A similar property also applies with recursive algorithms.

5.3 The rank profile matrix

We start by introducing in Theorem 4 the rank profile matrix, that we will use through-
out this document to summarize all information on the rank profiles of a matrix. From
now on, matrices are over a field K and a valid pivot is a non-zero element.

Definition 3: An r-sub-permutation matrix is a matrix of rank r with only r non-zero
entries equal to one.

Lemma 2: An m × n r-sub-permutation matrix has at most one non-zero entry per

row and per column, and can be written P
[
Ir

0(m−r)×(n−r)

]
Q where P and Q are

permutation matrices.

Theorem 4: Let A ∈ Km×n. There exists a unique m × n rank(A)-sub-permutation
matrix RA of which every leading sub-matrix has the same rank as the corresponding
leading sub-matrix of A. This sub-permutation matrix is called the rank profile matrix
of A.

Proof: We prove existence by induction on the row dimension of the leading subma-
trices.

If A1,1..n = 01×n, setting R(1) = 01×n satisfies the defining condition. Otherwise, let
j be the index of the leftmost invertible element in A1,1..n and set R(1) = eTj the j-th
n-dimensional row canonical vector, which satisfies the defining condition.

Now for a given i ∈ {1, . . . ,m}, suppose that there is a unique i × n rank pro-
file matrix R(i) such that rank(A1..i,1..j) = rank(R1..i,1..j) for every j ∈ {1..n}. If

rank(A1..i+1,1..n) = rank(A1..i,1..n), then R(i+1) =
[
R(i)

01×n

]
. Otherwise, consider k, the
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smallest column index such that rank(A1..i+1,1..k) = rank(A1..i,1..k)+1 and set R(i+1) =[
R(i)

eTk

]
. Any leading sub-matrix of R(i+1) has the same rank as the corresponding lead-

ing sub-matrix of A: first, for any leading subset of rows and columns with less than i

rows, the case is covered by the induction; second define

[
B u
vT x

]
= A1..i+1,1..k, where

u, v are vectors and x is a scalar. From the definition of k, v is linearly dependent with
B and thus any leading sub-matrix of

[
B
vT

]
has the same rank as the corresponding

sub-matrix of R(i+1). Similarly, from the definition of k, the same reasoning works
when considering more than k columns, with a rank increment by 1.
Lastly we show that R(i+1) is a ri+1-sub-permutation matrix. Indeed, u is linearly
dependent with the columns of B: otherwise, rank(

[
B u

]
) = rank(B) + 1. From

the definition of k we then have rank(
[
B u
vT x

]
) = rank(

[
B u

]
) + 1 = rank(B) + 2 =

rank(
[
B
vT

]
) + 2 which is a contradiction. Consequently, the k-th column of R(i) is all

zero, and R(i+1) is a r-sub-permutation matrix.
To prove uniqueness, suppose there exist two distinct rank profile matrices R(1)

and R(2) for a given matrix A and let (i, j) be some coordinates where R(1)
1..i,1..j 6=

R(2)
1..i,1..j and R(1)

1..i−1,1..j−1 = R(2)
1..i−1,1..j−1. Then, rank(A1..i,1..j) = rank(R(1)

1..i,1..j) 6=
rank(R(2)

1..i,1..j) = rank(A1..i,1..j) which is a contradiction. �

Example 3: A =

[
2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1

]
has RA =

[
1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

]
for rank profile matrix over Q.

Remark 2: The matrix E introduced in Malaschonok’s LEU decomposition [73, The-
orem 1], is in fact the rank profile matrix. There, the existence of this decomposition
was only shown for m = n = 2k, and no connection was made to the relation with
ranks and rank profiles. Finally, after proving its uniqueness here, we propose this
definition as a new matrix normal form.

The rank profile matrix has the following properties:

Lemma 3: Let A be a matrix.
1. RA is diagonal if A has generic rank profile.
2. RA is a permutation matrix if A is invertible
3. RowRP(A) = RowSupp(RA); ColRP(A) = ColSupp(RA).

Moreover, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, we have:
4. RowRP(A1..i,1..j) = RowSupp((RA)1..i,1..j)
5. ColRP(A1..i,1..j) = ColSupp((RA)1..i,1..j),

These properties show how to recover the row and column rank profiles of A and of
any of its leading sub-matrix.

5.4 Algorithms that reveal the Rank Profile Matrix

5.4.1 How to reveal rank profiles

A PLUQ decomposition reveals the row (resp. column) rank profile if it can be read
from the first r values of the permutation matrix P (resp. Q). Equivalently, by
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Lemma 3, this means that the row (resp. column) support of the pivoting matrix
ΠP,Q equals that of the rank profile matrix.

Definition 4: The decomposition A = PLUQ reveals:
1. the row rank profile if RowSupp(ΠP,Q) = RowSupp(RA),
2. the col. rank profile if ColSupp(ΠP,Q) = ColSupp(RA),
3. the rank profile matrix if ΠP,Q = RA.

Example 4: A =

[
2 0 3 0
1 0 0 0
0 0 4 0
0 2 0 1

]
hasRA =

[
1 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

]
for rank profile matrix overQ. Now the

pivoting matrix obtained from a PLUQ decomposition with a pivot search operation
following the row order (any column, first non-zero row) could be the matrix ΠP,Q =[

0 0 1 0
1 0 0 0
0 0 0 0
0 1 0 0

]
. As these matrices share the same row support, the matrix ΠP,Q reveals the

row rank profile of A.

Remark 3: Example 4, suggests that a pivot search strategy minimizing row and
column indices could be a sufficient condition to recover both row and column rank
profiles at the same time, regardless the pivot permutation. However, this is unfortu-
nately not the case. Consider for example a search based on the lexicographic order
(first non-zero column of the first non-zero row) with transposition permutations, run
on the matrix: A = [ 0 0 1

2 3 0 ]. Its rank profile matrix is RA = [ 0 0 1
1 0 0 ] whereas the pivoting

matrix could be ΠP,Q = [ 0 0 1
0 1 0 ], which does not reveal the column rank profile. This

is due to the fact that the column transposition performed for the first pivot changes
the order in which the columns will be inspected in the search for the second pivot.

We will show that if the pivot permutations preserve the order in which the still
unprocessed columns or rows appear, then the pivoting matrix will equal the rank
profile matrix. This is achieved by the monotonically increasing permutations.

Theorem 5 shows how the ability of a PLUQ decomposition algorithm to recover the
rank profile information relates to the use of monotonically increasing permutations.
More precisely, it considers an arbitrary step in a PLUQ decomposition where k pivots
have been found in the elimination of an ` × p leading sub-matrix A1 of the input
matrix A.

Theorem 5: Consider a partial PLUQ decomposition of an m× n matrix A:

A = P1

[
L1

M1 Im−k

] [
U1 V1

H

]
Q1

where

[
L1

M1

]
is m× k lower triangular and

[
U1 V1

]
is k× n upper triangular, and let

A1 be some `×p leading sub-matrix of A, for `, p ≥ k. Let H = P2L2U2Q2 be a PLUQ
decomposition of H. Consider the PLUQ decomposition

A = P1

[
Ik

P2

]
︸ ︷︷ ︸

P

[
L1

P T2 M1 L2

]
︸ ︷︷ ︸

L

[
U1 V1Q

T
2

U2

]
︸ ︷︷ ︸

U

[
Ik

Q2

]
Q1︸ ︷︷ ︸

Q

.

Consider the following clauses:
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(i) RowRP(A1) = RowSupp(ΠP1,Q1)
(ii) ColRP(A1) = ColSupp(ΠP1,Q1)
(iii) RA1 = ΠP1,Q1

(iv) RowRP(H) = RowSupp(ΠP2,Q2)
(v) ColRP(H) = ColSupp(ΠP2,Q2)
(vi) RH = ΠP2,Q2

(vii) P T1 is k-monotonically increasing or (P T1 is `-monotonically increasing and p = n)

(viii) QT1 is k-monotonically increasing or (QT1 is p-monotonically increasing and ` =
m)

Then,

(a) if (i) or (ii) or (iii) then H =

[
0(`−k)×(p−k) ∗

∗ ∗

]
(b) if (vii) then ((i) and (iv)) ⇒ RowRP(A) = RowSupp(ΠP,Q);
(c) if (viii) then ((ii) and (v)) ⇒ ColRP(A) = ColSupp(ΠP,Q);
(d) if (vii) and (viii) then (iii) and (vi) ⇒ RA = ΠP,Q.

Proof: Let P1 =
[
P11 E1

]
and Q1 =

[
Q11

F1

]
where E1 is m × (m − k) and F1 is

(n− k)× n. On one hand we have

A =
[
P11 E1

] [L1

M1

] [
U1 V1

] [Q11

F1

]
︸ ︷︷ ︸

B

+E1HF1. (5.1)

On the other hand,

ΠP,Q = P1

[
Ik

P2

] [
Ir

0(m−r)×(n−r)

] [
Ik

Q2

]
Q1

= P1

[
Ik

ΠP2,Q2

]
Q1 = ΠP1,Q1 + E1ΠP2,Q2F1.

Let A1 =

[
A1 0
0 0(m−`)×(n−p)

]
and denote by B1 the `× p leading sub-matrix of B.

(a) The clause (i) or (ii) or (iii) implies that all k pivots of the partial elimination
were found within the `× p sub-matrix A1. Hence rank(A1) = k and we can write

P1 =

[
P11

0(m−`)×k
E1

]
and Q1 =

[
Q11 0k×(n−p)

F1

]
, and the matrix A1 writes

A1 =
[
I` 0

]
A
[
Ip
0

]
= B1 +

[
I` 0

]
E1HF1

[
Ip
0

]
. (5.2)

Now rank(B1) = k as a sub-matrix of B of rank k and since

B1 =
[
P11

[
I` 0

]
· E1

] [L1

M1

] [
U1 V1

] [ Q11

F1 ·
[
Ip
0

]]
= P11L1U1Q11 +

[
I` 0

]
E1M1

[
U1 V1

]
Q1

[
Ip
0

]
where the first term, P11L1U1Q11, has rank k and the second term has a disjoint
row support.



96 Chapter 5. Computation of echelon forms

Finally, consider the term
[
I` 0

]
E1HF1

[
Ip
0

]
of equation (5.2). As its row support

is disjoint with that of the pivot rows of B1, it has to be composed of rows linearly
dependent with the pivot rows of B1 to ensure that rank(A1) = k. As its column
support is disjoint with that of the pivot columns of B1, we conclude that it must
be the zero matrix. Therefore the leading (`− k)× (p− k) sub-matrix of E1HF1

is zero.
(b) From (a) we know that A1 = B1. Thus RowRP(B) = RowRP(A1). Recall that

A = B+E1HF1. No pivot row of B can be made linearly dependent by adding rows
of E1HF1, as the column position of the pivot is always zero in the latter matrix.
For the same reason, no pivot row of E1HF1 can be made linearly dependent by
adding rows of B. From (i), the set of pivot rows of B is RowRP(A1), which shows
that

RowRP(A) = RowRP(A1) ∪ RowRP(E1HF1). (5.3)

Let σE1 : {1..m − k} → {1..m} be the map representing the sub-permutation E1

(i.e. such that E1[σE1(i), i] = 1 ∀i). If P T1 is k-monotonically increasing, the matrix
E1 has full column rank and is in column echelon form, which implies that

RowRP(E1HF1) = σE1(RowRP(HF1))

= σE1(RowRP(H)), (5.4)

since F1 has full row rank. If P T1 is ` monotonically increasing, we can write
E1 =

[
E11 E12

]
, where the m× (m− `) matrix E12 is in column echelon form. If

p = n, the matrixH writesH =

[
0(`−k)×(n−k)

H2

]
. Hence we have E1HF1 = E12H2F1

which also implies

RowRP(E1HF1) = σE1(RowRP(H)).

From equation (5.2), the row support of ΠP,Q is that of ΠP1,Q1 + E1ΠP2,Q2F1,
which is the union of the row support of these two terms as they are disjoint.
Under the conditions of point (b), this row support is the union of RowRP(A1)
and σE1(RowRP(H)), which is, from (5.4) and (5.3), RowRP(A).

