Parallel Algebraic Linear Algebra Dedicated Interface:

Thierry Gautier
LIG-MOAIS UJF, CNRS, Inria,
G'INP, UPMF
Inovallée, 655, av. de I'Europe,
F38334 St Ismier Cedex,
France
thierry.gautier@inrialpes.fr

Jean-Louis Roch
LIG-MOAIS UJF, CNRS, Inria,
G’INP, UPMF
Inovallée, 655, av. de I'Europe,
F38334 St Ismier Cedex,
France
Jean-Louis.Roch@imag.fr

Ziad Sultan
Univ. Grenoble Alpes
Laboratories LJK and LIG
Inria, CNRS, Univ. Grenoble Alpes
Inovallée, 655, av. de I'Europe,
F38334 St Ismier Cedex,
France
Ziad.Sultan@imag.fr

Bastien Vialla
Université Montpellier
LIRMM, CNRS, 161 rue Ada,
F-34095 Montpellier, France
Bastien.Vialla@lirmm.fr

ABSTRACT

This work deals with parallelism in linear algebra routines.
We propose a domain specific language based on C/C++
macros, PALADIn (Parallel Algebraic Linear Algebra Ded-
icated Interface). This domain specific language allows the
user to write C4++ code and benefit from sequential and
parallel executions on shared memory architectures. With a
unique syntax, the user can switch between different parallel
runtime systems such as OpenMP, TBB and xKaapi. This
interface provides data and task parallelism. Depending on
the runtime system, task parallelism can uses explicit syn-
chronizations or data-dependency based synchronizations.
Also, this language provides different matrix cutting strate-
gies according to one or two dimensions. Moreover, block
algorithms, such as block iterative and recursive matrix mul-
tiplication, can involve splitting according to three dimen-
sions. The latter is also a feature that is provided to the user.
The PALADIn interface can be used in any C++ library for
linear algebra computation and gets the best performance
from the three supported parallel runtime systems.

Keywords

Domain Specific Language, Shared Memory Parallelism, Dataflow

Parallelism, Cutting Strategy

1. INTRODUCTION

*This work is partly funded by the HPAC project of the French
Agence Nationale de la Recherche (ANR 11 BS02 013).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PASCO ’15, July 10 - 12, 2015, Bath, United Kingdom
© 2015 ACM. ISBN 978-1-4503-3599-7/15/07. .. $15.00
DOI: 10.1145/1235

Recently many efforts have been made to obtain efficient
parallel implementation of linear algebra libraries. Sequen-
tial generic libraries exist to solve exact [7, 14, 6] and nu-
merical [1, 15] linear algebra problems. As for parallel com-
puting many libraries exist in numerical linear algebra [19,
15], whereas in exact computation there is not yet a parallel
generic library.

To solve exact linear algebra problems in parallel, the user
needs a high-level library where genericity, performance and
portability are the main concern. The library main objec-
tives are:

e to allow the user to work at a high level of abstraction,
e to hide many details specific to parallel programming,

e to take into account large range of machine architec-
tures.

In addition, based on our experience on a Gaussian elim-
ination algorithm [10], the parallelization of some routines
in exact linear algebra revealed several aspects that need to
be taken into account:

e Recursion: In parallel numerical linear algebra, rou-
tines are mainly iterative algorithms [3] with fine grain
parallelism. This induces invariable block size with
fixed cutting according to the matrix dimension. In
these conditions, it is easier for the programmer to
map and schedule tasks or threads manually.

Nevertheless, in exact linear algebra over finite fields,
algorithms such as Gaussian elimination reaches peak
performances thanks to recursive sub-cubic algorithms,
inducing less modular reductions [10, table 2].

The implementation of parallel recursive algorithms
using a low-level APT (e.g.: POSIX, Windows Threads,

..) can be very hard. However, threads/tasks man-
agement can be delegated to a runtime system allowing
the programmer to easily benefit from a high level of
parallelism.

mailto:Thierry.Gautier@inrialpes.fr
mailto:Jean-Louis.Roch@imag.fr
mailto:Ziad.Sultan@imag.fr
mailto:Bastien.Vialla@lirmm.fr
10.1145/1235

e Unbalanced load and communication: In parallel
computation, the role of the scheduler of a runtime
system, is to assign jobs on available cores in order to
optimize some criteria:

— maximizing average workload,

— minimizing overall completion time.

For Gaussian elimination, in numerical linear algebra,
the input matrices are mainly non singular and its
principal minors are non zero. Therefore the split-
ting of the matrix can be done statically according to
a granularity parameter. This provide a deterministic
execution which is easier to parallerize. Whereas tri-
angular decomposition over finite fields may discover
rank deficiencies upon computation, thus generating
tasks of unbalanced workloads. Hence, the runtime
system used to parallelize such algorithms needs to
provide an optimized scheduler that handles this is-
sue.

