Adaptive and Generic Parallel Exact Linear
Algebra

Ziad SULTAN

Université Grenoble Aples
PhD Defense

June 17, 2016

Mme Laura Grigori (Referee) M. Pascal Giorgi (Examiner)
M. Arne Stojohann (Referee) M. Denis Trystram (Examiner)

M. Jean-Guillaume Dumas (Director) M. Clément Pernet (Co-Director)

‘ &,z'u&,—

1/44

Motivation

PhD research context

@ Parallel computing

Symmetric Multi-Processors

2/44

Motivation

PhD research context

@ Parallel computing

Symmetric Multi-Processors

2/44

Motivation

PhD research context

@ Parallel computing

Symmetric Multi-Processors
@ Effective exact parallel linear alegbra

e Solve target problems : dedicated codes
o Widely distributed software : general purpose codes
(SAGE, Macauley?2)

2/44

Motivation

PhD research context

@ Parallel computing

Symmetric Multi-Processors
@ Effective exact parallel linear alegbra

e Solve target problems : dedicated codes
o Widely distributed software : general purpose codes
(SAGE, Macauley?2)

@ Design a software for parallel exact linear algebra

2/44

Motivation

Exact linear algebra

Exact computation

@ Computation in computer algebra
— computing exactly : over Z, Q, Z[x]

@ In practice, often boils down to computation over prime fields Z/pZ

Motivation

Exact linear algebra

Exact computation

@ Computation in computer algebra
— computing exactly : over Z, Q, Z[x]

@ In practice, often boils down to computation over prime fields Z/pZ

Exact linear algebra applications
@ Breaking Discrete Log Pb. in quasi-polynomial time [Barbulescu & al.14]
@ Building modular form databases to test the BSD conjecture [Stein 12]
@ Exact mixed-integer programming [Steffy et al. 12]

@ Formal verification of Hales proof of Kepler conjecture [Hales 05]

Motivation

Use case example of an application

HPAC on-going Challenge : D.L.P. cryptanalysis over curves over F(2%).

Problem dimensions

@ Sparse matrix with 126M var. / 130M eq.

@ Modulo a prime humber on 114 bits :
20769187434139310549529495610151239

@ Matrix has 520M non-zero

Motivation

Use case example of an application

HPAC on-going Challenge : D.L.P. cryptanalysis over curves over F(2%).

Problem dimensions

@ Sparse matrix with 126M var. / 130M eq.

@ Modulo a prime humber on 114 bits :
20769187434139310549529495610151239

@ Matrix has 520M non-zero

Main steps of block Wiedemann

@ First filtering (structured Gauss)
— nRows : 8.7M, nCols : 8.7M.
— Matrix has 810M non-zero with blocs 32 x 16

@ MinPoly coefficients 16 x 16, degree 545966
— needs efficient PLUQ factorization !

@ Evaluation uses M.M. : (n x 32) times (32 x 32) — nis large !

Motivation

Dense exact linear algebra

Dense linear algebra : A key building block for :
@ dense problems by nature (Hermite-Padé approx, ...)
@ Sparse problems degenerate to dense :
@ Sparse Direct :
Switch to dense after fill-in

@ Sparse lterative :
Induce dense elimination on blocks of iterated vectors

(block-Wiedemann, block Lanczos, ...)

Motivation

Gaussian elimination in exact dense algebra

Gaussian elimination is a building block in dense linear algebra

Matrix factorization (LU decomposition)
@ Solving linear systems
@ Computing determinant
@ Rank.

Linear dependencies (Echelon structure)

@ Characteristic Polynomial : Finding Krylov basis [Keller Gehrig 85]

@ Grobner basis computation : F4 algorithm [FGB]

Motivation

Design of parallel dense exact linear algebra

numerical exact

Sequential BLAS, LAPACK FFLAS-FFPACK
Parallel pBLAS, ScaLAPACK

Motivation

Design of parallel dense exact linear algebra

numerical exact

Sequential BLAS, LAPACK FFLAS-FFPACK
Parallel pBLAS, ScaLAPACK this work

Motivation

Design of parallel dense exact linear algebra

numerical exact
Sequential BLAS, LAPACK FFLAS-FFPACK
Parallel pBLAS, ScaLAPACK this work

Parallelizing dense linear algebra

@ Specificities of exact linear algebra

@ Recursive algorithms
@ Rank deficiencies
@ Similarities with numerical linear algebra
Parallel blocking is constrained by pivoting :

Numerical : ensuring numerical stability
Exact : recovering rank profiles and echelon structure

Motivation

Outline

o Pivoting and rank profiles
e Generic parallel Linear Algebra

e Parallel exact Gaussian elimination

8/44

Pivoting and rank profiles

Outline

o Pivoting and rank profiles

9/44

Pivoting and rank profiles
©00000

Linear dependencies

Linear dependencies and row/column rank profiles

Definition (Row Rank Profile : RowRP)
Given A € K"™*",r = rank(A).
informally : first r linearly independent rows

formally : lexico-minimal sub-sequence of (1, . ..,m) of r indices of linearly
independant rows.