(c) Similarly as for point (b).
(d) From (a) we have still A1 = B1. Now since rank(B) = rank(B1) = rank(A1) = k,

there is no other non-zero element in RB than those in RA1
and RB = RA1

. The
row and column support of RB and that of E1HF1 are disjoint. Hence

RA = RA1
+RE1HF1 . (5.5)

If both P T1 and QT1 are k-monotonically increasing, the matrix E1 is in column
echelon form and the matrix F1 in row echelon form. Consequently, the matrix
E1HF1 is a copy of the matrix H with k zero-rows and k zero-columns interleaved,
which does not impact the linear dependency relations between the non-zero rows
and columns. As a consequence

RE1HF1 = E1RHF1. (5.6)
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Now if QT1 is k-monotonically increasing, P T1 is `-monotonically increasing and p =
n, then, using notations of point (b), E1HF1 = E12H2F1 where E12 is in column
echelon form. Thus RE1HF1 = E1RHF1 for the same reason. The symmetric case
where QT1 is p-monotonically increasing and ` = m works similarly. Combining
equations (5.2), (5.5) and (5.6) gives RA = ΠP,Q.

�

5.4.2 Algorithms for rank profiles

Using Theorem 5, we deduce what rank profile information is revealed by a PLUQ
algorithm by the way the Search and the Permutation operations are done. Table 5.2
summarizes these results, and points to instances known in the literature, implementing
the corresponding type of elimination. More precisely, we first distinguish in this table
the ability to compute the row or column rank profile or the rank profile matrix, but we
also indicate whether the resulting PLUQ decomposition preserves the monotonicity
of the rows or columns. Indeed some algorithm may compute the rank profile matrix,
but break the precedence relation between the linearly dependent rows or columns,
making it unusable as a base case for a block algorithm of higher level.

Search Row Perm. Col. Perm. Reveals Monotonicity Instance

Row order Transposition Transposition RowRP [58, 62]
Col. order Transposition Transposition ColRP [65, 62]

Lexicographic
Transposition Transposition RowRP [82]
Transposition Rotation RowRP, ColRP, R Col. here, [40]
Rotation Rotation RowRP, ColRP, R Row, Col. here, [40]

Rev. lexico.
Transposition Transposition ColRP [82]
Rotation Transposition RowRP, ColRP, R Row here, [40]
Rotation Rotation RowRP, ColRP, R Row, Col. here, [40]

Product
Rotation Transposition RowRP Row here, [40]
Transposition Rotation ColRP Col here, [40]
Rotation Rotation RowRP, ColRP, R Row, Col. here, [39]

Table 5.2: Pivoting Strategies revealing rank profiles

5.4.2.1 Iterative algorithms

We start with iterative algorithms, where each iteration handles one pivot at a time.
Here Theorem 5 is applied with k = 1, and the partial elimination represents how one
pivot is being treated. The elimination of H is done by induction.

Row and Column order Search

The row order pivot search operation is of the form: any non-zero element in the
first non-zero row. Each row is inspected in order, and a new row is considered only
when the previous row is all zeros. With the notations of Theorem 5, this means that
A1 is the leading ` × n sub-matrix of A, where ` is the index of the first non-zero
row of A. When permutations P1 and Q1, moving the pivot from position (`, j) to
(k, k) are transpositions, the matrix ΠP1,Q1 is the element E`,j of the canonical basis.
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Its row rank profile is (`) which is that of the ` × n leading sub-matrix A1. Finally,
the permutation P1 is `-monotonically increasing, and Theorem 5 case (b) can be
applied to prove by induction that any such algorithm will reveal the row rank profile:
RowRP(A) = RowSupp(ΠP,Q). The case of the column order search is similar.

Lexicographic order based pivot search

In this case the Pivot Search operation is of the form: first non-zero element in the
first non-zero row. The lexicographic order being compatible with the row order, the
above results hold when transpositions are used and the row rank profile is revealed. If
in addition column rotations are used, Q1 = R1,j which is 1-monotonically increasing.
Now ΠP1,Q1 = E`,j which is the rank profile matrix of the ` × n leading sub-matrix
A1 of A. Theorem 5 case (d) can be applied to prove by induction that any such
algorithm will reveal the rank profile matrix: RA = ΠP,Q. Lastly, the use of row
rotations, ensures that the order of the linearly dependent rows will be preserved as
well. Algorithm 5 is an instance of Gaussian elimination with a lexicographic order
search and rotations for row and column permutations.

The case of the reverse lexicographic order search is similar. As an example, the
algorithm in [82, Algorithm 2.14] is based on a reverse lexicographic order search but
with transpositions for the row permutations. Hence it only reveals the column rank
profile.

The analysis of sections 5.4.1 and 5.4.2 shows that other pivoting strategies can be
used to compute the rank profile matrix, and preserve the monotonicity. We present
here a new base case algorithm and its implementation over a finite field that we wrote
in the FFLAS-FFPACK library1. It is based on a lexicographic order search and row
and column rotations. Moreover, the schedule of the update operations is that of a
Crout elimination, for it reduces the number of modular reductions, as shown in 4.5.
Algorithm 5 summarizes this variant.

Algorithm 5 Crout variant of PLUQ with lexicographic search and column rotations

1: k ← 1

2: for i = 1 . . .m do

3: Ai,k..n ← Ai,k..n −Ai,1..k−1 ×A1..k−1,k..n

4: if Ai,k..n = 0 then

5: Loop to next iteration

6: end if

7: Let Ai,s be the left-most non-zero element of row i.

8: Ai+1..m,s ← Ai+1..m,s −Ai+1..m,1..k−1 ×A1..k−1,s

9: Ai+1..m,s ← Ai+1..m,s/Ai,s
10: Bring A∗,s to A∗,k by column rotation

11: Bring Ai,∗ to Ak,∗ by row rotation

12: k ← k + 1

13: end for

1FFLAS-FFPACK revision 1193, http://linalg.org/projects/fflas-ffpack, linked against OpenBLAS-v0.2.8.

http://linalg.org/projects/fflas-ffpack
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Product order based pivot search

The search here consists in finding any non-zero element A`,p such that the ` × p
leading sub-matrix A1 of A is all zeros except this coefficient. If the row and column
permutations are the rotations R1,` and R1,p, we have ΠP1,Q1 = E`,p = RA1 . Theorem 5
case (d) can be applied to prove by induction that any such algorithm will reveal
the rank profile matrix: RA = ΠP,Q. An instance of such an algorithm is given
in algorithm 6. If P1 (resp. Q1) is a transposition, then Theorem 5 case (c) (resp.
case (b)) applies to show by induction that the columns (resp. row) rank profile is
revealed.

Unlike the common Gaussian elimination, where pivots are searched in the whole
current row or column, the strategy is here to proceed with an incrementally growing
leading sub-matrix. This implies a Z-curve type search scheme, as shown on Figure 5.1.
This search strategy is meant to ensure the properties on the rank profile that have
been presented in Section 5.3.

In order to perform the correct updates on the remaining parts, when a pivot is
found its whole row and column have to be permuted to the current diagonal location,
see Figure 5.1. But then, in order to preserve the row and column rank profiles, all
the rows and column in between have to be shifted by 1 position.
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Figure 5.1: Iterative base case PLUQ decomposition

Therefore after the elimination step, the rows and columns of the matrix, as well
as the rows of the left permutation matrix and the columns of the right permutation
matrix have to be cyclically shifted accordingly. This is presented in the last steps of
Algorithm 6, where the notation A∗,i>>>1j

means that in matrix A, columns i through
j, both inclusive, have to be shifted by 1 position, cyclically to the right.

Remark 4: Applying the cyclic permutations in steps 22 to 25 may cost in worst case
a cubic number of operations. Instead one can delay these permutations and leave the
pivots at the position where they were found. These positions are then used to form
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Algorithm 6 PLUQ iterative base case

Input: A a m× n matrix over a field

Output: P,Q: m×m and n× n permutation matrices

Output: r: the rank of A

Output: A←
[
L\U V

M 0

]
where L is r× r unit lower triang., U is r× r upper triang. and such that

A = P

[
L

M

] [
U V

]
Q.

1: r ← 0; i← 0; j ← 0

2: while i < m or j < n do

3: . Let v =
[
Ai,r . . . Ai,j−1

]
and w =

[
Ar,j . . . Ai−1,r

]T
4: if j < n and w 6= 0 then

5: p← row index of the first non zero entry in w

6: q ← j; j ← max(j + 1, n)

7: else if i < m and v 6= 0 then

8: q ← column index of the first non zero entry in v

9: p← i; i← max(i+ 1,m)

10: else if i < m and j < n and Ai,j 6= 0 then

11: (p, q)← (i, j)

12: i← max(i+ 1,m); j ← max(j + 1, n)

13: else

14: i← max(i+ 1,m); j ← max(j + 1, n)

15: continue

16: end if . At this stage, Ap,q is a pivot

17: for k = p+ 1 : n do

18: Ak,q ← Ak,pA
−1
p,q

19: Ak,q+1:n ← Ak,q+1:n −Ak,qAp,q+1:n

20: end for

21: . Cyclic shifts of pivot column and row

22: A0:m,r:q ← A0:m,r>>>1q

23: Ar:p,0:n ← Ar>>>1p,0:n

24: P ← Pr>>>1p,∗;

25: Q← Q∗,r>>>1q

26: r ← r + 1

27: end while

the matrices P and Q, only after the end of the while loop. Then applying these

permutations to the current matrix gives the final decomposition
[
L\U V
M 0

]
.

Remark 5: In order to further improve the data locality, this iterative algorithm can
be transformed into a left-looking variant [27]. Over a finite field, this variant performs
fewer modular operations: Step 19 of Algorithm 6 requires a modular reduction after
each multiplication while a left-looking variant will delay these reductions within block
operations.

Updating Algorihtm 6 with Remarks 4 and 5 would be too technical to be pre-
sented here, but this is how we implemented the base case used for the experiments of
Section 4.6.
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5.4.2.2 Recursive algorithms

A recursive Gaussian elimination algorithm can either split one of the row or column
dimension, cutting the matrix in wide or tall rectangular slabs, or split both dimensions,
leading to a decomposition into tiles.

Slab recursive algorihtms

When the row dimension is split, this means that the search space for pivots is the
whole set of columns, and Theorem 5 applies with p = n. This corresponds to either
a row or a lexicographic order. From case( b), one shows that, with transpositions,
the algorithm recovers the row rank profile, provided that the base case does. If in
addition, the elementary column permutations are rotations, then case (d) applies and
the rank profile matrix is recovered. Finally, if rows are also permuted by monotonically
increasing permutations, then the PLUQ decomposition also respects the monotonicity
of the linearly dependent rows and columns. The same reasoning holds when splitting
the column dimension.

Tile recursive algorithms

Tile recursive Gaussian elimination algorithms [39, 73, 42] are more involved, especially
when dealing with rank deficiencies.

In algorithm 4, the search area A1 has arbitrary dimensions `× p, often specialized
as m/2 × n/2. As a consequence, the pivot search can not satisfy neither row, col-
umn, lexicographic or reverse lexicographic orders. Now, if the pivots selected in the
elimination of A1 minimizes the product order, then they necessarily also respect this
order as pivots of the whole matrix A. Now, from (a), the remaining matrix H writes

H =

[
0(`−k)×(p−k) H12

H21 H22

]
and its elimination is done by two independent eliminations

on the blocks H12 and H21, followed by some update of H22 and a last elimination
on it. Here again, pivots minimizing the row order on H21 and H12 are also pivots
minimizing this order for H, and so are those of the fourth elimination.

Now the block row and column permutations used in Algorithm 4 to form the PLUQ
decomposition are r-monotonically increasing. Hence, from case (d), the algorithm
computes the rank profile matrix and preserves the monotonicity. If only one of the
row or column permutations are rotations, then case (b) or (c) applies to show that
either the row or the column rank profile is computed.

5.5 Application of the Rank Profile Matrix

5.5.1 Rank profile matrix based triangularizations

5.5.1.1 LEU decomposition

The LEU decomposition introduced in [73] involves a lower triangular matrix L, an
upper triangular matrix U and a r-sub-permutation matrix E.

Theorem 6: Let A = PLUQ be a PLUQ decomposition revealing the rank profile
matrix (ΠP,Q = RA). Then an LEU decomposition of A with E = RA is obtained as



102 Chapter 5. Computation of echelon forms

follows (only using row and column permutations):

A = P
[
L 0m×(n−r)

]
P T︸ ︷︷ ︸

L

P

[
Ir

0

]
Q︸ ︷︷ ︸

E

QT
[

U
0(n−r)×n

]
Q︸ ︷︷ ︸

U

(5.7)

Proof: First E = P
[
Ir

0

]
Q = ΠP,Q = RA. Then there only needs to show that

L is lower triangular and U is upper triangular. Suppose that L is not lower tri-
angular, let i be the first row index such that Li,j 6= 0 for some i < j. First
j ∈ RowRP(A) since the non-zero columns in L are placed according to the first r

values of P . Remarking that A = P
[
L 0m×(n−r)

] [ U
0 In−r

]
Q, and since right mul-

tiplication by a non-singular matrix does not change row rank profiles, we deduce that
RowRP(ΠP,Q) = RowRP(A) = RowRP(L). If i /∈ RowRP(A), then the i-th row of L
is linearly dependent with the previous rows, but none of them has a non-zero element
in column j > i. Hence i ∈ RowRP(A).

