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Motivation

PhD research context

@ Parallel computing

Symmetric Multi-Processors
@ Effective exact parallel linear alegbra

e Solve target problems : dedicated codes
o Widely distributed software : general purpose codes
(SAGE, Macauley?2)

@ Design a software for parallel exact linear algebra
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Exact linear algebra

Exact computation

@ Computation in computer algebra
— computing exactly : over Z, Q, Z[x]

@ In practice, often boils down to computation over prime fields Z/pZ

Exact linear algebra applications
@ Breaking Discrete Log Pb. in quasi-polynomial time [Barbulescu & al.14]
@ Building modular form databases to test the BSD conjecture [Stein 12]
@ Exact mixed-integer programming [Steffy et al. 12]

@ Formal verification of Hales proof of Kepler conjecture [Hales 05]
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Use case example of an application

HPAC on-going Challenge : D.L.P. cryptanalysis over curves over F(2%).

Problem dimensions

@ Sparse matrix with 126M var. / 130M eq.

@ Modulo a prime humber on 114 bits :
20769187434139310549529495610151239

@ Matrix has 520M non-zero
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Use case example of an application

HPAC on-going Challenge : D.L.P. cryptanalysis over curves over F(2%).

Problem dimensions

@ Sparse matrix with 126M var. / 130M eq.

@ Modulo a prime humber on 114 bits :
20769187434139310549529495610151239

@ Matrix has 520M non-zero

Main steps of block Wiedemann

@ First filtering (structured Gauss)
— nRows : 8.7M, nCols : 8.7M.
— Matrix has 810M non-zero with blocs 32 x 16

@ MinPoly coefficients 16 x 16, degree 545966
— needs efficient PLUQ factorization !

@ Evaluation uses M.M. : (n x 32) times (32 x 32) — nis large !




Motivation

Dense exact linear algebra

Dense linear algebra : A key building block for :
@ dense problems by nature (Hermite-Padé approx, ...)
@ Sparse problems degenerate to dense :
@ Sparse Direct :
Switch to dense after fill-in

@ Sparse lterative :
Induce dense elimination on blocks of iterated vectors

(block-Wiedemann, block Lanczos, ...)



Motivation

Gaussian elimination in exact dense algebra

Gaussian elimination is a building block in dense linear algebra

Matrix factorization (LU decomposition)
@ Solving linear systems
@ Computing determinant
@ Rank.

Linear dependencies (Echelon structure)

@ Characteristic Polynomial : Finding Krylov basis [Keller Gehrig 85]

@ Grobner basis computation : F4 algorithm [FGB]
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Sequential BLAS, LAPACK FFLAS-FFPACK
Parallel pBLAS, ScaLAPACK
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Motivation

Design of parallel dense exact linear algebra

numerical exact
Sequential BLAS, LAPACK FFLAS-FFPACK
Parallel pBLAS, ScaLAPACK this work

Parallelizing dense linear algebra

@ Specificities of exact linear algebra

@ Recursive algorithms
@ Rank deficiencies
@ Similarities with numerical linear algebra
Parallel blocking is constrained by pivoting :

Numerical : ensuring numerical stability
Exact : recovering rank profiles and echelon structure




Motivation

Outline

o Pivoting and rank profiles
e Generic parallel Linear Algebra

e Parallel exact Gaussian elimination
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Pivoting and rank profiles
©00000

Linear dependencies

Linear dependencies and row/column rank profiles

Definition (Row Rank Profile : RowRP )
Given A € K"™*",r = rank(A).
informally : first r linearly independent rows

formally : lexico-minimal sub-sequence of (1, . ..,m) of r indices of linearly
independant rows.

Example
1

— o O O

= @ =
S = O =
S O O O
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Definition (Row Rank Profile : RowRP )
Given A € K"™*",r = rank(A).
informally : first r linearly independent rows

formally : lexico-minimal sub-sequence of (1, . ..,m) of r indices of linearly
independant rows.