Example
1

— o O O

= @ =
S = O =
S O O O

10/44

Pivoting and rank profiles
©00000

Linear dependencies

Linear dependencies and row/column rank profiles

Definition (Row Rank Profile : RowRP)
Given A € K"™*",r = rank(A).
informally : first r linearly independent rows

formally : lexico-minimal sub-sequence of (1, . ..,m) of r indices of linearly
independant rows.

Example

1 Rank = 3

RowRP = {1,2,4}

=

S O -
S = O =
Soe o

10/44

Pivoting and rank profiles
©00000

Linear dependencies

Linear dependencies and row/column rank profiles

Definition (Column Rank Profile : ColRP)
Given A € K™, r = rank(A).
informally : first r linearly independent columns
formally : lexico-minimal sub-sequence of (1, ...,m) of r indices of linearly
independant columns.
Example
11 0 0 Rank = 3
1 0 0 0 RowRP = {1,2,4}
010 0 ColRP = {1,2,3}
0 0 1 0

10/44

Pivoting and rank profiles
©00000

Linear dependencies

Linear dependencies and row/column rank profiles

Definition (Column Rank Profile : ColRP)
Given A € K™, r = rank(A).
informally : first r linearly independent columns
formally : lexico-minimal sub-sequence of (1, ...,m) of r indices of linearly
independant columns.
Example
11 0 0 Rank = 3
1 0 0 0 RowRP = {1,2,4}
010 0 ColRP = {1,2,3}
0 0 1 0

Generic RowRP/ColRP : if it equals {1,...,r}.

10/44

Pivoting and rank profiles
©00000

Linear dependencies

Linear dependencies and row/column rank profiles

Definition (Column Rank Profile : ColRP)
Given A € K™, r = rank(A).
informally : first r linearly independent columns
formally : lexico-minimal sub-sequence of (1, ...,m) of r indices of linearly
independant columns.
Example
11 0 0 Rank = 3
1 0 0 0 RowRP = {1,2,4}
010 0 ColRP ={1,2,3} — Generic ColRP,
0 0 1 0

Generic RowRP/ColRP : if it equals {1,...,r}.

10/44

Pivoting and rank profiles
0®0000

Linear dependencies

Computing rank profiles

Via Gaussian elimination revealing row echelon forms

[Ibarra, Moran and Hui 82] NENIEI
[Keller-Gehrig 85] E B
[Storjohann 00] e
[Jeannerod, Pernet and Storjohann 13] = -] S

11/44

Pivoting and rank profiles
0®0000

Linear dependencies

Computing rank profiles

Via Gaussian elimination revealing row echelon forms

[lbarra, Moran and Hui 82] NENIEI
[Keller-Gehrig 85] B
[Storjohann 00] e
[Jeannerod, Pernet and Storjohann 13] = -] S

Lessons learned (or what we thought was necessary) :

@ treat rows in order
@ exhaust all columns before next row .B
@ slab block splitting (rec or iter) Ll h

=-similar to partial pivoting

11/44

Pivoting and rank profiles
008000

Linear dependencies

Motivation

Need more flexible blocking

Slab blocking | E—
@ can lead to inefficient memory access patterns —

Slab iterative Slab recursive

@ is harder to parallelize .

Tile blocking instead ? 1l ‘

Tile iterative Tile recursive
o

12/44

Pivoting and rank profiles
008000

Linear dependencies

Motivation

Need more flexible blocking

Slab blocking | E—
@ can lead to inefficient memory access patterns —

Slab iterative Slab recursive

@ is harder to parallelize |

Tile blocking instead ? 1l ‘

Tile iterative Tile recursive
v

Gathering linear independence invariants
Two ways to look at a matrix (looking left or right) :
@ Row rank profile, column echelon form
@ Column rank profile, row echelon form
Unique invariant ?

12/44

Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F"™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which

every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

13/44

Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which
every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

Example

N = O O
N W N =
A D OO
N o oo
oS = O O
(=N =R
(=N =N}
- O O

13/44

Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which
every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

Example

N = O O
W W D =
A D OO
N o oo
oS = O O
(=Nl
(=N =N}
- O O

13/44

Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which
every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

Example

N = O O
W W N =
A D OO
N o oo
S = O O
S o o=
(=N =N}
- O O

13/44

Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which
every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

Example

N = O O
N W N =
AN OO
N o oo
oS = O O
(=Nl
(=N e}
- O O

13/44

Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which
every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

Example

N = O O
N W N =
N0 O O
N O OO
oS = O O
=2 e @ =
ENENCES)
— o O O

13/44

Pivoting and rank profiles
000080

Linear dependencies

Properties of the rank profile matrix

Particular cases

@ Ainvertible & R, is a permutation
@ A is square with generic rank profile < R4 = I,

14/44

Pivoting and rank profiles
000080

Linear dependencies

Properties of the rank profile matrix

Particular cases

@ Ainvertible & R, is a permutation
@ A is square with generic rank profile < R4 = I,

Properties

@ R, encodes the RowRP(A) and the ColRP(A)
@ All leading rank profiles

@ R4 is unique = new normal form.