Let (a, b) be the position of the coefficient Li,j in L, that is a = σ−1
P (i), b = σ−1

P (j).
Let also s = σQ(a) and t = σQ(b) so that the pivots at diagonal position a and b in L re-
spectively correspond to ones inRA at positions (i, s) and (j, t). Consider the `×p lead-
ing sub-matrices A1 of A where ` = maxx=1..a−1(σP (x)) and p = maxx=1..a−1(σQ(x)).
On one hand (j, t) is an index position inA1 but not (i, s), since otherwise rank(A1) = b.
Therefore, (i, s) ⊀prod (j, t), and s > t as i < j. As coefficients (j, t) and (i, s) are piv-
ots in RA and i < j and t < s, there can not be a non-zero element above (j, t) at row
i when it is chosen as a pivot. Hence Li,j = 0 and L is lower triangular. The same
reasoning applies to show that U is upper triangular. �

Remark 6: Note that the LEU decomposition with E = RA is not unique, even for
invertible matrices. As a counter-example, the following decomposition holds for any
a ∈ K: [

0 1
1 0

]
=

[
1 0
a 1

] [
0 1
1 0

] [
1 −a
0 1

]
(5.8)

5.5.1.2 Bruhat decomposition

The Bruhat decomposition, that has inspired Malaschonok’s LEU decomposition [73],
is another decomposition with a central permutation matrix [13, 51].

Theorem 7 ([13]): Any invertible matrix A can be written as A = V PU for V and
U uppper triangular invertible matrices and P a permutation matrix. The latter
decomposition is called the Bruhat decomposition of A.

It was then naturally extended to singular square matrices by [51]. Corollary 1 general-
izes it to matrices with arbitrary dimensions, and relates it to the PLUQ decomposition.

Corollary 1: Any m × n matrix of rank r has a V PU decomposition, where V and
U are upper triangular matrices, and P is a r-sub-permutation matrix.
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Proof: Let Jn be the unit anti-diagonal matrix. From the LEU decomposition of JnA,
we have A = JnLJn︸ ︷︷ ︸

V

JnE︸︷︷︸
P

U where V is upper triangular.�

5.5.1.3 Relation to LUP and PLU decompositions

The LUP decomposition A = LUP only exists for matrices with generic row rank
profile (including matrices with full row rank). Corollary 2 shows upon which condition
the permutation matrix P equals the rank profile matrix RA. Note that although the
rank profile A is trivial in such cases, the matrix RA still carries important information
on the row and column rank profiles of all leading sub-matrices of A.

Corollary 2: Let A be an m× n matrix.
If A has generic column rank profile, then any PLU decomposition A = PLU

computed using reverse lexicographic order search and row rotations is such that
RA = P

[
Ir

0

]
. In particular, P = RA if r = m.

If A has generic row rank profile, then any LUP decomposition A = LUP computed
using lexicographic order search and column rotations is such that RA =

[
Ir

0

]
P . In

particular, P = RA if r = n.

Proof: Consider A has generic column rank profile. From table 5.2, any pluq decom-
position algorithm with a reverse lexicographic order based search and rotation based
row permutation is such that ΠP,Q = P [ Ir ]Q = RA. Since the search follows the
reverse lexicographic order and the matrix has generic column rank profile, no column
will be permuted in this elimination, and therefore Q = In. The same reasoning hold
for when A has generic row rank profile.�

Note that the L and U factors in a PLU decomposition are uniquely determined
by the permutation P . Hence, when the matrix has full row rank, P = RA and the
decomposition A = RALU is unique. Similarly the decomposition A = LURA is
unique when the matrix has full column rank. Now when the matrix is rank deficient
with generic row rank profile, there is no longer a unique PLU decomposition revealing
the rank profile matrix: any permutation applied to the last m− r columns of P and
the last m− r rows of L yields a PLU decomposition where RA = P [ Ir ].

Lastly, we remark that the only situation where the rank profile matrix RA can
be read directly as a sub-matrix of P or Q is as in corollary 2, when the matrix A
has generic row or column rank profile. Consider a pluq decomposition A = PLUQ
revealing the rank profile matrix (RA = P [ Ir ]Q) such that RA is a sub-matrix of P .
This means that P = RA + S where S has disjoint row and column support with RA.

We have RA = (RA +S) [ Ir ]Q = (RA +S)
[

Q1
0(n−r)×n

]
. Hence RA(In−

[
Q1

0(n−r)×n

]
) =

S
[

Q1
0(n−r)×n

]
but the row support of these matrices are disjoint, hence RA

[
0

In−r

]
= 0

which implies that A has generic column rank profile. Similarly, one shows that RA
can be a sub-matrix of Q only if A has a generic row rank profile.

5.5.2 Computing Echelon forms

Usual algorithms computing an echelon form [82, 62] use a slab block decomposition
(with row or lexicographic order search), which implies that pivots appear in the order
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of the echelon form. The column echelon form is simply obtained as C = PL from
the PLUQ decomposition. Using product order search, this is no longer true, and the
order of the columns in L may not be that of the echelon form. Algorithm 7 shows
how to recover the echelon form in such cases. Note that both the row and the column

Algorithm 7 Echelon form from a PLUQ decomposition

Input: P,L, U,Q, a PLUQ decomp. of A with RA = ΠP,Q

Output: C: the column echelon form of A

1: C ← PL

2: (p1, .., pr) = Sort(σP (1), .., σP (r))

3: for i = 1..r do

4: τ = (σ−1
P (p1), .., σ−1

P (pr), r + 1, ..,m)

5: end for

6: C ← CPτ

echelon forms can thus be computed from the same PLUQ decomposition. Lastly, the
column echelon form of the i × j leading sub-matrix, is computed by removing rows
of PL below index i and filtering out the pivots of column index greater than j. The
latter is achieved by replacing line 2 by (p1, .., ps) = Sort({σP (i) : σQ(i) ≤ j}).

5.6 Conclusion and perspectives

We showed the first reduction to matrix multiplication of the problem of computing
both row and column rank profiles of all leading sub-matrices of an input matrix.
Second, we introduced a new normal form, the rank profile matrix, and showed how
it can be computed from a PLUQ decomposition. As a consequence, our tile recursive
PLUQ algorithm gives more information on the matrix while having the best time-
complexity compared to sequential state of the art algorithms. It is also faster in
practice than previous implementations with large enough matrices. Lastly, it also
exhibits more parallelism than classical Gaussian elimination since the recursive calls
in step 2 and 3 are independent. The parallel aspects will be detailed in chapter 6
where we prove that this algorithm is also faster than state of the art algorithms in
parallel.

Preliminary works are to be done on how to extend the computation of the new
normal form on rings and on proving its unicity.



Chapter 6

Parallel computation of Gaussian elimination in

exact linear algebra: Synthesis

We now investigate the composition of the finite field linear algebra routines in paral-
lel. We report in this chapter the conclusions of our experience in parallelizing exact
LU decomposition on shared memory computers. Moreover, we prove here that since
all exact linear algebra problems are reduced to matrix multiplication, we are able to
maintain sub-cubic complexities in parallel. For instance, in this chapter we show that
LU decomposition reduced to Strassen-Winograd parallel variant of matrix multiplica-
tion is asymptotically faster than the state of the art numerical libraries on NUMA-like
shared memory architectures. It also maintains high efficiency on any multi-core ar-
chitecture.

This chapter synthesizes the contributions of this thesis by combining all previous
aspects together. Thanks to chapters 4 and 5 we have a tile PLUQ decomposition
that computes the rank profile matrix in sub-cubic complexity. Chapter 2 presents the
PALADIn language that allows to implement efficiently this sub-cubic factorization in
parallel using different runtime systems. Chapter 3 presents optimized parallel building
blocks that are the kernel routines of the tile PLUQ factorization and thus helps to
make a step forward towards better performance of parallel PLUQ factorization.

This chapter also demonstrates that recursive algorithms are preferred over iterative
algorithms when it comes to code composition over exact domains. More precisely, in
the case of PLUQ decomposition over finite fields tile recursive variants have better
performance than slab recursive variants in parallel.

Section 6.1 details the constraints of composing parallel routines and the parallel
models used for this issue. Section 6.2 deals with the parallelization of Gaussian
elimination recursive and iterative algorithms. We show there the parallel performance
and the parallel implementation for our tile recursive variant and for the recursive slab
variant of [62] using the PALADIn language. Lastly section 6.2.3 presents our state
of the art benchmarks of parallel PLUQ factorization and gives a comparison with
existing state of the art numerical libraries.
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6.1 Parallel constraints and code composition

6.1.1 Code composition

Different ways exist to express parallelism for a sequential routine. One can use data
parallelism or task parallelism. However, when it comes to library parallelization that
involves the composition of parallel routines, task parallelism allows to have a bet-
ter handling of modules execution and scheduling. Nonetheless, the relative ease of
expressing composed parallel routines and nested parallelism using tasks does not al-
ways simplify solving performance problems. Exposing enough task parallelism to
maximize memory hierarchy utilization while simultaneously minimizing paralleliza-
tion overheads is crucial for performance. Moreover, over finite fields, tasks need to
be as large as possible to reduce the number of modular reductions, as shown in sec-
tion 4.5. Thus, one can use task parallelism for better handling of code composition
but should take into account the trade-off between using sufficiently small tasks to
make the best use of available resources and sufficiently large blocks to tackle issues
related to computation over finite fields. Task parallelism models are divided following
two models: the dataflow model and the fork-join model.

6.1.2 Dataflow model vs fork-join model

The fork-join model sets up parallel sections where execution are launched in parallel
at designated points and merge at a subsequent point in the program. The general
principal of a dataflow program is that every variable denotes a single value during the
execution. This property allows to represent a program with a graph where the nodes
correspond to expressions and the edges represent the dependencies between expres-
sions. An expression can be evaluated when all its arguments have been computed.

Here, we compare the tasks execution behavior of the LU factorization using the
dataflow model and the fork-join model. Figure 6.1 shows the execution of tasks for
the tile iterative LU decomposition. It illustrates the task queue execution of this
algorithm with a 3 × 3 splitting of the matrix. We can see clearly that with the fork-
join model we add unnecessary synchronizations. Indeed, the task that computes the
LU factorization of the block A22 depends only on the task that has computed fgemm

on this same block. Thus this task can be launched even if the task that executes the
fgemm routine, for instance on the block A33, hasn’t been terminated.

Figure 6.2 shows the dataflow model execution of the tasks during the LU decompo-
sition. The availability of the data triggers the execution of the tasks. Hence execution
with dataflow scheduling allows to retrieve the real theoretical critical path, which is
the LU decomposition on the diagonal block. With this feature, the number of idle
cores is reduced. This helps increasing performances of iterative algorithms since tasks
are executed as soon as their data are ready regardless of what the number of iteration
is. In recursive algorithms dataflow scheduling is not yet supported between levels of
the recursion. Using OpenMP or xKaapi parallel environments, an explicit synchro-
nization is mandatory at the end of a recursive program to ensure that all data are
ready before the end of the current recursion level.
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Figure 6.1: Tasks execution using a fork-join model on tile LU factorization with a 3 × 3 splitting of

the matrix.
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Figure 6.2: Tasks execution using a data-flow model on tile LU factorization with a 3 × 3 splitting of

the matrix.
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6.2 Parallel versions of Gaussian elimination algorithms

We focus in this section on the parallelization of the Gaussian elimination iterative
and recursive variants. We study first the iterative right looking, left looking and
crout block variants in parallel. Then we will focus on tile and slab iterative and
recursive algorithms that handle rank deficiencies and compute that rank profile of the
matrix in parallel.

6.2.1 Iterative variants

In chapter 4 we studied the cost of modular reductions of the right looking, the left
looking and the crout variants. We also presented the block scheme of each variant
and showed that the left looking and the crout variants are preferred in sequential
execution since they perform fewer modular reductions than the right looking variant.
We now study the parallel aspects of each variant.

The tile right looking variant scheme (§4.3.2.1) exhibits more parallelism than the
other variants: At each iteration the right looking variant generates more tasks. The
latter are concurrent tasks that are dispatched on all available processors. This allows
to maximize resource utilization in comparison with the left looking and the crout
variant where fewer tasks are to be executed in parallel at each iteration.