Example

1 Rank = 3

RowRP = {1,2,4}
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Linear dependencies

Linear dependencies and row/column rank profiles

Definition ( Column Rank Profile : ColRP)
Given A € K™, r = rank(A).
informally : first r linearly independent columns
formally : lexico-minimal sub-sequence of (1, ...,m) of r indices of linearly
independant columns.
Example
11 0 0 Rank = 3
1 0 0 0 RowRP = {1,2,4}
010 0 ColRP = {1,2,3}
0 0 1 0
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Linear dependencies

Linear dependencies and row/column rank profiles

Definition ( Column Rank Profile : ColRP)
Given A € K™, r = rank(A).
informally : first r linearly independent columns
formally : lexico-minimal sub-sequence of (1, ...,m) of r indices of linearly
independant columns.
Example
11 0 0 Rank = 3
1 0 0 0 RowRP = {1,2,4}
010 0 ColRP ={1,2,3} — Generic ColRP,
0 0 1 0

Generic RowRP/ColRP : if it equals {1,...,r}.
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Pivoting and rank profiles
0®0000

Linear dependencies

Computing rank profiles

Via Gaussian elimination revealing row echelon forms

[Ibarra, Moran and Hui 82] NENIEI
[Keller-Gehrig 85] E B
[Storjohann 00] e
[Jeannerod, Pernet and Storjohann 13] = -] S
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Pivoting and rank profiles
0®0000

Linear dependencies

Computing rank profiles

Via Gaussian elimination revealing row echelon forms

[lbarra, Moran and Hui 82] NENIEI
[Keller-Gehrig 85] B
[Storjohann 00] e
[Jeannerod, Pernet and Storjohann 13] = -] S

Lessons learned (or what we thought was necessary) :

@ treat rows in order
@ exhaust all columns before next row .B
@ slab block splitting (rec or iter) Ll h

=-similar to partial pivoting
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Pivoting and rank profiles
008000

Linear dependencies

Motivation

Need more flexible blocking

Slab blocking | E—
@ can lead to inefficient memory access patterns —

Slab iterative Slab recursive

@ is harder to parallelize .

Tile blocking instead ? 1l ‘

Tile iterative  Tile recursive
o
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Pivoting and rank profiles
008000

Linear dependencies

Motivation

Need more flexible blocking

Slab blocking | E—
@ can lead to inefficient memory access patterns —

Slab iterative Slab recursive

@ is harder to parallelize |

Tile blocking instead ? 1l ‘

Tile iterative  Tile recursive
v

Gathering linear independence invariants
Two ways to look at a matrix (looking left or right) :
@ Row rank profile, column echelon form
@ Column rank profile, row echelon form
Unique invariant ?

12/44



Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F"™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which

every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.
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Pivoting and rank profiles
000800

Linear dependencies

The rank profile Matrix

Theorem

LetA € F™*".

There exists a unique, m x n, rank(A)-sub-permutation matrix R, of which
every leading sub-matrix has the same rank as the corresponding leading
Ssub-matrix of A.

Example

N = O O
N W N =
N0 O O
N O OO
oS = O O
=2 e @ =
ENENCES)
— o O O
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Pivoting and rank profiles
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Linear dependencies

Properties of the rank profile matrix

Particular cases

@ Ainvertible & R, is a permutation
@ A is square with generic rank profile < R4 = I,
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Pivoting and rank profiles
000080

Linear dependencies

Properties of the rank profile matrix

Particular cases

@ Ainvertible & R, is a permutation
@ A is square with generic rank profile < R4 = I,

Properties

@ R, encodes the RowRP(A) and the ColRP(A)
@ All leading rank profiles

@ R4 is unique = new normal form.
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Pivoting and rank profiles
00000®

Linear dependencies

When does a PLUQ decomposition reveal the rank
profile matrix ?