14/44

Pivoting and rank profiles
00000®

Linear dependencies

When does a PLUQ decomposition reveal the rank
profile matrix ?

Focus on the pivoting strategy :
@ Pivot search :
e finding a pivot with minimal coordinates

@ Permutation to bring the pivot to the main diagonal

15/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search
Pivot’s (i,j) position minimizes some pre-order :

Row order : any non-zero on the first non-zero row

16/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search
Pivot’s (i,j) position minimizes some pre-order :

Row/Col order : any non-zero on the first non-zero row/col

16/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search
Pivot’s (i,j) position minimizes some pre-order :
Row/Col order : any non-zero on the first non-zero row/col

Lex order : first non-zero on the first non-zero row

16/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search
Pivot’s (i,j) position minimizes some pre-order :
Row/Col order : any non-zero on the first non-zero row/col

Lex/RevlLex order : first non-zero on the first non-zero row/col

16/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search

Pivot’s (i,j) position minimizes some pre-order :

Row/Col order : any non-zero on the first non-zero row/col
Lex/RevlLex order : first non-zero on the first non-zero row/col

Product order : first non-zero in the (i, j) leading sub-matrix

A 1
1
@

®

16/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search Permutation
Pivot’s (i,;) position minimizes some pre-order : @ Transpositions

Row/Col order : any non-zero on the first non-zero row/col

Lex/RevlLex order : first non-zero on the first non-zero row/col

Product order : first non-zero in the (i, j) leading sub-matrix

Transposition

16/44

Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search Permutation
Pivot’s (i,;) position minimizes some pre-order : @ Transpositions
Row/Col order : any non-zero on the first non-zero row/col @ Cyclic Rotations

Lex/RevlLex order : first non-zero on the first non-zero row/col

Product order : first non-zero in the (i, j) leading sub-matrix

Cyclic
rotation

16/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP Instance

Row order
Col. order

Lexico.

Rev. lex.

Product

17/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP Instance

Row order | Transposition Transposition v [IMH82] [JPS13]
Col. order

Lexico.

Rev. lex.

Product

17/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP Instance
Row order | Transposition Transposition v [IMH82] [JPS13]
Col. order | Transposition Transposition v [KG85] [JPS13]
Lexico.

Rev. lex.

Product

17/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP Instance
Row order | Transposition Transposition v [IMH82] [JPS13]
Col. order | Transposition Transposition v [KG85] [JPS13]
Lexico. Transposition Transposition v [Sto00]
Rev. lex. Transposition ~ Transposition v [Sto00]
Product

17/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP R4 Instance
Row order | Transposition Transposition v [IMH82] [JPS13]
Col. order | Transposition Transposition v [KG85] [JPS13]
Lexico. Transposition Transposition v [Sto00]
Rev. lex. Transposition Transposition v [Sto00]
Product Rotation Rotation v v v [DPS13]

P,L,U,Q «+ PLUQ(A) and P [/] Q = Ra.

17/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP R4 Instance
Row order | Transposition Transposition v [IMH82] [JPS13]
Col. order | Transposition Transposition v [KG85] [JPS13]
Lexico. Transposition Transposition v [Sto00]
Rev. lex. Transposition Transposition v [Sto00]
Product Rotation Transposition v [DPS15]
Product Transposition Rotation v [DPS15]
Product Rotation Rotation v v v [DPS13]

P,L,U,Q «+ PLUQ(A) and P [/] Q = Ra.

17/44

Pivoting and rank profiles
oce

Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP R4 Instance
Row order | Transposition Transposition v [IMH82] [JPS13]
Col. order | Transposition Transposition v [KG85] [JPS13]
Lexico. Transposition Transposition v [Sto00]
Lexico. Transposition Rotation v v v [DPS15]
Lexico. Rotation Rotation v v v [DPS15]
Rev. lex. Transposition Transposition v [Sto00]
Rev. lex. Rotation Transposition v v v [DPS15]
Rev. lex. Rotation Rotation v v v [DPS15]
Product Rotation Transposition v [DPS15]
Product Transposition Rotation v [DPS15]
Product Rotation Rotation v v v [DPS13]

P,L,U,Q «+ PLUQ(A) and P [/] Q = Ra.

17/44

Pivoting and rank profiles
®00

Echelon forms

Echelon forms

for P L Q

(] sort E

C=PLP, QUQ=E
C = P[LP O ur] E=[o2)..]0

18/44

Pivoting and rank profiles
®00

Echelon forms

Echelon forms

for P L Q

=

(o] sort E

C=PLP, QUQ=E
C=P[LPOuxun], F=PQF, E= [%Qf}flm] 0
Bonus : Generalized Bruhat CFE.

18/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

2 x 2 block splitting

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

Recursive call

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

TRSM : B + BU™!

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

TRSM: B+ L™'B

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

fgenm:C+ C—AXB

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

fgenm:C+ C—AXB

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

fgemm:C++ C—-AXB

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

2 independent recursive calls (product order search)

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

TRSM : B + BU™!