We show in figure 6.3 the performance of each variant on full rank matrices and
demonstrate that the best variant in sequential is not necessarily the best in parallel.
As it happens, the left looking variant that reduces the most modular reductions is
seemingly the slowest in parallel. This is explained by the large sequential ftrsm calls
and few fgemm tasks that are executed in parallel in each iteration. The latter reason is
shared with the tile crout variant, whereas the tile right looking variant generates more
independent fgemm tasks and thus provides more tasks to be executed concurrently.

We now consider the general case of matrices with arbitrary rank profile, that can
lead to rank deficiencies in the panel eliminations. The slab recursive algorithm of [36]
can be translated into a slab iterative algorithm. We present here the parallel aspects
of the latter algorithm.

The slab iterative algorithm shown in Figure 6.4 consists in cutting the matrix ac-
cording to one dimension creating slabs. We recall that the elimination in each slab,
called panel factorization, is performed using a sequential algorithm that computes
the CUP factorization. In this scheme the sequential CUP tasks constitute the criti-
cal path of the task execution queue. In each iteration all tasks become ready to be
executed once the CUP task is terminated. At this level only one processor is active
and all the others are idle waiting for data to be produced from the CUP call. This
imposes a choice of a fine granularity to reduce the size of the sequential CUP tasks.
However, during the factorization, the finer is the grain the more modular reductions
are performed and the further the benefit of using fast variant is reduced.

Moreover, during the elimination of a rank deficient matrix, the rank obtained on
each slab from the sequential CUP call is smaller than the row dimension, as shown in
figure 6.4. This adds another difficulty since the starting column position of each panel
is determined by the rank of the slabs computed so far. It can only be determined
dynamically upon the execution. This implies in particular that no data-storage by
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Figure 6.3: Parallel LU factorization on full rank matrices with modular operations

Figure 6.4: Slab iterative factorization of a matrix with rank deficiencies, with final reconstruction of

the upper triangular factor

contiguous tiles is possible here. Moreover, the workload of each block operation may
strongly vary, depending on the rank of the corresponding slab. Such heterogeneous
tasks lead us to opt for work-stealing based runtimes instead of static thread manage-
ment. So to optimize the performance of this algorithm we need to parallelize the big
sequential factorization tasks while preserving the echelon form.

Thanks to the pivoting strategy of algorithm 4, it is still possible to split the panel
factorization into column tiles and recover the rank profiles afterwards. Now with this
splitting, the operations remain more local and updates can be parallelized. This ap-
proach shares similarities with the recursive computation of the panel described in [28].
Figure 6.5 illustrates this tile iterative factorization obtained by the combination of a
row-slab iterative algorithm, and a column-slab iterative panel factorization.

This optimization used in the computation of the slab factorization improved the
computation speed by a factor of 2, to achieve a speed-up of 6.5 on 32 cores with
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Figure 6.5: Panel PLUQ factorization: tiled sub-calls inside a single slab and final reconstruction

libkomp.

6.2.2 Recursive variants

Recursive algorithms in dense linear algebra are a natural choice for hierarchical mem-
ory systems [84]. For large problems, the geometric nature of the recursion implies
that the total area of operands for recursive algorithms is less than that of iterative
algorithms [54]. However, recursive algorithms take less advantage of dataflow models
because of the explicit synchronizations that needs to be added at the end of a recursive
program. This guarantees that the returned value is computed and ready before the
end of the recursion. Nowadays, there is no runtime system that supports the dataflow
feature on recursive tasks implementations.

Slab recursive algorithm

The slab recursive variant splits the row dimension or the column dimension in halves in
each recursion. As the iterative variant the CUP calls are done in sequential. Figure 6.6
shows the scheme of this algorithm and the corresponding DAG (Directed Acyclic
Graph). This variant shares the same issues as the slab iterative variant. This variant
of [62] is implemented in the FFLAS-FFPACK library as the LUdivine routine. We
present in appendix B the parallel implementation (pLUdivine) of this variant using
the PALADIn language.

Tile recursive algorithm

The recursive splitting is done in four quadrants. Pivoting is done first recursively
inside each quadrant and then between quadrants. It has the interesting feature that
if the top-left tile is rank deficient, then the elimination of the bottom-left and top-
right tiles can be executed in parallel as shown on Figure 6.7. This figure shows the
DAG of the task queue execution of the tile recursive algorithm. After the first PPLUQ
recursive call two pftrsm calls are executed concurrently and are mapped fairly on
available processors. Then three pfgemm tasks are executed in parallel on p

3 processors
each, where p is the total number of disposable processors. Once pfgemm1 and pfgemm2

tasks produced their data, respectively PPLUQ2 and PPLUQ3 are immediately launched
even if the big pfgemm3 hasn’t been terminated.

As an illustration, Algorithm 8 shows the first half of this algorithm implemented
with OpenMP tasks with dataflow dependencies. The implementation of all the algo-
rithm using the PALADIn syntax is presented in appendix C.
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6.2.3 Parallel experiments on full rank matrices

This section summarizes the parallel contributions of this thesis. All parallel kernel
routines implemented in previous chapters are composed and tested within the parallel
Gaussian elimination application using the libkomp runtime system. We thus compare
all pfgemm variants within our parallel tile PLUQ factorization. In our experiments we
denote by explicit synchronization the classical fork-join model, where synchro-
nizations are explicitly defined by the programmer, e.g. by a # pragma omp taskwait

instruction. We denote by dataflow synchronization the task model where syn-
chronizations are automatically inferred by the scheduler thanks to data dependencies
specified by the programmer.

Figure 6.8 shows the parallel performance with explicit synchronization of the
tile recursive ppluq routine using the libkomp runtime system with all different pfgemm
variants of chapter 3. This figure demonstrates that the best performance are obtained
using the TWO_D_ADAPT variant of the pfgemm routine. The number of threads given
to all kernel routines is set to the number of available processors (i.e. 32 on the HPAC
machine). Note that depending on the number of runs for each variant, variations of
5 to 10 Gfops explain irregularities.

Figure 6.9 compares the parallel behavior of the iterative and recursive ppluq rou-
tine using explicit synchronizations and dataflow synchronizations, over fi-
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Algorithm 8 ppluq(A) tile recursive algorithm

if min(m,n) < T then
Base Case done by an iterative PLUQ decomposition

end if

Split A =

[
A1 A2

A3 A4

]
where A1 is bm2 c × b

n
2 c.

pluq(A1) . Decompose A1 = P1

[
L1

M1

] [
U1 V1

]
Q1

#pragma omp task shared(A2, P1) depend(in:P1) depend(inout:A2)

laswp(A2, P
T
1 ) .

[
B1

B2

]
← PT

1 A2

#pragma omp task shared(A3, Q1) depend(in:Q1) depend(inout:A3)

laswp(A3, Q
T
1 ) .

[
C1 C2

]
← A3Q

T
1

Here A =

 L1\U1 V1 B1

M1 0 B2

C1 C2 A4

.
#pragma omp task shared(L1, B1) depend(in:L1) depend(inout:B1)

trsm(L1, B1) . D ← L−1
1 B1

#pragma omp task shared(U1, C1) depend(in:U1) depend(inout:C1)

trsm(C1, U1) . E ← C1U
−1
1

#pragma omp task shared(B2,M1, D) depend(in:M1, D) depend(inout:B2)

MM(B2,M1, D) . F ← B2 −M1D
#pragma omp task shared(C2, E, V1) depend(in:E, V1) depend(inout:C2)

MM(C2, E, V1) . G← BC2 − EV1

#pragma omp task shared(A4, E,D) depend(in:E,D) depend(inout:A4)

MM(A4, E,D) . H ← A4 − ED

Here A =

 L1\U1 V1 D
M1 0 F

E G H

.
#pragma omp task shared(F, P2, Q2) depend(out:P2, Q2) depend(inout:F)

pluq(F ) . Decompose F = P2

[
L2

M2

] [
U2 V2

]
Q2

#pragma omp task shared(G,P3, Q3) depend(out:P3, Q3) depend(inout:G)

pluq(G) . Decompose G = P3

[
L3

M3

] [
U3 V3

]
Q3

#pragma omp task shared(P3, Q2, H) depend(in:P3, Q2) depend(inout:H)

laswp(H,PT
3 ); laswp(H,QT

2 ) .

[
H1 H2

H3 H4

]
← PT

3 HQT
2

#pragma omp task shared(P3, E) depend(in:P3) depend(inout:E)

laswp(E,PT
3 ) .

[
E1

E2

]
← PT

3 E

#pragma omp task shared(P2,M1) depend(in:P2) depend(inout:M1)

laswp(M1, P
T
2 ) .

[
M11

M12

]
← PT

2 M1

#pragma omp task shared(D,Q2) depend(in:Q2) depend(inout:D)

laswp(D,QT
2 ) .

[
D1 D2

]
← DQT

2

nite field Z/131071Z. It first shows how the tile recursive variants performs faster
than the tile iterative variants, mostly for their fewer number of modular reductions,
and the asymptotic speed-up of Strassen-Winograd algorithm. Now the tile recursive
algorithm does not seem to take advantage of the use of tasks with data-flow depen-
dencies, probably because each recursive level has to do an explicit synchronization
termination, thus limiting the gain of this approach, whereas the overhead of the task
dependency calculation slows down the computation. The tile iterative variants per-
form slower, but allow for a better use of tasks with data-flow dependency, which
perform slightly better there.

Figure 6.10 shows that our tile recursive ppluq implementation, without modular
reduction, behaves better than the plasma quark getrf and is close to the performance
of the state of the art MKL getrf. The MKL getrf is 5% faster than our ppluq routine
on matrix dimension 32000. Note that in figures 6.10 and 6.9 the performance of our
tile ppluq is similar with and without modular reductions.

Our highly competitive performance is mainly due to the bi-dimensional cutting
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#pragma omp task shared(V1, Q3) depend(in:Q3) depend(inout:V1)

laswp(V1, Q
T
3 ) .

[
V11 V12

]
← V1Q

T
3

Here A =


L1\U1 V11 V12 D1 D2

M11 0 0 L2\U2 V2

M12 0 0 M2 0

E1 L3\U3 V3 H1 H2

E2 M3 0 H3 H4

.

. . . (continue the elimination of H following Algorithm 4)

#pragma omp taskwait
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Figure 6.7: Graph of dataflow dependencies inside the tile recursive PLUQ recursion
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Figure 6.8: Parallel tile recursive PLUQ over Z/131071Z on full rank matrices using different pfgemm

variants with explicit synchronizations (run on the HPAC machine)
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with and without dataflow synchronizations (run on the HPAC machine)

which allows for a faster panel elimination, parallel iterative/hybrid pftrsm kernels,
more balanced and adaptive pfgemm kernels and some use of Strassen-Winograd algo-
rithm. The use of the latter speeds up computation when the matrix dimension gets
larger. The pfgemm kernel used here is the classical matrix multiplication algorithm
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using the TWO_D_ADAPT strategy that switches to a sequential base case algorithm that
uses the Strassen-Winograd implementation when the dimension is sufficiently large.

Our tile recursive ppluq implementation can attain a speed-up of 18 with matrix
dimension 32000 and 14 with matrix dimension 16000 on 32 cores(i.e. on all NUMA
nodes) of the HPAC machine), as shown in figure 6.11. We used a threads binding
strategy that maps threads in a round and robin manner on all 32 processors. More-
over, the distant memory accesses when using different NUMA nodes impacts the
performance of the tile recursive PLUQ algorithm.

To compute our parallel speed-up, we compare with the best sequential implementa-
tion of the pluq routine that attained 17.3519 Gfops for matrix dimension 32000. The
computation speed of our parallel tile PLUQ on 1 core is 17.0638 for matrix dimension
32000.

6.2.4 Parallel experiments on rank deficient matrices

Figure 6.12 shows the execution speed of the parallel PLUQ variants on matrices with
rank equal to half their dimension. The tile recursive PLUQ with explicit synchro-
nizations is faster than the tile iterative PLUQ using dataflow synchronizations. Our
tile recursive PLUQ algorithm exhibits more parallelism on the rank deficient matri-
ces with two concurrent recursive calls. Note that the speed here is computed using
2
3
r3+2mnr−r2

time where r = m
2 . Thus in figure 6.12 the speed obtained with matrix dimen-

sion 32000 is 300 effective Gfops which corresponds to 63.675 seconds. In figure 6.10,
where experiments are conducted on full rank matrices, we achieved a speed of al-
most 350 effective Gfops but that corresponds to 63.6695 seconds. We thus loose 50
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Gfops when the input matrix is rank deficient because we perform more permutations.
However, by looking to the timings in seconds of the two figures, the overhead of addi-
tional permutations introduced by the rank deficiency is compensated by the reduced
amount of arithmetic operations to be performed. Thus, overall the computation speed
remains of the same order of magnitude. This time again, the variant with explicit
synchronizations performs best.