Focus on the pivoting strategy :
@ Pivot search :
e finding a pivot with minimal coordinates

@ Permutation to bring the pivot to the main diagonal
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Pivoting and rank profiles
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Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search
Pivot’s (i,j) position minimizes some pre-order :

Row order : any non-zero on the first non-zero row
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Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search

Pivot’s (i,j) position minimizes some pre-order :

Row/Col order : any non-zero on the first non-zero row/col
Lex/RevlLex order : first non-zero on the first non-zero row/col

Product order : first non-zero in the (i, j) leading sub-matrix

A 1
1
@

®
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Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search Permutation
Pivot’s (i,;) position minimizes some pre-order : @ Transpositions

Row/Col order : any non-zero on the first non-zero row/col

Lex/RevlLex order : first non-zero on the first non-zero row/col

Product order : first non-zero in the (i, j) leading sub-matrix

Transposition
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Pivoting and rank profiles
®0

Computing the Rank Profile Matrix

Pivoting and permutation strategies

Pivot Search Permutation
Pivot’s (i,;) position minimizes some pre-order : @ Transpositions
Row/Col order : any non-zero on the first non-zero row/col @ Cyclic Rotations

Lex/RevlLex order : first non-zero on the first non-zero row/col

Product order : first non-zero in the (i, j) leading sub-matrix

Cyclic
rotation
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Pivoting and rank profiles
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Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP  ColRP Instance

Row order
Col. order

Lexico.

Rev. lex.

Product
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Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP R4 Instance
Row order | Transposition  Transposition v [IMH82] [JPS13]
Col. order | Transposition  Transposition v [KG85] [JPS13]
Lexico. Transposition  Transposition v [Sto00]
Rev. lex. Transposition  Transposition v [Sto00]
Product Rotation Rotation v v v [DPS13]

P,L,U,Q «+ PLUQ(A) and P [ /] Q = Ra.
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Col. order | Transposition  Transposition v [KG85] [JPS13]
Lexico. Transposition  Transposition v [Sto00]
Rev. lex. Transposition  Transposition v [Sto00]
Product Rotation Transposition v [DPS15]
Product Transposition  Rotation v [DPS15]
Product Rotation Rotation v v v [DPS13]

P,L,U,Q «+ PLUQ(A) and P [ /] Q = Ra.
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Computing the Rank Profile Matrix

Pivoting strategies revealing rank profiles

Search | Row perm. Col.perm. | RowRP ColRP R4 Instance
Row order | Transposition  Transposition v [IMH82] [JPS13]
Col. order | Transposition  Transposition v [KG85] [JPS13]
Lexico. Transposition  Transposition v [Sto00]
Lexico. Transposition  Rotation v v v [DPS15]
Lexico. Rotation Rotation v v v [DPS15]
Rev. lex. Transposition  Transposition v [Sto00]
Rev. lex. Rotation Transposition v v v [DPS15]
Rev. lex. Rotation Rotation v v v [DPS15]
Product Rotation Transposition v [DPS15]
Product Transposition  Rotation v [DPS15]
Product Rotation Rotation v v v [DPS13]

P,L,U,Q «+ PLUQ(A) and P [ /] Q = Ra.
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Pivoting and rank profiles
®00

Echelon forms

Echelon forms

for P L Q

(] sort E

C=PLP, QUQ=E
C = P[LP O ur ] E=[o2)..]0
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Pivoting and rank profiles
®00

Echelon forms

Echelon forms

for P L Q

=

(o] sort E

C=PLP, QUQ=E
C=P[LPOuxun], F=PQF, E= [%Qf}flm] 0
Bonus : Generalized Bruhat CFE.
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Echelon forms

Tile recursive PLUQ algorithm

2 x 2 block splitting
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Echelon forms

Tile recursive PLUQ algorithm

fgemm:C++ C—-AXB
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Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

2 independent recursive calls (product order search)
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Echelon forms

Tile recursive PLUQ algorithm

Recursive call
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Pivoting and rank profiles
ol 1}

Echelon forms

Tile recursive PLUQ algorithm

Puzzle game (block permutations)
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Pivoting and rank profiles
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Echelon forms

New PLUQ algorithm

Effective Gfops

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

Pure Recursive (6) —6—

5
4
3
2
! Lo
. e o - o——9
0 100 200 300 400 500 600 700
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New PLUQ algorithm

Effective Gfops

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

Crm‘n Lexico.‘order(S) %
7 L Left-looking Prod. order(4) —=—
Pure Recursive (6) —6—
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Echelon forms