This problem can be better managed by clever and

elaborated schedulers, especially if dataflow dependency-

based task scheduling is supported. The latter is a
recent programming style based on scheduling tasks
that relies on computing data dependencies. Dataflow
scheduling allows finer synchronizations between tasks.

e Routines composition: In numerical linear algebra,
most parallel iterative algorithms relies on a single level
of parallelism. Thus, scheduling tasks can be done
manually by the programmer.

However in parallel exact linear algebra, the execution
of recursive algorithms yields to many calls of parallel
routines at each recursion level. The composition of
parallel routines implies different level of parallelism.
By detecting data dependencies between tasks, a high
level runtime system makes easier the scheduling of
composed tasks. For example, task dataflow parallel
programming languages leverage a runtime scheduler
that is aware of dependencies between tasks.

In summary, for the parallelization of exact linear alge-
bra libraries we want to avoid API with low level manage-
ment. Instead we want to use optimized runtime systems
that provide us with dataflow based synchronizations. Con-
sequently, a high level description of parallelism is required
as, for instance, OpenMP [4], TBB [16] and xKaapi [12]
parallel libraries.

1.1 Motivation

The multitasking and multithreading parallelization has
long existed in some manufacturers (CRAY, NEC, IBM, ...),
but each had its own instructions set. The resurgence of
multiprocessor machines with shared memory pushed to de-
fine a standard. A significant majority of manufacturers and
builders have adopted OpenMP (Open Multi Processing) as
a standard for shared memory parallelism. Many parallel li-
braries exists alongside OpenMP, and can be pooled in two
groups:

e Annotation based API:

— OpenMP is an API that supports multi-platform
shared memory multiprocessing programming on

most processor architectures and operating sys-
tems. It consists of a set of compiler directives,
library routines, and environment variables that
influence run-time behaviour. OpenMP is still
considered as standard for shared-memory archi-
tecture thanks to several advantages:

good performance and scalability,
mature library,
portability,

EE S R

simple syntax, requiring little programming
effort,

* allows incremental parallel implementation.

— SMPSS - SMP SuperScalar is a task based pro-
gramming environment for parallel applications
based on function level parallelism. Tasks are
defined with a pragma annotation right before
their function definition. This annotation indi-
cates that the following function is a task and
specifies the directionality of each of the task pa-
rameters.

e Function-class based libraries

— TBB [16] implements work stealing to balance a
parallel workload across available processing cores.
It is a library that implements task parallelism
(fork-join) and data parallelism (parallel for).

— CILK++ [20] is an extension to the C and C++
languages to support data and task parallelism
using work-stealing policy.

— xKaapi [12], as CILK++, implements both data
and task parallelism using work-stealing policy
but also with dataflow dependency between tasks.

— StarPU is a task programming library for hybrid
and heterogeneous multicore architectures.

In this work we present PALADIn that stands for Paral-
lel Algebraic Linear Algebra Dedicated Interface which is a
domain specific language dedicated to parallel exact linear
algebra computation. It is included in the FFLAS-FFPACK
library [7], but it can be used in any C++ linear exact alge-
bra library. It supports OpenMP, TBB and xKaapi parallel
environments and allows also the execution of the program
in sequential.

A domain specific language can be implemented in C4++
by using either C/C++ macros or by C++ template meta-
programming. Many aspects led us to implement a macros-
based language:

e By adding macros, no important modifications are to
be done to the original program.

e Macros can be used also for C-based algebraic libraries.
e Simpler for the programmer and the user.
e No function call runtime overhead when using macros.

For the sake of simplicity and portability, no precompila-
tion phase is needed to use the PALADIn library. Indeed,
domain specific languages can use precompiler such as flex
precompiler to generate C/C++ programs. The PALADIn
library uses compilers that are installed by default in Linux

distributions (g++, clang++, ...). By using g++ compiler
with the released version 4.9, or Clang++ version 3.7, or ear-
lier versions, the user can benefit from dataflow parallelism,
this feature is detailed in section 2. Notes, that PALADIn
can be used with older compilers, the above requirements
are only needed if one wants to use dataflow parallelism.
The PALADIn library focuses on four mains aspects:

e Give an optimized parallel interface for exact linear
algebra computation.

e Being able to use sequential C++ and parallel im-
plementations using different runtime systems with a
unique syntax.

e Provide the user the choice of different range cut strate-
gies.

e Allow switching between dataflow model and explicit
task synchronization with one implementation.