Using recursive variants linked against the libkomp library with explicit synchro-
nizations, mapping data on different NUMA nodes that help reduce dependency on
bus speed and fixing large granularity to benefit from the use of fast variants and to
reduce modular reductions impact, we manage to obtain high performance for our tile
recursive PLUQ factorization.
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Chapter 7

Conclusion

In this thesis, we focused on many aspects related to the design of high performance
exact linear algebra software. This study resulted in practical and theoretical contri-
butions. In the following we conclude on these contributions, first by summarizing the
results achieved and then by proposing several possible research directions.

7.1 Contributions

In this manuscript, we first presented a domain specific language dedicated to the
parallelization of exact linear algebra routines. With a unique syntax the PALADIn
interface allows to implement and test our parallel implementations using different
parallel environments (OpenMP, TBB and XKaapi). It also provided different matrix
cutting strategies over one or two dimensions using iterative and recursive implemen-
tations. This interface proved that a generic parallel linear algebra library can be
developed using runtime systems as plugins.

This language then helped to study the parallelization of different layers of a parallel
exact linear algebra software using different runtime systems. A panorama of block
algorithms is thus explored for the parallelization of building blocks routines and for
the parallelization of Gaussian elimination routines. Several implementations of the
subroutines used by the parallel Gaussian elimination routine (ppluq) have been inves-
tigated. We identified that the best recursive variant for matrix multiplication is the
parallel Strassen-Winograd variant that switches to a classical sequential algorithm.
The use of sub-cubic matrix multiplication requires to use a coarse grain paralleliza-
tion scheme. Hence the data placement strategy need to be adapted consequently and
the granularity has to be tuned as close as possible to the available resources. We also
proposed a hybrid iterative and recursive parallelization for the triangular system solve
with matrix right-hand side, performing efficiently even with unbalanced dimensions.

We then looked into a set of known block algorithms for the computation of Gaussian
elimination and proposed a new tile recursive PLUQ factorization. There, we studied
the impact of using block algorithms for the computation of Gaussian elimination over
a finite field, where modular reductions are involved in a delayed design. We also
proposed a new normal form, the rank profile matrix, summarizing all information on
the row and column rank profiles of all the leading sub-matrices. We then explored the
conditions for a Gaussian elimination algorithm to compute all or part of this invariant,
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through the corresponding PLUQ decomposition. These new insights on the relation
between pivoting and the ability to recover rank profiles, helped design new algorithms
performing more efficiently in sequential and in parallel.

Our parallel building blocks, combined in our new tile recursive PLUQ algorithm
deliver a high computing efficiency. The best performance is obtained with the par-
allel recursive ppluq variant using the 2D recursive adaptive variant for matrix mul-
tiplication algorithm and the hybrid parallel pftrsm variant. As expected, the use
of recursion challenges the runtime, and light-weight task implementations, such as
the one in XKaapi happen to be crucial there. Dataflow task dependencies also help
slightly improve performances. However, it seems to work best with numerous tasks
using iterative algorithms, which in the other hand, implies a finer grain, and therefore
a lesser improvement of the sub-cubic matrix multiplication algorithms. Finally, our
experimental parallel results performance matches that of the reference numerical state
of the art libraries while tackling the various aspects of computing over exact domains
in parallel.

Overall, we proved in this thesis that sub-cubic exact linear algebra algorithms scale
up in parallel. Moreover, recursive algorithms are good candidates to maintain scala-
bility of sub-cubic algorithms in exact linear algebra. When using appropriate runtime
systems, they scale better than iterative algorithms.

7.2 Future work

The WinoPar→ClassicSeq variant computes C ← αA×B. However the ppluq routine
requires an implementation of the C ← βC + αA × B operation which is not yet
implemented for the Strassen-Winograd parallel variant. The number of temporaries
in the parallel implementation of the latter operation can increase since no temporary
storage is possible in blocks of the matrix C.

Further improvements can be made to the parallelization of the recursive steps of fast
matrix multiplication algorithms. The focus will be on the scheduling heuristics that
will reduce as much as possible task dependencies, while keeping the memory footprint
contained. These scheduling heuristics, inspired by the results of [17], could take into
account the constraints of having the critical path as short as possible. Moreover,
the Strassen algorithm scheme reveals fewer dependencies than the Winograd variant
scheme. This will allow to reduce the number of temporaries but at the cost of more
additions. The parallel fast variants could improve further the performance of the
ppluq routine.

7.3 Perspective

Several research directions can be studied in the continuation of this thesis. We will
focus here on four axes:

• The PALADIn language is adapted to express multithreaded parallelism intrinsic
to exact linear algebra problems. However, to support large scale exact compu-
tations on distributed memory architectures the language need to be re-adapted.
This will allow PALADIn to support new parallel environments such as MPI.
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Nonetheless, this implies new challenges on keeping the unique syntax feature of
PALADIn. A first step can be done by implementing new keywords in PALADIn
to express message passing parallelization. Then depending on the application and
on the machine architecture the user can set a variable to enable the multithread-
ing mode (for parallelization on shared memory architectures) or the message
passing mode (for parallelization on distributed memory architectures) for each
PALADIn task.

• The distant data accesses has an impact on the overall performance. Adapting
the communication avoiding techniques of [53] in our framework of exact Gaussian
elimination is highly relevant. In numerical linear algebra, tournament pivoting
strategy has the property that the communication for computing the panel fac-
torization in parallel depends only on the number of processors. A pre-processing
step splits the panel in p blocks where p is the number of processors, and computes
the LU decomposition on each block to find the best row pivots. These pivots
are then permuted into the first positions, and thus the LU factorization of the
entire panel can be performed with no pivoting. Over a finite field, tournament
pivoting can be adapted to extract the rank profile information on each slab in the
framework of our recursive and iterative algorithms. This strategy could compute
the union of the non-zero pivots found in concurrent eliminations and reveals the
row rank profile or the column rank profile. However, it is still unclear whether
the rank profile matrix can still be revealed with such an algorithm.

• The PALADIn language is adapted to parallel computation over dense linear al-
gebra where parallel algorithms efficiency rely on computationally intensive por-
tions. Thus, our language can also be adapted to support computation on hybrid
architectures and accelerators. OpenMP standard now includes a set of device
constructs to support heterogeneous systems like GPUs. However, for now, only
a limited number of GPUs is supported. One can include the OpenCL or/and the
CUDA languages to have a rich set of supported devices. However, over a finite
field, the best parallel performance are obtained using recursive implementations
that involve several levels of parallelism. In the context of GPU programming this
implies kernel composition that is only supported via the CUDA dynamic paral-
lelism given that the GPU device supports it. If not, tile iterative algorithms can
be exported on available GPU device. Thus, the challenge is on how to automate
this choice inside the PALADIn language depending on the available accelerator
device feature.

• We proved in this thesis that efficient implementations of parallel building blocks
in exact linear algebra exist. But, based on our experience for higher level appli-
cations, such as the PLUQ factorization, code composition makes it more difficult
to maintain high parallel efficiency. Efforts are to be done on both algorithmic
and implementation sides. For instance, the composition of several parallel codes
for the computation of Euclidean lattice reduction [76] can be investigated. The
latter state of the art algorithms [76, 92] are based on the LLL algorithm where
iterations of the QR factorization are involved. Relying on floating point approxi-
mations, the length of the iterative sequence of QR factorizations depends on the
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precision used. It would be interesting to study how exact rational arithmetic,
based on finite field and RNS systems, can be applied. Indeed, this will increase
the total arithmetic work but computations are more independent and can be
parallelized. Thus, an hybrid version combining numeric and exact computation
of the QR factorization using RNS representations for rational multi-precision
can be considered. This makes it possible to benefit from parallelization on the
precision and on the problem dimension.
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Appendices

A Correctness of Algorithm 4

First note that S
[
L
M

]
=


L1
M11 L2
M12 M2 0
E1 I L3
E21 K1 M31 L4
E22 K2 M32 M4 0 0



Hence P
[
L
M

]
=
[
P1
P3

]
L1

M1 P2

[
L2
M2

]
E1 I L3

E2 K M3 P4

[
L4
M4

]


Similarly, [U V ]T =


U1 V11 V12 D1 D21 D22

0 0 U2 V21 V22
U3 V3 0 O1 O2

U4 V4
0


and [U V ]Q =

U1 V1 D1 D2
0 U2 V2

[U3 V3]Q3 0 O
[U4 V4]Q4

[Q1
Q2

]
.

Now as H1 = IU2, H2 = IV2 + L3O,H3 = KU2
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and H4 = KV2 +M3O + P4

[
L4
M4

]
[U4 V4]Q4 we have
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E2 K M3 P4
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U1 V1 D1 D2
0 U2 V2

[U3 V3]Q3 0 O
[U4 V4]Q4

[Q1
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]

=
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]
L1

M1 P2

[
L2
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]
E1 Ir3
E2 Im−k−r3
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L3 [U3 V3]Q3 H1 H2
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]

=
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Im−k
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E 0 Im−k
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0 F
G H
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In−k
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B Parallel implementation of the LUdivine Algorithm 3

Listing 1: pLUdivine parallel implementation using PALADIn

1

2

3 SYNCH_GROUP(MAX_THREADS ,

4 {

5 if (trans == FFLAS:: FflasTrans){

6 R = pLUdivine (F, Diag , trans , colDim , Nup , A, lda , P, Q,

7 LuTag , cutoff , nt/2);

8 typename Field:: Element_ptr Ar = A + Nup*incRow; // SW

9 typename Field:: Element_ptr Ac = A + R*incCol; // NE

10 typename Field:: Element_ptr An = Ar+ R*incCol; // SE

11 if (!R){

12 if (LuTag == FFPACK :: FfpackSingular )

13 return 0;

14 }

15 else {

16 TASK(MODE(READ(P,R)

17 CONSTREFERENCE(F, P, Ar)

18 READWRITE(Ar[0]) ),

19 FFPACK :: applyP (F, FFLAS::FflasLeft , FFLAS::

FflasNoTrans ,Ndown , 0,(int) R, Ar, lda , P);

20 );

21 CHECK_DEPENDENCIES;

22 // Ar <- L1^-1 Ar

23 TASK(MODE(READ(A[0])

24 CONSTREFERENCE(F, A, Ar)

25 READWRITE(Ar[0])),

26 FFLAS::ftrsm( F, FFLAS::FflasLeft , FFLAS::FflasLower

, FFLAS:: FflasNoTrans , Diag , R, Ndown , F.one , A,

lda , Ar, lda , PH);

27 );

28 CHECK_DEPENDENCIES;

29 // An <- An - Ac*Ar

30 if (colDim >R)

31 TASK(MODE(READ(Ac[0], Ar[0])

32 CONSTREFERENCE(F)

33 READWRITE(An[0])),

34 fgemm( F, FFLAS :: FflasNoTrans , FFLAS:: FflasNoTrans ,

colDim -R, Ndown , R, F.mOne , Ac, lda , Ar , lda , F.

one , An, lda , pWH);

35 );

36 CHECK_DEPENDENCIES;

37 }

38 // Recursive call on SE

39 TASK(MODE(READ(lda)

40 CONSTREFERENCE(F, P, Q, R2, An)
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41 READWRITE(An[0], P, Q)

42 WRITE(R2, x1[0])),

43 R2 = pLUdivine (F, Diag , trans , colDim -R, Ndown , An,

lda , P + R, Q + Nup , LuTag , cutoff , nt/2);

44 );

45 for (size_t i = R; i < R + R2; ++i)

46 P[i] += R;

47 if (R2) {

48 // An <- An.P2

49 TASK(MODE(READ(P, R, R2, x1[0])

50 CONSTREFERENCE(F, A, P)

51 READWRITE(A[0])),

52 FFPACK :: applyP (F, FFLAS::FflasLeft , FFLAS::

FflasNoTrans ,

53 Nup ,(int) R, (int)(R+R2), A, lda , P);

54 );

55 }

56 else {

57 if (LuTag == FFPACK :: FfpackSingular)

58 return 0;

59 }

60 }

61 else { // trans == FFLAS:: FflasNoTrans

62

63 R = pLUdivine (F, Diag , trans , Nup , colDim , A, lda , P, Q,

LuTag , cutoff , nt/2);

64 typename Field:: Element_ptr Ar = A + Nup*incRow; // SW

65 typename Field:: Element_ptr Ac = A + R*incCol; // NE

66 typename Field:: Element_ptr An = Ar+ R*incCol; // SE

67 if (!R){

68 if (LuTag == FFPACK :: FfpackSingular )