New PLUQ algorithm

Effective Gfops

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

8 T T T
Rec->Crout Lexico.(1) —+—
7 L Rec->Left-look. Prod.(2) o
Crout Lexico. order(3) —x— NM“
Left-looking Prod. order(4) —5— It %
6r Pure Recursive (6) —— Y
5 S %"”
4 o
AN A DY
3 N il
2 /f{wfg
1 e
oo o o—e—a8 8 5 ¢

=5
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Echelon forms

New PLUQ algorithm

@ New state of the art algo that computes faster PLUQ decomposition
@ Computes more information (the rank profile matrix R 4)

PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz PLUQ mod 131071. Rank = n/2. on a E3-1270v3 at 3.5GHz

8 35

Rec-‘>Crout Léxico.(1) == Rec—>brout Lexic‘o.m —0;
Rec->Left-look. Prod.(2) i Rec->Left-look. Prod.(2)
Crout Lexico. order(3) —x— wﬂv' 30 - Crout Lexico. order(3) —%—
Left-looking Prod. order(4) —H5— wa‘ Left-looking Prod. order(4) —5— W Wm
6 Pure Recursive (6) —6— Yl 25 L Pure Recursive (6) —&— A |
o Wal 2 |
2 5 | o
£ N | 2 i
6] hY G 20 "
2 4 "y & o g ww»qu !
= N 2
2 7 = /
§ s M MWW E 15 /{v
] MNQ i} »
2 /ﬂ 10 #
1 o 5 /
Oﬁif,’;ﬁmM —e—g— 8 8¢ NI . i o

0 100 200 300 400 500 600 700 0 1000 2000 3000 4000 5000 6000

n n

Execution on 1 core (3.5GHz) — effective 31 Gfops (AVX2 + sub-cubic complexity)
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Generic parallel LinAlg

Outline

e Generic parallel Linear Algebra
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Generic parallel LinAlg
0000000000

Parallelization of FFLAS-FFPACK library

FFLAS-FFPACK library

FFLAS-FFPACK features

@ High performance implementation of basic linear algebra routines over
word size prime fields

@ Exact alternative to the numerical BLAS library
@ Exact triangularization, Sys. solving, Det, Inv., CharPoly

Parallel FFLAS-FFPACK
Explore :
@ several algorithms and variants

@ parallel runtimes and languages :

@ unified parallel language harnessing different runtimes (OMP, TBB,
xKaapi, ...)
@ Abstraction for the user

@ data parallelism vs task parallelism
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Generic parallel LinAlg
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Parallelization of FFLAS-FFPACK library

Parallel computation constraints : exact and numeric

In state of the art numerical libraries :

@ Often non singular matrices with fixed static cutting.
— easier to manually map and schedule tasks or threads.

@ Use of iterative algorithms — often one or two levels of parallelism.
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Parallel computation constraints : exact and numeric

In state of the art numerical libraries :

@ Often non singular matrices with fixed static cutting.
— easier to manually map and schedule tasks or threads.

@ Use of iterative algorithms — often one or two levels of parallelism.

Our experience in exact linear algebra :

@ Sub-cubic complexity : O(n”) [Strassen]
— Coarser grain cutting
— Recursive algorithms.
— Parallel runtime system that implements well recursive tasks.

@ Rank deficiencies — tasks of unbalanced workloads.
@ Recursion and code composition — multiple levels of parallelism.
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Parallelization of FFLAS-FFPACK library

Parallel computation constraints : exact and numeric

In state of the art numerical libraries :

@ Often non singular matrices with fixed static cutting.
— easier to manually map and schedule tasks or threads.

@ Use of iterative algorithms — often one or two levels of parallelism.

Our experience in exact linear algebra :

@ Sub-cubic complexity : O(n”) [Strassen]
— Coarser grain cutting
— Recursive algorithms.
— Parallel runtime system that implements well recursive tasks.

@ Rank deficiencies — tasks of unbalanced workloads.
@ Recursion and code composition — multiple levels of parallelism.