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

TRSM: B+ L™'B

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

fgenm:C+ C—AXB

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

fgenm:C+ C—AXB

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

fgenm:C+ C—AXB

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

Recursive call

19/44

Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

Puzzle game (block permutations)

19/44

Pivoting and rank profiles
ooe

Echelon forms

New PLUQ algorithm

Effective Gfops

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

Pure Recursive (6) —6—

5
4
3
2
! Lo
. e o - o——9
0 100 200 300 400 500 600 700

20/44

Pivoting and rank profiles
ooe

Echelon forms

New PLUQ algorithm

Effective Gfops

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

Crm‘n Lexico.‘order(S) %
7 L Left-looking Prod. order(4) —=—
Pure Recursive (6) —6—

20/44

Pivoting and rank profiles
ooe

Echelon forms

New PLUQ algorithm

Effective Gfops

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

8 T T T
Rec->Crout Lexico.(1) —+—
7 L Rec->Left-look. Prod.(2) o
Crout Lexico. order(3) —x— NM“
Left-looking Prod. order(4) —5— It %
6r Pure Recursive (6) —— Y
5 S %"”
4 o
AN A DY
3 N il
2 /f{wfg
1 e
oo o o—e—a8 8 5 ¢

=5

20/44

Pivoting and rank profiles
ooe

Echelon forms

New PLUQ algorithm

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R 4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

8 35

Rec-‘>Crout Léxico.(1) == Rec—>brout Lexic‘o.m —0;
Rec->Left-look. Prod.(2) i Rec->Left-look. Prod.(2)
Crout Lexico. order(3) —x— wﬂv' 30 - Crout Lexico. order(3) —%—
Left-looking Prod. order(4) —H5— wa‘ Left-looking Prod. order(4) —5— W Wm
6 Pure Recursive (6) —6— Yl 25 L Pure Recursive (6) —&— A |
o Wal 2 |
2 5 | o
£ N | 2 i
6] hY G 20 "
2 4 "y & o g ww»qu !
= N 2
2 7 = /
§ s M MWW E 15 /{v
] MNQ i} »
2 /ﬂ 10 #
1 o 5 /
Oﬁif,’;ﬁmM —e—g— 8 8¢ NI . i o

0 100 200 300 400 500 600 700 0 1000 2000 3000 4000 5000 6000

n n

Execution on 1 core (3.5GHz) — effective 31 Gfops (AVX2 + sub-cubic complexity)

20/44

Generic parallel LinAlg

Outline

e Generic parallel Linear Algebra

21/44

Generic parallel LinAlg
0000000000

Parallelization of FFLAS-FFPACK library

FFLAS-FFPACK library

FFLAS-FFPACK features

@ High performance implementation of basic linear algebra routines over
word size prime fields

@ Exact alternative to the numerical BLAS library
@ Exact triangularization, Sys. solving, Det, Inv., CharPoly

Parallel FFLAS-FFPACK
Explore :
@ several algorithms and variants

@ parallel runtimes and languages :

@ unified parallel language harnessing different runtimes (OMP, TBB,
xKaapi, ...)
@ Abstraction for the user

@ data parallelism vs task parallelism

22/44

Generic parallel LinAlg
0O@00000000

Parallelization of FFLAS-FFPACK library

Parallel computation constraints : exact and numeric

In state of the art numerical libraries :

@ Often non singular matrices with fixed static cutting.
— easier to manually map and schedule tasks or threads.

@ Use of iterative algorithms — often one or two levels of parallelism.

23/44

Generic parallel LinAlg
0O@00000000

Parallelization of FFLAS-FFPACK library

Parallel computation constraints : exact and numeric

In state of the art numerical libraries :

@ Often non singular matrices with fixed static cutting.
— easier to manually map and schedule tasks or threads.

@ Use of iterative algorithms — often one or two levels of parallelism.

Our experience in exact linear algebra :

@ Sub-cubic complexity : O(n”) [Strassen]
— Coarser grain cutting
— Recursive algorithms.
— Parallel runtime system that implements well recursive tasks.

@ Rank deficiencies — tasks of unbalanced workloads.
@ Recursion and code composition — multiple levels of parallelism.

23/44

Generic parallel LinAlg
0O@00000000

Parallelization of FFLAS-FFPACK library

Parallel computation constraints : exact and numeric

In state of the art numerical libraries :

@ Often non singular matrices with fixed static cutting.
— easier to manually map and schedule tasks or threads.

@ Use of iterative algorithms — often one or two levels of parallelism.

Our experience in exact linear algebra :

@ Sub-cubic complexity : O(n”) [Strassen]
— Coarser grain cutting
— Recursive algorithms.
— Parallel runtime system that implements well recursive tasks.

@ Rank deficiencies — tasks of unbalanced workloads.
@ Recursion and code composition — multiple levels of parallelism.

— Need for a high level parallel programming environments

23/44

Generic parallel LinAlg
[e]e] le]elele]ele]e]

Parallelization of FFLAS-FFPACK library

Requirements of high level parallel programming
environments

Features required

Portability, Performance and scalability. But more precisely :
@ Runtime system with good performance for recursive tasks.
@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.