69 return 0;

70 }

71 else { /* R>0 */

72 // Ar <- Ar.P

73 TASK(MODE(READ(P, R) CONSTREFERENCE(F, P, R, Ar)

READWRITE(Ar[0])),

74 FFPACK :: applyP (F, FFLAS::FflasRight , FFLAS::FflasTrans ,

75 Ndown , 0,(int) R, Ar , lda , P);

76 );

77 CHECK_DEPENDENCIES;

78 // Ar <- Ar.U1^-1

79 TASK(MODE(READ(A[0]) CONSTREFERENCE(F, A, Ar, R)

READWRITE(Ar[0])),

80 ftrsm( F, FFLAS ::FflasRight , FFLAS::FflasUpper ,

81 FFLAS :: FflasNoTrans , Diag , Ndown , R,

82 F.one , A, lda , Ar, lda , PH);

83 );

84 CHECK_DEPENDENCIES;
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85 // An <- An - Ar*Ac

86 if (colDim >R)

87 TASK(MODE(READ(Ac[0], Ar[0]) CONSTREFERENCE(F) READWRITE(

An[0])),

88 fgemm( F, FFLAS :: FflasNoTrans , FFLAS:: FflasNoTrans , Ndown

, colDim -R, R,

89 F.mOne , Ar, lda , Ac, lda , F.one , An, lda , pWH);

90 );

91 CHECK_DEPENDENCIES;

92

93 }

94 // Recursive call on SE

95 TASK(MODE(READ(lda , R, Nup) CONSTREFERENCE(F, P, Q, R2, An)

READWRITE(An[0], P, Q) WRITE(R2, x1[0])),

96 R2=pLUdivine (F, Diag , trans , Ndown , N-R, An, lda , P+R, Q+

Nup , LuTag , cutoff , nt/2);

97 for (size_t i = R; i < R + R2; ++i)

98 P[i] += R;

99 );

100 CHECK_DEPENDENCIES;

101

102

103 if (R2){

104

105 // An <- An.P2

106 FFPACK :: applyP (F, FFLAS::FflasRight , FFLAS::FflasTrans ,

107 Nup ,(int) R, (int)(R+R2), A, lda , P);

108

109 }

110 else{

111 if (LuTag == FFPACK :: FfpackSingular)

112 return 0;

113 }

114

115 }

116

117 // Non zero row permutations

118 for (size_t i = Nup; i < Nup + R2; i++)

119 Q[i] += Nup;

120 if (R < Nup){

121 // Permutation of the 0 rows

122 if (Diag == FFLAS:: FflasNonUnit){

123 for ( size_t i = Nup , j = R ; i < Nup + R2; ++i, ++j){

124 // TASK(MODE(READ(A, x2[0]) CONSTREFERENCE(F, Q, A)

READWRITE(Q) ),

125 FFLAS:: fassign( F, colDim - j, A + i*incRow + j*incCol ,

incCol , A + j * (lda + 1), incCol);

126
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127 for (typename Field:: Element_ptr Ai = A + i*incRow + j*

incCol;

128 Ai != A + i*incRow + colDim*incCol; Ai+= incCol)

129 F.assign (*Ai, F.zero);

130 size_t t = Q[j];

131 Q[j]=Q[i];

132 Q[i] = t;

133 }

134 }

135 else { // Diag == FFLAS:: FflasUnit

136 for ( size_t i = Nup , j = R+1 ; i < Nup + R2; ++i, ++j){

137 // TASK(MODE(READ(A, x2[0])

CONSTREFERENCE(F, Q, A) READWRITE(Q) ),

138 FFLAS:: fassign( F, colDim - j,

139 A + i*incRow + j*incCol , incCol ,

140 A + (j-1)*incRow + j*incCol , incCol);

141

142 for (typename Field:: Element_ptr Ai = A + i*incRow + j*

incCol;

143 Ai != A + i*incRow + colDim*incCol; Ai+= incCol)

144 F.assign (*Ai, F.zero);

145 size_t t = Q[j-1];

146 Q[j-1]=Q[i];

147 Q[i] = t;

148 }

149 } }

150 });

151 return R + R2; �
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C Parallel implementation of the pluq Algorithm 4 using the PALADIn syntax

Listing 2: ppluq parallel implementation using PALADIn

1

2 FFLAS :: FFLAS_DIAG OppDiag = (Diag == FFLAS :: FflasUnit)? FFLAS::

FflasNonUnit : FFLAS:: FflasUnit;

3

4 size_t M2 = M >> 1;

5 size_t N2 = N >> 1;

6 size_t * P1 = FFLAS::fflas_new <size_t > (M2);

7 size_t * Q1 = FFLAS::fflas_new <size_t > (N2);

8 size_t* MathP = 0;

9 size_t* MathQ = 0;

10 size_t* P2 ,*P3 ,*Q2 ,*Q3 ,*P4 ,*Q4;

11 size_t R1,R2,R3,R4;

12

13 // A1 = P1 [ L1 ] [ U1 V1 ] Q1

14 // [ M1 ]

15 R1 = pPLUQ (Fi, Diag , M2, N2, A, lda , P1, Q1,nt);

16

17 typename Field:: Element * A2 = A + N2;

18 typename Field:: Element * A3 = A + M2*lda;

19 typename Field:: Element * A4 = A3 + N2;

20 typename Field:: Element * F = A2 + R1*lda;

21 typename Field:: Element * G = A3 + R1;

22

23 typedef FFLAS:: StrategyParameter :: TwoDAdaptive twoda;

24 typedef FFLAS:: CuttingStrategy :: Recursive rec;

25 // Helper for pfgemm calls

26 typename FFLAS:: ParSeqHelper ::Parallel <FFLAS:: CuttingStrategy ::

Recursive ,FFLAS:: StrategyParameter :: TwoDAdaptive > pWH (std

::max(nt ,1));

27 // helper for pftrsm calls

28 typename FFLAS:: ParSeqHelper ::Parallel <FFLAS:: CuttingStrategy ::

Block ,FFLAS:: StrategyParameter ::Threads > PH (std::max(nt ,1)

);

29

30 SYNCH_GROUP(

31

32 // [ B1 ] <- P1^T A2

33 // [ B2 ]

34 TASK(MODE(READ(P1) CONSTREFERENCE(Fi, P1, A2) READWRITE(A2[0]))

,

35 { papplyP( Fi, FFLAS::FflasLeft , FFLAS:: FflasNoTrans , N-N2, 0,

M2, A2, lda , P1); }

36 );

37 // [ C1 C2 ] <- A3 Q1^T
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38 TASK(MODE(READ(Q1) CONSTREFERENCE(Fi, Q1, A3) READWRITE(A3[0]))

,

39 papplyP( Fi, FFLAS::FflasRight , FFLAS::FflasTrans , M-M2, 0, N2,

A3, lda , Q1););

40

41 CHECK_DEPENDENCIES;

42 // D <- L1^-1 B1

43 TASK(MODE(READ(A[0], R1, PH) CONSTREFERENCE(Fi, PH, A2)

READWRITE(A2[0])),

44 ftrsm( Fi , FFLAS::FflasLeft , FFLAS::FflasLower , FFLAS::

FflasNoTrans , OppDiag , R1, N-N2, Fi.one , A, lda , A2, lda ,

PH));

45

46 // E <- C1 U1^-1

47 TASK(MODE(READ(R1, A[0], PH) CONSTREFERENCE(A3, Fi, M2, R1, PH)

READWRITE(A3[0])),

48 ftrsm(Fi, FFLAS ::FflasRight , FFLAS::FflasUpper , FFLAS::

FflasNoTrans , Diag , M-M2, R1, Fi.one , A, lda , A3, lda , PH)

);

49

50 CHECK_DEPENDENCIES;

51

52 // F <- B2 - M1 D

53 TASK(MODE(READ(A2[0], A[R1*lda], pWH) READWRITE(F[0])

CONSTREFERENCE(A, A2, F, pWH , Fi)),

54 fgemm( Fi , FFLAS:: FflasNoTrans , FFLAS :: FflasNoTrans , M2-R1 , N-

N2, R1, Fi.mOne , A + R1*lda , lda , A2 , lda , Fi.one , F, lda ,

pWH));

55

56 // G <- C2 - E V1

57 TASK(MODE(READ(R1, A[R1], A3[0], pWH) READWRITE(G[0])

CONSTREFERENCE(Fi, A, A3, G, pWH)),

58 fgemm( Fi , FFLAS:: FflasNoTrans , FFLAS :: FflasNoTrans , M-M2, N2-

R1, R1, Fi.mOne , A3, lda , A+R1, lda , Fi.one , G, lda , pWH));

59

60 CHECK_DEPENDENCIES;

61

62 P2 = FFLAS::fflas_new <size_t >(M2-R1);

63 Q2 = FFLAS::fflas_new <size_t >(N-N2);

64

65 // F = P2 [ L2 ] [ U2 V2 ] Q2

66 // [ M2 ]

67 TASK(MODE(CONSTREFERENCE(Fi, P2, Q2, F,/* A4R2 ,*/ R2) WRITE(R2

/*, A4R2 [0]*/) READWRITE(F[0], P2, Q2) ),

68 R2 = pPLUQ( Fi, Diag , M2-R1, N-N2, F, lda , P2, Q2,nt/2)

69 );

70

71 P3 = FFLAS::fflas_new <size_t >(M-M2);

72 Q3 = FFLAS::fflas_new <size_t >(N2-R1);
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73 // G = P3 [ L3 ] [ U3 V3 ] Q3

74 // [ M3 ]

75 TASK(MODE(CONSTREFERENCE(Fi, G, Q3, P3, R3) WRITE(R3 , P3, Q3)

READWRITE(G[0])),

76 R3 = pPLUQ( Fi, Diag , M-M2, N2-R1, G, lda , P3, Q3,nt/2));

77

78 // H <- A4 - ED

79 TASK(MODE(CONSTREFERENCE(Fi, A3, A2, A4, pWH) READ(M2, N2 , R1,

A3[0], A2[0]) READWRITE(A4[0])),

80 fgemm( Fi , FFLAS:: FflasNoTrans , FFLAS :: FflasNoTrans , M-M2, N-N2

, R1 , Fi.mOne , A3, lda , A2 , lda , Fi.one , A4, lda , pWH));

81

82 CHECK_DEPENDENCIES;

83

84 // [ H1 H2 ] <- P3^T H Q2^T

85 // [ H3 H4 ]

86 TASK(MODE(READ(P3, Q2) CONSTREFERENCE(Fi, A4, Q2, P3) READWRITE

(A4[0])),

87 papplyP( Fi, FFLAS::FflasRight , FFLAS::FflasTrans , M-M2, 0, N-

N2, A4, lda , Q2);

88 papplyP( Fi, FFLAS::FflasLeft , FFLAS:: FflasNoTrans , N-N2, 0, M-

M2, A4, lda , P3););

89

90 CHECK_DEPENDENCIES;

91 // [ E1 ] <- P3^T E

92 // [ E2 ]

93 TASK(MODE(READ(P3) CONSTREFERENCE(Fi, P3, A3) READWRITE(A3[0]))

,

94 papplyP( Fi, FFLAS::FflasLeft , FFLAS:: FflasNoTrans , R1, 0, M-M2

, A3 , lda , P3));

95 // [ M11 ] <- P2^T M1

96 // [ M12 ]

97 TASK(MODE(READ(P2) CONSTREFERENCE(P2, A, Fi) READWRITE(A[R1*lda

])),

98 papplyP(Fi , FFLAS::FflasLeft , FFLAS:: FflasNoTrans , R1, 0, M2-R1

, A+R1*lda , lda , P2));

99

100 // [ D1 D2 ] <- D Q2^T

101 TASK(MODE(READ(Q2) CONSTREFERENCE(Fi, Q2, A2) READWRITE(A2[0]))

,

102 papplyP( Fi, FFLAS::FflasRight , FFLAS::FflasTrans , R1, 0, N-N2,

A2, lda , Q2));

103

104 // [ V1 V2 ] <- V1 Q3^T

105 TASK(MODE(READ(Q3) CONSTREFERENCE(Fi, Q3, A) READWRITE(A[R1])),

106 papplyP( Fi, FFLAS::FflasRight , FFLAS::FflasTrans , R1, 0, N2-R1

, A+R1, lda , Q3));

107 // I <- H1 U2^-1

108 // K <- H3 U2^-1
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109 TASK(MODE(READ(R2, F[0], P2) CONSTREFERENCE(Fi, A4, F, PH , R2)

READWRITE(A4[0])),

110 ftrsm( Fi , FFLAS::FflasRight , FFLAS::FflasUpper , FFLAS::