— Need for a high level parallel programming environments
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Generic parallel LinAlg
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Parallelization of FFLAS-FFPACK library

Requirements of high level parallel programming
environments

Features required

Portability, Performance and scalability. But more precisely :
@ Runtime system with good performance for recursive tasks.
@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.
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Parallelization of FFLAS-FFPACK library

Requirements of high level parallel programming
environments

Features required

Portability, Performance and scalability. But more precisely :
@ Runtime system with good performance for recursive tasks.
@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.

No parallel environment offers all these features
— Need to design a code independently from the runtime system
— Using runtime systems as a plugin
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Generic parallel LinAlg
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Parallelization of FFLAS-FFPACK library

Runtime systems to be supported

OpenMP3.x and 4.0 supported directives : (using libgomp)

@ Data sharing attributes :

@ OMPS3 shared : data visible and accessible by all threads
@ OMPS3 firstprivate :local copy of original value
@ OMP4 depend : set data dependencies

@ Synchronization clauses : #pragma omp taskwait

xKaapi : via the libkomp [BDG12] library :
@ OpenMP directives — xKaapi tasks.
@ Re-implem. of task handling and management.
@ Better recursive tasks execution.

TBB : designed for nested and recursive parallelism

@ parallel_for

@ tbb::task_group, wait (), run() using C++11 lambda functions

v
25/44



Generic parallel LinAlg
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Parallelization of FFLAS-FFPACK library

PALADIn

Parallel Algebraic Linear Algebra Dedicated Interface

Mainly macro-based keywords
@ No function call runtime overhead when using macros.
@ No important modifications to be done to original program.
@ Macros can be used also for C-based libraries.

Complementary C++ template functions

@ Implement the different cutting strategies.

@ Store the iterators
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Generic parallel LinAlg
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Parallelization of FFLAS-FFPACK library

PALADIn description : data parallelism

Data parallelism : SPMD programming

@ Parallel region : chunks are dispatched on multiple proc.

@ Supported : PARFOR1D, PARFOR2D, PARFORBLOCK1D,
PARFORBLOCK2D.

Example : Loop Summing in C++ Example : Loop Summing in OpenMP

1
2
3

#pragma omp parallel for
for(size_-t i=0; i<n; ++i){
TLi] = T1[i] + T2[i];

for(size_t i=0; i<n; ++i){
TLi] = TI[i] + T2[i];
}

AON =

Example : Loop Summing in PALADIn

1
2
3

PARFOR1D(i, n, SPLITTER() ,
Tli] = TI[i]+T2[i];

3

— The SPLITTER keyword sets the cutting strategy.
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Parallelization of FFLAS-FFPACK library

lterative Cutting Strategies 1D

Splitting over one dimension

© 6 6 ¢

SPLITTER (p, THREADS) : p partitions = #tasks

SPLITTER (p, GRAIN) : BlockSize : BS = p

SPLITTER (p, FIXED) : BlockSize : BS = 256

SPLITTER (p) : p tasks with default strategy (THREADS)
SPLITTER () : default strategy with p = # available processors

Code example : Matrix add in parallel

ONO O~ WN =

void pfadd(const Field & F,const Element xA,const Element B, Element *C,
PARFORBLOCK1D(it , n, SPLITTER(32, THREADS) ,

FFLAS::fadd (F, it.end()—it.begin(), n,
A+it.begin()*n, n,
B+it.begin()*n, n,
C+it.begin()*n, n);

size_t n){
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Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

@ SPLITTER (p, ROW, THREADS) : p row blocks
@ SPLITTER (p, ROW, FIXED) :row BS = 256
@ SPLITTER (p, ROW, GRAIN): rowBS=p
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Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,

ROW, THREADS) : p row blocks
ROW, FIXED) : row BS = 256
ROW, GRAIN) : row BS =p
COLUMN, THREADS) : p col blocks
COLUMN, FIXED) : col BS =256
COLUMN, GRAIN) : colBS =p
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Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

SPLITTER (p,
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SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,
SPLITTER (p,