In section 2, we present the parallel environments sup-
ported by the PALADIn library. In section 3 we detail the
PALADIn syntax and define its grammar. For each runtime
library supported we show its performance on exact linear
algebra routines from the FFLAS-FFPACK library in sec-
tion 4. We also show that the PALADIn library has almost
no overhead in performance in this section.

2. LANGAGE OF PARALLEL LIBRARIES

In this work, we use three different parallel libraries: an-
notation based OpenMP library and class function based
xKaapi and TBB libraries. We present briefly in this sec-
tion directives of each language that are used in PALADIn.

2.1 OpenMP

As shared memory machine architectures started to be-
come prevalent, the OpenMP standard specification started
in 1997 and was mainly based on loops parallelization. The
concept of tasks appeared in OpenMP standard in the ver-
sion 3.0 released in 2008. Thanks to these features both
coarse-grained and fine-grained parallelism are possible. The
latest release of OpenMP in 2013, version 4.0, adds some
new features mainly support for accelerator, thread affinity
and tasking extensions by adding new OpenMP clauses. In
OpenMP standard different types of clauses exist to help
the user set data environment management. In this work,
we are interested in only few of them mostly in data sharing
attribute clauses, synchronization clauses and some schedul-
ing clauses.

OpenMP 3.0 allows two types of parallelisms:

e Parallel loops.
e Fork-join using OpenMP tasks .

In both types, data sharing attributes can be set using
mainly the following clauses:

e shared: data within a parallel region are visible and
accessible by all threads simultaneously.

e private: the data within a parallel region is private
to each thread, which means each thread will have a
local copy and use it as a temporary variable.

e firstprivate: like private except initialized to origi-
nal value.

e lastprivate: like private except original value is up-
dated after construct.

e reduction: a safe way of joining work from all threads
after construct.

By default OpenMP passes all data as firstprivate. So, if
needed, shared data can be specified by the user. One can
refer to [4] for more details.

In the latest release of OpenMP 4.0 [5], dataflow par-
allelization model is supported via the depend clause, but
needs g++ compiler version 4.9 or newer.

PALADIn supports OpenMP 3.x directives and the de-
pend clause of OpenMP 4.0

OpenMP scheduler uses 1ibgomp runtime library to han-
dle task creation and management.

2.2 TBB

Soon after the introduction of the first multicore CPU
the pentium D, Intel releases the first version of Threading
Building Blocks (TBB) in 2006. TBB is a C++ template li-
brary that provides parallel algorithms and data structures
avoiding to the user the need to deal with native thread-
ing. Unlike, OpenMP the library is compiler and platform
independent.

The library implement task parallelism with work steal-
ing strategy to circumvent unbalanced work load. Moreover,
TBB algorithms (parallel_for, parallel_reduce, ...) are
designed using fork-join tasks. Hence, every algorithm ben-
efit from the work stealing strategy, unlike OpenMP paral-
lel for. In TBB every loop based algorithm takes a functor
that helps deciding the cutting strategy of the loop range.

Since version 2.1 release in 2008, TBB integrates many
C++ 11 features to simplify the interface. For instance, one
can easily create a task by using C++ 11 lambda function,
hence avoiding the need to define specific functor.

Finally, the last feature provided by TBB is a memory
allocator that takes into account many parameters to allow
better scaling.

2.3 Kaapi

xKaapi stands for "Kernel for Adaptive, Asynchronous
Parallel and Interactive programming”. It is a C4++ library
that allows to execute fine/medium grain multithreaded com-
putation with dynamic dataflow synchronizations. It is a
work-stealing based parallel library that originally [12] aimed
to exploit with great efficiency the computation resources of
a multiprocessor cluster with a runtime support implemen-
tation. The latter is an efficient work-stealing algorithm for
a macro data flow computation based on a minor extension
of POSIX thread interface.

Today, the xKaapi project focuses on shared memory and
CPU/GPU computation. It provides an implementation of
the libgomp [17], the GNU implementation of the OpenMP
Application Programming Interface, called 1ibkomp [9]. It is
an implementation of the OpenMP standard runtime based
on the xKaapi library [13]. Expressing parallelism using
tasks allows the programmer to choose a finer grain paral-
lelism. But the success of such an approach depends greatly
on the runtime system used.

This allows to use xKaapi tasks using an optimized run-
time library libkomp to execute OpenMP tasks. It handles

task creation and scheduling better than libgomp for recur-
sive tasks [9]. Using g++4.9 or newer, libkomp library de-
tects data dependencies of the depend clause of the OpenMP
environment. This means that the PALADIn language can
support dataflow parallelism using OpenMP 4.0 and xKaapi
via the libkomp runtime library.