24/44

Generic parallel LinAlg
[e]e] le]elele]ele]e]

Parallelization of FFLAS-FFPACK library

Requirements of high level parallel programming
environments

Features required

Portability, Performance and scalability. But more precisely :
@ Runtime system with good performance for recursive tasks.
@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.

No parallel environment offers all these features
— Need to design a code independently from the runtime system
— Using runtime systems as a plugin

24/44

Generic parallel LinAlg
0O00@000000

Parallelization of FFLAS-FFPACK library

Runtime systems to be supported

OpenMP3.x and 4.0 supported directives : (using libgomp)

@ Data sharing attributes :

@ OMPS3 shared : data visible and accessible by all threads
@ OMPS3 firstprivate :local copy of original value
@ OMP4 depend : set data dependencies

@ Synchronization clauses : #pragma omp taskwait

xKaapi : via the libkomp [BDG12] library :
@ OpenMP directives — xKaapi tasks.
@ Re-implem. of task handling and management.
@ Better recursive tasks execution.

TBB : designed for nested and recursive parallelism

@ parallel_for

@ tbb::task_group, wait (), run() using C++11 lambda functions

v
25/44

Generic parallel LinAlg
0O000@00000

Parallelization of FFLAS-FFPACK library

PALADIn

Parallel Algebraic Linear Algebra Dedicated Interface

Mainly macro-based keywords
@ No function call runtime overhead when using macros.
@ No important modifications to be done to original program.
@ Macros can be used also for C-based libraries.

Complementary C++ template functions

@ Implement the different cutting strategies.

@ Store the iterators

26/44

Generic parallel LinAlg
0O0000e0000

Parallelization of FFLAS-FFPACK library

PALADIn description : data parallelism

Data parallelism : SPMD programming

@ Parallel region : chunks are dispatched on multiple proc.

@ Supported : PARFOR1D, PARFOR2D, PARFORBLOCK1D,
PARFORBLOCK2D.

Example : Loop Summing in C++ Example : Loop Summing in OpenMP

1
2
3

#pragma omp parallel for
for(size_-t i=0; i<n; ++i){
TLi] = T1[i] + T2[i];

for(size_t i=0; i<n; ++i){
TLi] = TI[i] + T2[i];
}

AON =

Example : Loop Summing in PALADIn

1
2
3

PARFOR1D(i, n, SPLITTER() ,
Tli] = TI[i]+T2[i];

3

— The SPLITTER keyword sets the cutting strategy.
27/44

Generic parallel LinAlg
0O00000e000

Parallelization of FFLAS-FFPACK library

lterative Cutting Strategies 1D

Splitting over one dimension

© 6 6 ¢

SPLITTER (p, THREADS) : p partitions = #tasks

SPLITTER (p, GRAIN) : BlockSize : BS = p

SPLITTER (p, FIXED) : BlockSize : BS = 256

SPLITTER (p) : p tasks with default strategy (THREADS)
SPLITTER () : default strategy with p = # available processors

Code example : Matrix add in parallel

ONO O~ WN =

void pfadd(const Field & F,const Element xA,const Element B, Element *C,
PARFORBLOCK1D(it , n, SPLITTER(32, THREADS) ,

FFLAS::fadd (F, it.end()—it.begin(), n,
A+it.begin()*n, n,
B+it.begin()*n, n,
C+it.begin()*n, n);

size_t n){

28/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

@ SPLITTER (p, ROW, THREADS) : p row blocks
@ SPLITTER (p, ROW, FIXED) :row BS = 256
@ SPLITTER (p, ROW, GRAIN): rowBS=p

29/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,

ROW, THREADS) : p row blocks
ROW, FIXED) : row BS = 256
ROW, GRAIN) : row BS =p
COLUMN, THREADS) : p col blocks
COLUMN, FIXED) : col BS =256
COLUMN, GRAIN) : colBS =p

29/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,

ROW, THREADS) : p row blocks
ROW, FIXED) : row BS = 256
ROW, GRAIN) : row BS =p
COLUMN, THREADS) : p col blocks
COLUMN, FIXED) : col BS =256
COLUMN, GRAIN) : colBS =p
BLOCK, THREADS) : s X t blocks
BLOCK, FIXED): BS =256
BLOCK, GRAIN):BS=p

29/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution

29/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

abhwN =

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution

PARFORBLOCK2D(iter , m, n, SPLITTER(),
fgemm(..., A +iter.ibegin()xlda, Ida,
B +iter.jbegin(), Idb, beta,

C +iter.ibegin()=*ldc+iter.jbegin(),

Idc) ;

29/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

abhwN =

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution

PARFORBLOCK2D(iter , m, n, SPLITTER(),
fgemm(..., A+iteribegin()*lda , lda,
B+iter.joegin() , Idb, beta,

C +iter.ibegin()=*ldc+iter.jbegin(),

Idc) ;

29/44

Generic parallel LinAlg
0000000800

Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

abhwN =

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution

PARFORBLOCK2D(iter , m, n, SPLITTER(),

fgemm(..., A+iteribegin()*lda , lda,
B+iter.joegin() , Idb, beta,
C+iter.ibegin()*Idc+iter.joegin() , Idc);

29/44

Generic parallel LinAlg
0000000080

Parallelization of FFLAS-FFPACK library

Task parallelism

fork-join model : data-flow model :

I

—— —

Synchronization

waiting for all tasks .

waiting for all tasks Synchronization

v
Time

30/44

Generic parallel LinAlg
000000000

Parallelization of FFLAS-FFPACK library

PALADIn description : task parallelism

Task parallelization : fork-join and dataflow models

@ PAR_BLOCK : opens a parallel region.