ROW, THREADS) : p row blocks
ROW, FIXED) : row BS = 256
ROW, GRAIN) : row BS =p
COLUMN, THREADS) : p col blocks
COLUMN, FIXED) : col BS =256
COLUMN, GRAIN) : colBS =p
BLOCK, THREADS) : s X t blocks
BLOCK, FIXED): BS =256
BLOCK, GRAIN):BS=p
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Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution
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Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

abhwN =

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution

PARFORBLOCK2D( iter , m, n, SPLITTER(),
fgemm( ..., A +iter.ibegin()xlda, Ida,
B +iter.jbegin(), Idb, beta,

C +iter.ibegin()=*ldc+iter.jbegin(),

Idc) ;
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SPLITTER (p, BLOCK, GRAIN): BS=p
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Parallelization of FFLAS-FFPACK library

lterative cutting strategies 2D

abhwN =

Data parallelism : SPLITTER keyword

SPLITTER (p, ROW, THREADS) : p row blocks
SPLITTER (p, ROW, FIXED) : row BS = 256
SPLITTER (p, ROW, GRAIN): row BS =p
SPLITTER (p, COLUMN, THREADS) : p col blocks
SPLITTER (p, COLUMN, FIXED) : col BS = 256
SPLITTER (p, COLUMN, GRAIN): colBS=p
SPLITTER (p, BLOCK, THREADS) : s X tblocks
SPLITTER (p, BLOCK, FIXED): BS =256
SPLITTER (p, BLOCK, GRAIN): BS=p
NOSPLIT () : sequential execution

PARFORBLOCK2D( iter , m, n, SPLITTER(),

fgemm( ..., A+iteribegin()*lda , lda,
B+iter.joegin() , Idb, beta,
C+iter.ibegin()*Idc+iter.joegin() , Idc);
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Parallelization of FFLAS-FFPACK library

Task parallelism

fork-join model : data-flow model :

I

—— —

Synchronization

waiting for all tasks .

waiting for all tasks Synchronization

v
Time
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Parallelization of FFLAS-FFPACK library

PALADIn description : task parallelism

Task parallelization : fork-join and dataflow models

@ PAR_BLOCK : opens a parallel region.

@ SYNCH_GROUP : Group of tasks synchronized upon exit.

@ TASK : creates a task.

REFERENCE (args. . .) : specify variables captured by reference. By
default all variables accessed by value.

READ (args...) :setvar. that are read only.

WRITE (args...) :setvar. that are written only.

READWRITE (args...) :setvar. that are read then written.
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Parallelization of FFLAS-FFPACK library

PALADIn description : task parallelism

Task parallelization : fork-join and dataflow models

@ PAR BLOCK : opens a parallel region.
@ SYNCH_GROUP : Group of tasks synchronized upon exit.

@ TASK : creates a task.

@ REFERENCE (args...) :specify variables captured by reference. By
default all variables accessed by value.

@ READ (args...) :setvar. that are read only.

WRITE (args...) :setvar. that are written only.

@ READWRITE (args...) :setvar. that are read then written.

Example :
void axpy(const Element a, const Element b, Element &y){y += axx;}

Il
|| SYNCH.GROUP(
I TASK (MODE(READ (a,x) READWRITE(y) ),
Il axpy(a,x,y));

Il );
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Parallelization of FFLAS-FFPACK library

PALADIn description : task parallelism

Task parallelization : fork-join and dataflow models

@ PAR BLOCK : opens a parallel region.
@ SYNCH_GROUP : Group of tasks synchronized upon exit.

@ TASK : creates a task.

@ REFERENCE (args...) :specify variables captured by reference. By
default all variables accessed by value.

@ READ (args...) :setvar. that are read only.

WRITE (args...) :setvar. that are written only.

@ READWRITE (args...) :setvar. that are read then written.