FflasNoTrans , Diag , M-M2, R2, Fi.one , F, lda , A4, lda , PH))

;

111 CHECK_DEPENDENCIES;

112 typename Field:: Element_ptr temp = 0;

113

114 TASK(MODE(READ(A4[0], R3, P2) READWRITE(temp[0], R2)

CONSTREFERENCE(Fi, A4, temp , R2, R3)),

115 temp = FFLAS:: fflas_new (Fi, R3, R2);

116 FFLAS :: fassign (Fi, R3, R2, A4, lda , temp , R2);

117 );

118 CHECK_DEPENDENCIES;

119

120 // J <- L3^-1 I (in a temp)

121 TASK(MODE(READ(R2, R3, G[0]) CONSTREFERENCE(Fi, G, temp , R2, R3

, PH) READWRITE(temp [0])),

122 ftrsm( Fi , FFLAS::FflasLeft , FFLAS::FflasLower , FFLAS::

FflasNoTrans , OppDiag , R3, R2, Fi.one , G, lda , temp , R2, PH

););

123

124 // N <- L3^-1 H2

125 TASK(MODE(READ(R3, R2, G[0]) CONSTREFERENCE(Fi, G, A4, R3 , R2,

PH) READWRITE(A4[R2])),

126 ftrsm(Fi, FFLAS ::FflasLeft , FFLAS::FflasLower , FFLAS::

FflasNoTrans , OppDiag , R3, N-N2-R2, Fi.one , G, lda , A4+R2 ,

lda , PH));

127

128 CHECK_DEPENDENCIES;

129

130 // O <- N - J V2

131 TASK(MODE(READ(R2, F[R2]) CONSTREFERENCE(Fi, R2 , A4, R3, temp ,

pWH) READWRITE(A4[R2], temp [0])),

132 fgemm( Fi , FFLAS:: FflasNoTrans , FFLAS :: FflasNoTrans , R3, N-N2-

R2, R2, Fi.mOne , temp , R2, F+R2 , lda , Fi.one , A4+R2, lda ,

pWH);

133 FFLAS :: fflas_delete (temp);

134 temp =0;

135 );

136

137 typename Field:: Element_ptr R = 0;

138 // R <- H4 - K V2

139 TASK(MODE(READ(R2, R3, M2 , N2, A4[R3*lda], F[R2])

CONSTREFERENCE(Fi, R, F, R2, R3, pWH) READWRITE(R[0])),

140 R = A4 + R2 + R3*lda;

141 fgemm( Fi , FFLAS:: FflasNoTrans , FFLAS :: FflasNoTrans , M-M2-R3, N

-N2-R2, R2, Fi.mOne , A4+R3*lda , lda , F+R2, lda , Fi.one , R,

lda , pWH)
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142 );

143 CHECK_DEPENDENCIES;

144

145 // R <- R - M3 O

146 TASK(MODE(READ(R3, R2, A4[R2], G[R3*lda]) CONSTREFERENCE(Fi, A4

, R, R3, R2, G, pWH) READWRITE(R[0])),

147 fgemm( Fi , FFLAS:: FflasNoTrans , FFLAS :: FflasNoTrans , M-M2-R3, N

-N2-R2, R3, Fi.mOne , G+R3*lda , lda , A4+R2, lda , Fi.one , R,

lda , pWH));

148 CHECK_DEPENDENCIES;

149 // H4 = P4 [ L4 ] [ U4 V4 ] Q4

150 // [ M4 ]

151 TASK(MODE(CONSTREFERENCE(Fi, R4, R, P4, Q4, R2, R3, M2, N2)

READWRITE(R[0]) WRITE(R4 , P4[0], Q4[0])),

152 P4 = FFLAS::fflas_new <size_t >(M-M2-R3);

153 Q4 = FFLAS::fflas_new <size_t >(N-N2-R2);

154 R4 = pPLUQ (Fi, Diag , M-M2-R3, N-N2-R2, R, lda , P4, Q4,nt);

155 );

156 CHECK_DEPENDENCIES;

157

158 // [ E21 M31 0 K1 ] <- P4^T [ E2 M3 0 K ]

159 // [ E22 M32 0 K2 ]

160 TASK(MODE(READ(P4[0], R2, R3, M2) CONSTREFERENCE(Fi, P4, A3, R2

, R3) READWRITE(A3[R3*lda])),

161 papplyP(Fi , FFLAS::FflasLeft , FFLAS:: FflasNoTrans , N2+R2, 0, M-

M2-R3, A3+R3*lda , lda , P4));

162

163 // [ D21 D22 ] [ D2 ]

164 // [ V21 V22 ] <- [ V2 ] Q4^T

165 // [ 0 0 ] [ 0 ]

166 // [ O1 O2 ] [ O ]

167 TASK(MODE(READ(Q4[0], R2, N2, M2, R3) CONSTREFERENCE(Fi, Q4, A2

, R2 , R3) READWRITE(A2[R2])),

168 papplyP( Fi, FFLAS::FflasRight , FFLAS::FflasTrans , M2+R3, 0, N-

N2-R2, A2+R2, lda , Q4));

169

170 // P <- Diag (P1 [ I_R1 ] , P3 [ I_R3 ])

171 // [ P2 ] [ P4 ]

172 WAIT;

173 MathP = FFLAS::fflas_new <size_t >(M);

174 composePermutationsP (MathP , P1, P2 , R1, M2);

175 composePermutationsP (MathP+M2 , P3, P4, R3, M-M2);

176 for (size_t i=M2; i<M; ++i)

177 MathP[i] += M2;

178

179 if (R1+R2 < M2){

180 // P <- P S

181 TASK(MODE(CONSTREFERENCE(R1, R2, R3, R4, MathP , M2) READ(R1,

R2, R3, R4, M2) READWRITE(MathP [0])),
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182 PermApplyS( MathP , 1,1, M2, R1, R2, R3, R4);

183 );

184

185 // A <- S^T A

186 TASK(MODE(READ(R1, R2, R3 , R4) CONSTREFERENCE(Fi, A, R1, R2,

R3, R4) READWRITE(A[0])),

187 pMatrixApplyS( Fi, A, lda , N, M2, R1 , R2, R3, R4));

188 }

189

190 // Q<- Diag ( [ I_R1 ] Q1, [ I_R2 ] Q2 )

191 // [ Q3 ] [ P4 ]

192 MathQ = FFLAS::fflas_new <size_t >(N);

193 TASK(MODE(CONSTREFERENCE(Q1, Q2, Q3, Q4, R1, R2) READ(Q1[0], Q2

[0], Q3[0], Q4[0], R1, R2) READWRITE(MathQ [0])),

194 composePermutationsQ (MathQ , Q1, Q3 , R1, N2);

195 composePermutationsQ (MathQ+N2 , Q2, Q4, R2, N-N2);

196 for (size_t i=N2; i<N; ++i)

197 MathQ[i] += N2;

198 );

199 CHECK_DEPENDENCIES;

200

201 if (R1 < N2){

202 // Q <- T Q

203 TASK(MODE(CONSTREFERENCE(R1, R2, R3, R4) READ(R1, R2 , R3, R4)

READWRITE(MathQ [0])),

204 PermApplyT (MathQ , 1,1,N2, R1, R2, R3, R4););

205

206 // A <- A T^T

207 TASK(MODE(READ(R1, R2, R3 , R4) CONSTREFERENCE(Fi, A, R1, R2,

R3, R4) READWRITE(A[0])),

208 pMatrixApplyT(Fi, A, lda , M, N2, R1, R2, R3, R4));

209 }

210 CHECK_DEPENDENCIES;

211 TASK(MODE(CONSTREFERENCE(MathP , MathQ) READ(MathP[0], MathQ [0])

READWRITE(P[0], Q[0])),

212 MathPerm2LAPACKPerm (Q, MathQ , N);

213 MathPerm2LAPACKPerm (P, MathP , M);

214 );

215 );

216 FFLAS :: fflas_delete( MathQ);

217 FFLAS :: fflas_delete( MathP);

218 FFLAS :: fflas_delete( P1);

219 FFLAS :: fflas_delete( P2);

220 FFLAS :: fflas_delete( P3);

221 FFLAS :: fflas_delete( P4);

222 FFLAS :: fflas_delete( Q1);

223 FFLAS :: fflas_delete( Q2);

224 FFLAS :: fflas_delete( Q3);

225 FFLAS :: fflas_delete( Q4);
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226

227 return R1+R2+R3+R4; �
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D Implementation of the block cutting strategies: blockcuts.inl

Listing 3: ppluq parallel implementation using PALADIn

1

2

3

4

5

6 namespace FFLAS {

7 namespace CuttingStrategy{

8 struct Single {};

9 struct Row{};

10 struct Column {};

11 struct Block {};

12 struct Recursive {};

13 }

14

15 namespace StrategyParameter{

16 struct Fixed {};

17 struct Threads {};

18 struct Grain {};

19 struct TwoD {};

20 struct TwoDAdaptive {};

21 struct ThreeD {};

22 struct ThreeDInPlace {};

23 struct ThreeDAdaptive {};

24 }

25

26 /*! ParSeqHelper for both fgemm and ftrsm

27 */

28 /*! ParSeqHelper for both fgemm and ftrsm

29 */

30 namespace ParSeqHelper {

31 template <typename C=CuttingStrategy ::Block , typename P=

StrategyParameter ::Threads >

32 struct Parallel{

33 typedef C Cut;

34 typedef P Param;

35

36 Parallel(size_t n=MAX_THREADS):_numthreads(n){}

37

38 friend std:: ostream& operator <<(std:: ostream& out ,

const Parallel& p) {

39 return out << ” P a r a l l e l : ” << p.numthreads ();

40 }

41 size_t numthreads () const { return _numthreads; }

42 size_t& set_numthreads(size_t n) { return _numthreads

=n; }
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43 // CuttingStrategy method () const { return _method; }

44 // StrategyParameter strategy () const { return _param

; }

45 private:

46 size_t _numthreads;

47 // CuttingStrategy _method;

48 // StrategyParameter _param;

49

50 };

51 struct Sequential{

52 Sequential () {}

53 template <class Cut ,class Param >

54 Sequential(Parallel <Cut ,Param >& ) {}

55 friend std:: ostream& operator <<(std:: ostream& out ,

const Sequential &) {

56 return out << ” S e q u e n t i a l ”;

57 }

58 size_t numthreads () const { return 1; }

59 };

60 }

61

62

63 template <class Cut=CuttingStrategy ::Block , class Strat=

StrategyParameter ::Threads >

64 inline void BlockCuts(size_t& RBLOCKSIZE , size_t& CBLOCKSIZE ,

65 const size_t m, const size_t n,

66 const size_t numthreads);

67

68 template <>

69 inline void BlockCuts <CuttingStrategy ::Single ,

StrategyParameter ::Threads >( size_t& RBLOCKSIZE ,

70 size_t& CBLOCKSIZE ,

71 const size_t m, const size_t n,

72 const size_t numthreads) {

73 assert(numthreads ==1);

74 RBLOCKSIZE = std::max(m,( size_t)1);

75 CBLOCKSIZE = std::max(n,( size_t)1);

76 }

77

78

79 template <>

80 inline void BlockCuts <CuttingStrategy ::Row ,StrategyParameter

::Fixed >( size_t& RBLOCKSIZE ,

81 size_t& CBLOCKSIZE ,

82 const size_t m, const size_t n,

83 const size_t numthreads) {

84 RBLOCKSIZE = std::max(std::min(m,

__FFLASFFPACK_MINBLOCKCUTS),(size_t)1);

85 CBLOCKSIZE = std::max(n,( size_t)1);
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86 }

87

88

89 template <>

90 inline void BlockCuts <CuttingStrategy ::Row ,StrategyParameter

::Grain >( size_t& RBLOCKSIZE ,

91 size_t& CBLOCKSIZE ,

92 const size_t m, const size_t n,

93 const size_t grainsize) {

94 RBLOCKSIZE = std::max(std::min(m,grainsize),(size_t)1);

95 CBLOCKSIZE = std::max(n,( size_t)1);

96 }

97

98 template <>

99 inline void BlockCuts <CuttingStrategy ::Block ,

StrategyParameter ::Grain >( size_t& RBLOCKSIZE ,

100 size_t& CBLOCKSIZE ,

101 const size_t m, const size_t n,

102 const size_t grainsize) {

103 RBLOCKSIZE = std::max(std::min(m,grainsize),(size_t)1);

104 CBLOCKSIZE = std::max(std::min(n,grainsize),(size_t)1);

105 }

106

107

108 template <>

109 inline void BlockCuts <CuttingStrategy ::Column ,

StrategyParameter ::Fixed >( size_t& RBLOCKSIZE ,

110 size_t& CBLOCKSIZE ,

111 const size_t m, const size_t n,

112 const size_t numthreads) {

113 RBLOCKSIZE = std::max(m,( size_t)1);

114 CBLOCKSIZE = std::max(std::min(n,

__FFLASFFPACK_MINBLOCKCUTS),(size_t)1);

115 }

116

117

118 template <>

119 inline void BlockCuts <CuttingStrategy ::Column ,

StrategyParameter ::Grain >( size_t& RBLOCKSIZE ,

120 size_t& CBLOCKSIZE ,

121 const size_t m, const size_t n,

122 const size_t grainsize) {

123 RBLOCKSIZE = std::max(m,( size_t)1);

124 CBLOCKSIZE = std::max(std::min(n,grainsize),(size_t)1);

125 }

126

127

128 template <>
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129 inline void BlockCuts <CuttingStrategy ::Block ,