@ SYNCH_GROUP : Group of tasks synchronized upon exit.

@ TASK : creates a task.

REFERENCE (args. . .) : specify variables captured by reference. By
default all variables accessed by value.

READ (args...) :setvar. that are read only.

WRITE (args...) :setvar. that are written only.

READWRITE (args...) :setvar. that are read then written.

31/44

Generic parallel LinAlg
000000000

Parallelization of FFLAS-FFPACK library

PALADIn description : task parallelism

Task parallelization : fork-join and dataflow models

@ PAR BLOCK : opens a parallel region.
@ SYNCH_GROUP : Group of tasks synchronized upon exit.

@ TASK : creates a task.

@ REFERENCE (args...) :specify variables captured by reference. By
default all variables accessed by value.

@ READ (args...) :setvar. that are read only.

WRITE (args...) :setvar. that are written only.

@ READWRITE (args...) :setvar. that are read then written.

Example :
void axpy(const Element a, const Element b, Element &y){y += axx;}

Il
|| SYNCH.GROUP(
I TASK (MODE(READ (a,x) READWRITE(y)),
Il axpy(a,x,y));

Il);

31/44

Generic parallel LinAlg
000000000

Parallelization of FFLAS-FFPACK library

PALADIn description : task parallelism

Task parallelization : fork-join and dataflow models

@ PAR BLOCK : opens a parallel region.
@ SYNCH_GROUP : Group of tasks synchronized upon exit.

@ TASK : creates a task.

@ REFERENCE (args...) :specify variables captured by reference. By
default all variables accessed by value.

@ READ (args...) :setvar. that are read only.

WRITE (args...) :setvar. that are written only.

@ READWRITE (args...) :setvar. that are read then written.

Example :
void axpy(const Element a, const Element b, Element &y){y += axx;}

Il
|| SYNCH.GROUP(
H TASK(MODE(READ(a,x) READWRITE(y)) ,
[l axpy(a.x.y));
Il)

Now we have a language to test our parallel exact linear algebra algorithms !

31/44

Generic parallel LinAlg
[Jele}

Parallel Building Blocks

Parallel matrix multiplication cascading

Algorithms Problem
@ Classical algorithms : O(n?) What are the best possible
@ Fast algorithms : O(n*) cascades ?
Cascading
@ Parallel classical variant @ iterative (BLOCK-THREADS)
switches to : @ recursive (1D, 2D, 3D splitting)

@ sequential fast
@ sequential classical
@ parallel fast

32/44

Generic parallel LinAlg
[Jele}

Parallel Building Blocks

Parallel matrix multiplication cascading

Algorithms Problem

@ Classical algorithms : O(n?) What are the best possible J

@ Fast algorithms : O(n*) cascades ?

Cascading

@ Parallel classical variant @ iterative (BLOCK-THREADS)

switches to : @ recursive (1D, 2D, 3D splitting)

@ sequential fast
@ sequential classical
@ parallel fast

@ Parallel fast variant switches to : @ recursive (Strassen-Winograd)
@ sequential fast
@ sequential classical
@ parallel classical

32/44

Generic parallel LinAlg
[Jele}

Parallel Building Blocks

Parallel matrix multiplication cascading

Algorithms Problem

@ Classical algorithms : O(n?) What are the best possible J

@ Fast algorithms : O(n*) cascades ?

Cascading

@ Parallel classical variant @ iterative (BLOCK-THREADS)

switches to : @ recursive (1D, 2D, 3D splitting)

@ sequential fast
@ sequential classical
@ parallel fast

@ Parallel fast variant switches to : @ recursive (Strassen-Winograd)
@ sequential fast
@ sequential classical
@ parallel classical

32/44

Generic parallel LinAlg
oeo

Parallel Building Blocks

Performance of pfgemm

pfgemm : Parallel classical variant — Sequential fast

pfgemm on 32 cores Xeon E4620 2.2Ghz with OpenMP

500 T T
400 /#rﬂ\/‘/ﬁﬂ//\/ o
300 / : : : 2)
@),
Q
e
(G]
200
iter(BLOCK-THREADS) —+—
100 rec(TWO-D) i
rec(TWO-D-ADAPT) —+—
rec(THREE-D)
i i i rec(TlJ—iREE»D-AI?APT) —01—
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

FIGURE : Speed of different matrix multiplication cutting strategies
using OpenMP tasks