Example :
void axpy(const Element a, const Element b, Element &y){y += axx;}

Il
|| SYNCH.GROUP(
H TASK(MODE(READ(a,x) READWRITE(y)) ,
[l axpy(a.x.y));
Il )

Now we have a language to test our parallel exact linear algebra algorithms !
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Parallel Building Blocks

Parallel matrix multiplication cascading

Algorithms Problem
@ Classical algorithms : O(n?) What are the best possible
@ Fast algorithms : O(n*) cascades ?
Cascading
@ Parallel classical variant @ iterative (BLOCK-THREADS)
switches to : @ recursive (1D, 2D, 3D splitting)

@ sequential fast
@ sequential classical
@ parallel fast
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@ sequential classical
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@ Parallel fast variant switches to : @ recursive (Strassen-Winograd)
@ sequential fast
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@ parallel classical
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@ Fast algorithms : O(n*) cascades ?
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@ Parallel classical variant @ iterative (BLOCK-THREADS)
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Parallel Building Blocks

Performance of pfgemm

pfgemm : Parallel classical variant — Sequential fast

pfgemm on 32 cores Xeon E4620 2.2Ghz with OpenMP

500 T T
400 /#rﬂ\/‘/ﬁﬂ//\/ o
300 / : : : 2 )
@ ),
Q
e
(G]
200
iter(BLOCK-THREADS) —+—
100 rec(TWO-D) i
rec(TWO-D-ADAPT) —+—
rec(THREE-D)
i i i rec(TlJ—iREE»D-AI?APT) —01—
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

FIGURE : Speed of different matrix multiplication cutting strategies
using OpenMP tasks
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Parallel Building Blocks

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with TBB
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FIGURE : Speed of different matrix multiplication cutting strategies
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Parallel Building Blocks

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp
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FIGURE : Speed of different matrix multiplication cutting strategies
using xKaapi tasks
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Parallel Building Blocks

Parallel Matrix Multiplication : State of the art

HPAC server : 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

effective Gfops

Comparison of our best implementations with the state of the art numerical librarie:

600 | T T T
500 |-
400 |-
300 -
200 |-
MKL dgemm
100 OpenBlas dgemm
PLASMA-QUARK dgemm —e—
BensonBallard (Strassen)
0 1 1 1 1
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matrix dimension
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Generic parallel LinAlg
[e]e] J

Parallel Matrix Multiplication : State of the art

HPAC server : 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

Effective Gfops =

Comparison of our best implementations with the state of the art numerical librarie:

# of field ops using classic matrix product
time .

600 | ‘ ‘ ‘, : —
500 | /v/v/v/v'
a =
8 400 |- 2
(O]
(]
2> 300 |-
o
{9] n3 peak performance on 32 cores
5 200 L WinogradPar->classicPar<double> —v—
ClassicPar->WinogradSeq<double>
H MKL dgemm
100 |- =¥ OpenBlas dgemm
</ PLASMA-QUARK dgemm —e—
i i Bens?nBaIIard (SFrassen)
0
0 5000 10000 15000 20000 25000 30000

matrix dimension
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Outline

e Parallel exact Gaussian elimination
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Parallel Exact Gaussian elimination
[ ]

Gaussian elimination design

Gaussian elimination design

Reducing to MatMul : block versions

— Asymptotically faster (O(n“))
— Better cache efficiency

Variants of block versions

Split on one dimension :
— Row or Column slab cutting

Slab iterative Slab recursive

Split on 2 dimensions :
— Tile cutting

Tile iterative  Tile recursive
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Iterative matrix factorization

Slab iterative

Slab iterative
Expensive costly tasks in the critical path

@ Panel factorization in sequential
Rank dynamically revealed :

@ Varying workload of each block op.
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Iterative matrix factorization

Tiled iterative PLUQ decomposition

— Panel PLUQ decomposition on each slab

Slab iterative CUP to tile iterative PLUQ
@ Cutting according to columns
@ Creating "more parallelism” : update tasks are concurrent
@ Recovering rank profiles thanks to our pivoting strategies
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Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

2 x 2 block splitting
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Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

PTRSM : B+ BU ™!