StrategyParameter ::Fixed >( size_t& RBLOCKSIZE ,

130 size_t& CBLOCKSIZE ,

131 const size_t m, const size_t n,

132 const size_t numthreads) {

133 RBLOCKSIZE = std::max(std::min(m,

__FFLASFFPACK_MINBLOCKCUTS),(size_t)1);

134 CBLOCKSIZE = std::max(std::min(n,

__FFLASFFPACK_MINBLOCKCUTS),(size_t)1);

135 }

136

137 template <>

138 inline void BlockCuts <CuttingStrategy ::Row ,StrategyParameter

::Threads >( size_t& RBLOCKSIZE ,

139 size_t& CBLOCKSIZE ,

140 const size_t m, const size_t n,

141 const size_t numthreads) {

142 RBLOCKSIZE = std::max(m/numthreads ,( size_t)1);

143 CBLOCKSIZE = std::max(n,( size_t)1);

144 }

145

146

147 template <>

148 inline void BlockCuts <CuttingStrategy ::Column ,

StrategyParameter ::Threads >( size_t& RBLOCKSIZE ,

149 size_t& CBLOCKSIZE ,

150 const size_t m, const size_t n

,

151 const size_t numthreads) {

152 RBLOCKSIZE = std::max(m,( size_t)1);

153 CBLOCKSIZE = std::max(n/numthreads ,( size_t)1);

154 }

155

156 template <>

157 inline void BlockCuts <CuttingStrategy ::Block ,

StrategyParameter ::Threads >( size_t& RBLOCKSIZE ,

158 size_t& CBLOCKSIZE ,

159 const size_t m, const size_t n,

160 const size_t numthreads) {

161 if (numthreads <65) {

162 const short maxtc [64] =

163 {1,2,3,2,5,3,7,4,3,5,11,4,13,7,5,4,17,6,19,5,7,11,

164 23,6,5,13,9,7,29,6,31,8,11,17,7,6,37,19,13,8,41,

165 7,43,11,9,23,47,8,7,10,17,13,53,9,11,8,19,29,59,

166 10,61,31,9,8};

167 const short maxtr [64] =

168 {1,1,1,2,1,2,1,2,3,2,1,3,1,2,3,4,1,3,1,4,3,2,1,4,5,

169 2,3,4,1,5,1,4,3,2,5,6,1,2,3,5,1,6,1,4,5,2,1,6,7,5,

170 3,4,1,6,5,7,3,2,1,6,1,2,7,8};
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171

172 RBLOCKSIZE=std::max(m/( size_t)maxtr[numthreads -1],(

size_t)1);

173 CBLOCKSIZE=std::max(n/( size_t)maxtc[numthreads -1],(

size_t)1);

174 } else {

175 const size_t maxt = (size_t)sqrt(( double)numthreads);

176 size_t maxtr=maxt ,maxtc=maxt;

177 for(size_t i=maxt; i>=1; --i) {

178 size_t j=maxt;

179 size_t newpr = i*j;

180 for( ; newpr < numthreads; ++j, newpr+=i ) {}

181 if (newpr == numthreads) {

182 maxtc = j;

183 maxtr = i;

184 break;

185 }

186 }

187 RBLOCKSIZE=std::max(m/maxtr ,( size_t)1);

188 CBLOCKSIZE=std::max(n/maxtc ,( size_t)1);

189 }

190 }

191

192

193 template <class Cut=CuttingStrategy ::Block , class Param=

StrategyParameter ::Threads >

194 inline void BlockCuts(size_t& rowBlockSize , size_t&

colBlockSize ,

195 size_t& lastRBS , size_t& lastCBS ,

196 size_t& changeRBS , size_t& changeCBS ,

197 size_t& numRowBlock , size_t& numColBlock ,

198 size_t m, size_t n,

199 const size_t numthreads) {

200 BlockCuts <Cut ,Param >( rowBlockSize , colBlockSize , m, n,

numthreads);

201 numRowBlock = m/rowBlockSize;

202 numColBlock = n/colBlockSize;

203

204 changeRBS = m-rowBlockSize*numRowBlock;

205 lastRBS = rowBlockSize;

206 if (changeRBS) ++ rowBlockSize;

207

208 changeCBS = n-colBlockSize*numColBlock;

209 lastCBS = colBlockSize;

210 if (changeCBS) ++ colBlockSize;

211

212

213 }

214
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215

216 }

217

218

219

220 namespace FFLAS {

221 template <typename blocksize_t=size_t , typename Cut=

CuttingStrategy ::Block , typename Param=StrategyParameter

::Threads >

222 struct ForStrategy1D {

223 ForStrategy1D(const blocksize_t n, const ParSeqHelper ::

Parallel <Cut ,Param > H) {

224 build(n,H);

225 }

226 ForStrategy1D(const blocksize_t b, const blocksize_t e,

const ParSeqHelper ::Parallel <Cut ,Param > H) {

227 build(e-b,H);

228 }

229

230 void build(const blocksize_t n, const ParSeqHelper ::

Parallel <Cut ,Param > H) {

231

232 if ( Protected ::AreEqual <Param , StrategyParameter ::

Threads >:: value ) {

233 numBlock = std::max(( blocksize_t)(H.numthreads ())

,(blocksize_t)1);

234 } else if ( Protected ::AreEqual <Param ,

StrategyParameter ::Grain >:: value ) {

235 numBlock = std::max(n/ (blocksize_t)(H.numthreads

()), (blocksize_t)1);

236 } else {

237 numBlock = std::max(n/( blocksize_t)(

__FFLASFFPACK_MINBLOCKCUTS),(blocksize_t)1);

238 }

239 firstBlockSize = n/numBlock;

240 if (firstBlockSize <1) {

241 firstBlockSize = (blocksize_t)1;

242 numBlock = n;

243 }

244 changeBS = n - numBlock*firstBlockSize;

245 lastBlockSize = firstBlockSize;

246 if (changeBS) ++ firstBlockSize;

247

248 }

249

250 blocksize_t initialize () {

251 ibeg = 0; iend = firstBlockSize;

252

253 return current = 0;



148 References

254 }

255 bool isTerminated () const { return current == numBlock; }

256

257 blocksize_t begin () const { return ibeg; }

258 blocksize_t end() const { return iend; }

259

260 blocksize_t blocksize () const { return firstBlockSize; }

261 blocksize_t numblocks () const { return numBlock; }

262

263

264 blocksize_t operator ++() {

265 ibeg = iend;

266 iend += (++ current <changeBS?firstBlockSize:

lastBlockSize);

267

268 return current;

269 }

270

271 protected:

272 blocksize_t ibeg , iend;

273

274 blocksize_t current;

275 blocksize_t firstBlockSize ,lastBlockSize;

276 blocksize_t changeBS;

277 blocksize_t numBlock;

278

279 };

280

281 template <typename blocksize_t=size_t , typename Cut=

CuttingStrategy ::Block , typename Param=StrategyParameter

::Threads >

282 struct ForStrategy2D {

283 ForStrategy2D(const blocksize_t m, const blocksize_t n,

const ParSeqHelper ::Parallel <Cut ,Param > H)

284 {

285 BlockCuts <Cut ,Param >( rowBlockSize , colBlockSize ,

286 lastRBS , lastCBS ,

287 changeRBS , changeCBS ,

288 numRowBlock , numColBlock ,

289 m, n,

290 H.numthreads ());

291

292 BLOCKS = numRowBlock * numColBlock;

293 }

294

295

296 blocksize_t initialize () {

297 _ibeg = 0; _iend = rowBlockSize;

298 _jbeg = 0; _jend = colBlockSize;
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299 return current = 0;

300 }

301 bool isTerminated () const { return current == BLOCKS; }

302

303 blocksize_t ibegin () const { return _ibeg; }

304 blocksize_t jbegin () const { return _jbeg; }

305 blocksize_t iend() const { return _iend; }

306 blocksize_t jend() const { return _jend; }

307

308

309 blocksize_t operator ++() {

310 ++ current;

311 blocksize_t icurr = current/numColBlock;

312 blocksize_t jcurr = current%numColBlock;

313 if (jcurr) {

314 _jbeg = _jend;

315 _jend += (jcurr <changeCBS?colBlockSize:lastCBS);

316 } else {

317 _ibeg = _iend;

318 _iend += (icurr <changeRBS?rowBlockSize:lastRBS);

319 _jbeg = 0;

320 _jend = colBlockSize;

321 }

322 return current;

323 }

324

325 friend std:: ostream& operator <<(std:: ostream& out , const

ForStrategy2D& FS2D) {

326 out << ”RBLOCKSIZE : ”<<FS2D.rowBlockSize <<std::endl;

327 out << ”CBLOCKSIZE : ”<<FS2D.colBlockSize <<std::endl;

328 out << ”changeRBS : ”<<FS2D.changeRBS <<std::endl;

329 out << ”changeCBS : ”<<FS2D.changeCBS <<std::endl;

330 out << ”lastRBS : ”<<FS2D.lastRBS <<std::endl;

331 out << ”lastCBS : ”<<FS2D.lastCBS <<std::endl;

332 out << ”NrowBlocks : ”<<FS2D.numRowBlock <<std::endl;

333 out << ”Nco lB lock s : ”<<FS2D.numColBlock <<std::endl;

334 out << ” c u r r : ” << FS2D.current << ’ / ’ << FS2D.BLOCKS

<< std::endl;

335 out << ” i b e g : ” << FS2D._ibeg << std::endl;

336 out << ” i e n d : ” << FS2D._iend << std::endl;

337 out << ” j b e g : ” << FS2D._jbeg << std::endl;

338 out << ” j e n d : ” << FS2D._jend << std::endl;

339 return out;

340 }

341

342 blocksize_t rowblocksize () const { return rowBlockSize; }

343 blocksize_t rownumblocks () const { return numRowBlock; }

344 blocksize_t colblocksize () const { return colBlockSize; }

345 blocksize_t colnumblocks () const { return numColBlock; }
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346

347

348 protected:

349 blocksize_t _ibeg , _iend , _jbeg , _jend;

350 blocksize_t rowBlockSize , colBlockSize;

351

352 blocksize_t current;

353 blocksize_t lastRBS; blocksize_t lastCBS;

354 blocksize_t changeRBS; blocksize_t changeCBS;

355 blocksize_t numRowBlock; blocksize_t numColBlock;

356 blocksize_t BLOCKS;

357

358 };

359

360 } �



Abstract

Adaptive parallel generic exact Linear Algebra

Triangular matrix decompositions are fundamental building blocks in computational
linear algebra. They are used to solve linear systems, compute the rank, the determi-
nant, the null-space or the row and column rank profiles of a matrix. The project of my
PhD thesis is to develop high performance shared memory parallel implementations of
exact Gaussian elimination.

In order to abstract the computational code from the parallel programming environ-
ment, we developed a domain specific language, PALADIn: Parallel Algebraic Linear
Algebra Dedicated Interface, that is based on C/C + + macros. This domain specific
language allows the user to write C + + code and benefit from sequential and parallel
executions on shared memory architectures using the standard OpenMP, TBB and
Kaapi parallel runtime systems and thus providing data and task parallelism.

Several aspects of parallel exact linear algebra were studied. We incrementally build
efficient parallel kernels, for matrix multiplication, triangular system solving, on top
of which several variants of PLUQ decomposition algorithm are built. We study the
parallelization of these kernels using several algorithmic variants: either iterative or
recursive and using different splitting strategies.

We propose a recursive Gaussian elimination that can compute simultaneously the
row and column rank profiles of a matrix as well as those of all of its leading sub-
matrices, in the same time as state of the art Gaussian elimination algorithms. We also
study the conditions making a Gaussian elimination algorithm reveal this information
by defining a new matrix invariant, the rank profile matrix.
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