33/44

Generic parallel LinAlg
oeo

Parallel Building Blocks

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with TBB

500 T
400 -
300
v
Q
L
[C)
200
iter(BLOCK-THREADS) —+—
100 rec(TWO-D) i
rec(TWO-D-ADAPT) —=—
rec(THREE-D)
i i i rec(TIJ-IREE-D-AI?APT) -
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

FIGURE : Speed of different matrix multiplication cutting strategies
using TBB tasks

33/44

Generic parallel LinAlg
oeo

Parallel Building Blocks

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp

500
400 -
300
v
Q
L
[C)
200
iter(BLOCK-THREADS) —+—
100 rec(TWO-D) i
rec(TWO-D-ADAPT) —*—
rec(THREE-D)
i i i rec(TIJ-IREE-D-AI?APT) 4.17
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

FIGURE : Speed of different matrix multiplication cutting strategies
using xKaapi tasks

33/44

Generic parallel LinAlg
[e]e] J

Parallel Building Blocks

Parallel Matrix Multiplication : State of the art

HPAC server : 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

effective Gfops

Comparison of our best implementations with the state of the art numerical librarie:

600 | T T T
500 |-
400 |-
300 -
200 |-
MKL dgemm
100 OpenBlas dgemm
PLASMA-QUARK dgemm —e—
BensonBallard (Strassen)
0 1 1 1 1
0 5000 10000 15000 20000 25000 30000

matrix dimension

34/44

Parallel Building Blocks

Generic parallel LinAlg
[e]e] J

Parallel Matrix Multiplication : State of the art

HPAC server : 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

Effective Gfops =

Comparison of our best implementations with the state of the art numerical librarie:

of field ops using classic matrix product
time .

600 | ‘ ‘ ‘, : —
500 | /v/v/v/v'
a =
8 400 |- 2
(O]
(]
2> 300 |-
o
{9] n3 peak performance on 32 cores
5 200 L WinogradPar->classicPar<double> —v—
ClassicPar->WinogradSeq<double>
H MKL dgemm
100 |- =¥ OpenBlas dgemm
</ PLASMA-QUARK dgemm —e—
i i Bens?nBaIIard (SFrassen)
0
0 5000 10000 15000 20000 25000 30000

matrix dimension

34/44

Parallel Exact Gaussian elimination

Outline

e Parallel exact Gaussian elimination

35/44

Parallel Exact Gaussian elimination
[]

Gaussian elimination design

Gaussian elimination design

Reducing to MatMul : block versions

— Asymptotically faster (O(n“))
— Better cache efficiency

Variants of block versions

Split on one dimension :
— Row or Column slab cutting

Slab iterative Slab recursive

Split on 2 dimensions :
— Tile cutting

Tile iterative Tile recursive

36/44

Parallel Exact Gaussian elimination
[]

Gaussian elimination design

Gaussian elimination design

Reducing to MatMul : block versions

— Asymptotically faster (O(n“))
— Better cache efficiency

Variants of block versions

Iterative :

@ Static — better data mapping control

@ Dataflow parallel model — less sync

Slab iterative | Slab recursive

Recursive :
@ Adaptive
@ sub-cubic complexity

@ No Dataflow — more sync

Tile iterative Tile recursive

v
36/44

Parallel Exact Gaussian elimination
[]

Gaussian elimination design

Gaussian elimination design

Reducing to MatMul : block versions

— Asymptotically faster (O(n“))
— Better cache efficiency

Variants of block versions

Iterative :

@ Static — better data mapping control

@ Dataflow parallel model — less sync

Slab iterative Slab recursive

Recursive :
@ Adaptive
@ sub-cubic complexity

@ No Dataflow — more sync

Tile iterative Tile recursive

v
36/44

Parallel Exact Gaussian elimination
L o]

Iterative matrix factorization

Slab iterative

Slab iterative
Expensive costly tasks in the critical path

@ Panel factorization in sequential
Rank dynamically revealed :

@ Varying workload of each block op.

37/44

Parallel Exact Gaussian elimination
oe

Iterative matrix factorization

Tiled iterative PLUQ decomposition

— Panel PLUQ decomposition on each slab

Slab iterative CUP to tile iterative PLUQ
@ Cutting according to columns
@ Creating "more parallelism” : update tasks are concurrent
@ Recovering rank profiles thanks to our pivoting strategies

38/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

2 x 2 block splitting

39/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

Recursive call

39/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

PTRSM : B+ BU ™!

1 || TASK(MODE(READ(A) READWRITE(B)) ,
2]| pftrsm (..., A, Ida, B, Idb));

39/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pTRSM: B+ L 'B

1 || TASK(MODE(READ(A) READWRITE(B)) ,
2]| pftrsm (..., A, Ida, B, Idb));

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

H TASK (MODE(READ(A,B) READWRITE(C)) ,
H pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

H TASK (MODE(READ(A,B) READWRITE(C)) ,
H pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

1 || TASK (MODE(READ(A,B) READWRITE(C)) ,
2]| pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

2 independent recursive calls (concurrent — tasks)

1 || TASK (MODE(READWRITE(A)) ,
2|| pplug (..., A, lda));

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

PTRSM : B+ BU ™!