1 || TASK(MODE(READ(A) READWRITE(B)) ,
2]| pftrsm (..., A, Ida, B, Idb));

39/44



Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pTRSM: B+ L 'B

1 || TASK(MODE(READ(A) READWRITE(B)) ,
2]| pftrsm (..., A, Ida, B, Idb));

39/44



Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

pfgemm:C+ C—-A X B

H TASK (MODE(READ(A,B) READWRITE(C) ) ,
H pfgemm (..., A, Ida, B, Idb));

Parallel Exact Gaussian elimination
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Recursive matrix factorization

Parallel tile recursive PLUQ algorithm
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o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

2 independent recursive calls (concurrent — tasks)

1 || TASK (MODE(READWRITE(A) ) ,
2|| pplug (..., A, lda));
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Parallel Exact Gaussian elimination
o

Recursive matrix factorization

Parallel tile recursive PLUQ algorithm

Puzzle game (block permutations)
Tile rec : better data locality and more square blocks for M.M.
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Parallel Performance

State of the art : exact vs numerical linear algebra

State of the art comparison :
@ Exact PLUQ using PALADIn language : best performance with xKaapi
@ Numerical LU (dgetrf) of PLASMA-Quark and MKL dgetrf

parallel dgetrf vs parallel PLUQ on full rank matrices

400 T T T T T T
350 |-
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a
o 250 -
G}
¢ 200
E
& 150 |-
100 [~ ~ explicit synch plug<double> —e—
MKL dgetrf
50 |- PLASMA-Quark dgetrf tiled storage (k=212) —v—
: PLASMA-Quark dgetrf (k=212) —v—
0 1 1 1 1 | 1

0 5000 10000 15000 20000 25000 30000 204



Parallel Exact Gaussian elimination
(o] Jelele]

Parallel Performance

Performance of parallel PLUQ decomposition

Low impact of modular reductions in parallel
— Efficient SIMD implementation

Performance of tile PLUQ recursive vs iterative on full rank matrices
400 T T T T T T

~

350

300 [ » » ~ »
250 | » » /

w
o
L
[G)
2 200 - » » /..,//
.
(V]

100 |- /

50 i i explicit synch plug rec<double> —e—

; ; exlplicit synchlpluq rec<1|31071> |
0 | |
0 5000 10000 15000 20000 25000 30000

matrix dimension
41/44



Parallel Performance

Modular reductions

Parallel Exact Gaussian elimination
(e]e] Tele]

Iterative Right looking
Iterative Left Looking
Iterative Crout

1.3 _1
g = 3@
3.2_5
S0 2n—i—l
3.2_35
30 2n—|—1

Tile Recursive

2n? — nlog,n —2n

Slab Recursive

a1+ %logl n)n? — %nlogzn —n

TABLE : Counting modular reductions in full rank LU factorization of an n x n matrix

modulo p when n(p — 1)? < 2mantissa,
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Parallel Exact Gaussian elimination
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Performance of task parallelism : dataflow model

effective Gfops

400

350

300

250

200

150

100

50

Performance of tile PLUQ recursive vs iterative on full rank matrices

explicit synch PLUQ rec<131071>
expllicit synch ITLUQ iter<1|31071>
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matrix dimension
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Parallel Performance

Performance of task parallelism : dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
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effective Gfops
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explicit synch PLUQ rec<131071>
50 [ g dataflow synch PLUQ iter<131071> —a—
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Parallel Performance

Performance of task parallelism : dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
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effective Gfops

explicit synch PLUQ rec<131071>
dataflow synch PLUQ iter<131071> —a—
dataflow synch PLUQ rec<131071> —e—

expllicit synch ITLUQ iter<1|31071>

50 [

-« i i 1
0 5000 10000 15000 20000 25000 30000
matrix dimension

Possible improvement : implementation of the delegation of recursive tasks
dependencies (Postpone access mode in the parallel programming environments)
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Parallel Performance

Conclusion & Perspectives

HPAC DLP challenge : ~8 years — today feasible in ~3 months on 32 cores.

Defended theses
Sub-cubic : scale up in parallel in practice.
PALADIn : parallel programming environments as a plugin

The rank profile matrix : global information - efficient algorithms
Requires deep and precise understanding of pivoting

Perspectives

@ Study the scaling of sub-cubic exact linear algebra algorithms on
distributed machines.
@ PALADIn on GPUs and distributed memory machines

@ Adapt Communication avoiding algorithms to compute the rank profile
information
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