1 || TASK(MODE(READ(A) READWRITE(B)) ,
2]| pftrsm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pTRSM: B+ L 'B

1 || TASK(MODE(READ(A) READWRITE(B)) ,
2]| pftrsm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

H TASK (MODE(READ(A,B) READWRITE(C)) ,
H pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

H TASK (MODE(READ(A,B) READWRITE(C)) ,
H pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

H TASK (MODE(READ(A,B) READWRITE(C)) ,
H pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination

39/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

Recursive call

39/44

Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

Puzzle game (block permutations)
Tile rec : better data locality and more square blocks for M.M.

39/44

Parallel Exact Gaussian elimination
@0000

Parallel Performance

State of the art : exact vs numerical linear algebra

State of the art comparison :
@ Exact PLUQ using PALADIn language : best performance with xKaapi
@ Numerical LU (dgetrf) of PLASMA-Quark and MKL dgetrf

parallel dgetrf vs parallel PLUQ on full rank matrices

400 T T T T T T
350 |-
300
a
o 250 -
G}
¢ 200
E
& 150 |-
100 [~ ~ explicit synch plug<double> —e—
MKL dgetrf
50 |- PLASMA-Quark dgetrf tiled storage (k=212) —v—
: PLASMA-Quark dgetrf (k=212) —v—
0 1 1 1 1 | 1

0 5000 10000 15000 20000 25000 30000 204

Parallel Exact Gaussian elimination
(o] Jelele]

Parallel Performance

Performance of parallel PLUQ decomposition

Low impact of modular reductions in parallel
— Efficient SIMD implementation

Performance of tile PLUQ recursive vs iterative on full rank matrices
400 T T T T T T

~

350

300 [» » ~ »
250 | » » /

w
o
L
[G)
2 200 - » » /..,//
.
(V]

100 |- /

50 i i explicit synch plug rec<double> —e—

; ; exlplicit synchlpluq rec<1|31071> |
0 | |
0 5000 10000 15000 20000 25000 30000

matrix dimension
41/44

Parallel Performance

Modular reductions

Parallel Exact Gaussian elimination
(e]e] Tele]

Iterative Right looking
Iterative Left Looking
Iterative Crout

1.3 _1
g = 3@
3.2_5
S0 2n—i—l
3.2_35
30 2n—|—1

Tile Recursive

2n? — nlog,n —2n

Slab Recursive

a1+ %logl n)n? — %nlogzn —n

TABLE : Counting modular reductions in full rank LU factorization of an n x n matrix

modulo p when n(p — 1)? < 2mantissa,

42/44

Parallel Performance

Parallel Exact Gaussian elimination

[e]e]e] o}

Performance of task parallelism : dataflow model

effective Gfops

400

350

300

250

200

150

100

50

Performance of tile PLUQ recursive vs iterative on full rank matrices

explicit synch PLUQ rec<131071>
expllicit synch ITLUQ iter<1|31071>

5000 10000 15000 20000 25000
matrix dimension

30000

43/44

Parallel Exact Gaussian elimination
000e0

Parallel Performance

Performance of task parallelism : dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
400 T T T T T T

25 0N

ROONEEE

) |eeeoen

effective Gfops

HOORIEE

explicit synch PLUQ rec<131071>
50 [g dataflow synch PLUQ iter<131071> —a—
expllicit synch ITLUQ iter<1|31071>

o L= 1
0 5000 10000 15000 20000 25000 30000

matrix dimension

43/44

Parallel Exact Gaussian elimination
000e0

Parallel Performance

Performance of task parallelism : dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
400 T T T T T T

S Q| IS SN WNSISRISPIE, SUSSISIG— DT ——

FY0(0) | Scmosonomsmomsmonddnzccnsasasesasssasclionesas o i

GG SRR NG, 2 o ASD" o, NSNS S ———

effective Gfops

explicit synch PLUQ rec<131071>
dataflow synch PLUQ iter<131071> —a—
dataflow synch PLUQ rec<131071> —e—

expllicit synch ITLUQ iter<1|31071>

50 [

-« i i 1
0 5000 10000 15000 20000 25000 30000
matrix dimension

Possible improvement : implementation of the delegation of recursive tasks
dependencies (Postpone access mode in the parallel programming environments)

43/44

Parallel Exact Gaussian elimination
0000e

Parallel Performance

Conclusion & Perspectives

HPAC DLP challenge : ~8 years — today feasible in ~3 months on 32 cores.

Defended theses
Sub-cubic : scale up in parallel in practice.
PALADIn : parallel programming environments as a plugin

The rank profile matrix : global information - efficient algorithms
Requires deep and precise understanding of pivoting

Perspectives

@ Study the scaling of sub-cubic exact linear algebra algorithms on
distributed machines.
@ PALADIn on GPUs and distributed memory machines

@ Adapt Communication avoiding algorithms to compute the rank profile
information

44/44

~8
~3