3. MACRO-BASED PALADIN LIBRARY

The choice of a macro based language implies some chal-
lenges:

e To give a simple interface to the user, some macros
need to be overloaded. C++ allows to specify more
than one definition for a function name in the same
scope, which is called function overloading. When an
overloaded function is called, the compiler determines
the most appropriate definition to use by comparing
the argument types used to call the function with the
parameter types specified in the definitions. However,
the compiler cannot detect overloaded macros in the
preprocessing step as it would do with functions.

e To give the user more freedom, the PALADIn library
allows to give a variable number of parameters. This
lead us to deal with variadic macros that make it diffi-
cult to iterate over arguments, or determine the num-
ber of arguments.

3.1 Implementation examples

By using the PALAD-Interface, the user can benefit from
data or task parallelism. We do not intend to explain the
PALADIn keywords here. Further explanation on the gram-
mar and description are given in sections 3.2 to 3.5. In this
section, we only give two code examples using PALADIn
to illustrate its syntax. The first example show the paral-
lel loop syntax, and the second example illustrate the task
syntax.

e Parallel loop:
Let us consider three arrays T, T1 and T2. The arrays
can be any C/C++ structure. In this example, we sum
T1 with T2 and store the result in T componentwise.
The simple C4++ code doing this operation is:

Listing 1: Loop summing of two arrays in C++

1| for(size_t i = 0 ; i < n ; ++i){
2 T[i] = T1[i] + T2[il;
3|}

The translation of the above code in the PALALDIn

syntax is:

Listing 2: Loop summing of two arrays with PALADIn

1| PARFOR1D(it, O,
2 T[it.begin ()]
begin()]1;

n, SPLITTER,
= Ti[it.begin()]+T2[it.
)

Using PALADIn parallel for, the user can set the vari-
able SPLITTER to specify the desired strategy to cut
chunks of the loop range iterated with it. More de-
tails on setting this variable and other variables can be
found in the PALADIn description in sections 3.4 and
3.6.

e Task parallelism:
In this example we illustrate the PALADIn task syn-
tax. Let us consider a free function apxy that uses
three parameters a, x and y and computes y+= ax.

Listing 3: Task call with PALADIn

=

void axpy(const Element a, const Element b
, Element y){
y t= axx;

}

TASK (MODE (READ (a,x) READWRITE(y)),
apxy(a,x,y));

S UL W N

The READ macro specifies that the arguments a and
x are only read in the task execution. The READWRITE
macro indicates that the variable y is in read and write
mode during the task execution.

3.2 PALADIn description

The PALADIn extends the C++ language with new key-
words that enable two complementary parallel programming
paradigms:

e Data parallelism (i.e. SPMD Single Program Multiple
Data), thanks to parallel regions defined by the PAR-
FOR1D and PARFOR2D keywords.

e Task parallelism:

— serial-parallel computations (i.e. fork-join) with
PAR_BLOCK and SYNCH_GROUP keywords;

— asynchronous task parallelism (i.e. tasks which
synchronizations are defined by data dependency
instead) inside the TASK keyword with READ, WRITE
and READWRITE keywords and also between depen-
dent tasks by CHECK_DEPENDENCIES keyword.

To enable parallelism in the main sequential stream of in-
structions, PARFOR1D (4, f, [, splitter,I) declares a new par-
allel loop where the variable ¢ ranges the interval [f,!] to
execute the body I. At each step, the interval is split (even-
tually recursively) thanks to splitter method in sub-intervals
that are concurrently computed. The PARFOR1D is termi-
nated when all sub intervals are computed. Note that, like in
conventional SPMD programming, I may contain branching
according to the current iteration value . The PAR_BLOCK{I}
is the special case where the interval contains only one ele-
ment.

PARFOR1D, PARFOR2D or PAR_BLOCK define a new parallel re-
gion. Like in OpenMP, a parallel region shall not be nested
within another parallel region as it can cause oversubscrip-
tion, (i.e., the number of busy threads is greater than the
number of cores), which may degrade the speedup. This
over-decomposition of the workload leads to additional un-
necessary context switches with non negligible cost.

SYNCH_GROUP (/) — with I denoting a block of instruc-
tions — enables to declare a new synchronization point (i.e.
local barrier) : at execution, the SYNCH_GROUP (I) instruction
is passed only after completion of all parallel computations
forked by I.

Indeed, within a SYNCH_GROUP, the instruction TASK(D),
I) forks the execution of the instruction I. The default
synchronization (local barrier) after I is at the end of the

SYNCH_GRQOUP. Moreover, D defines additional synchroniza-
tions from expressing dataflow dependencies; indeed D op-
tionally defines the access mode to objects through four lists
of variables:

e REFERENCE(wvariables list) : those variables are passed
by reference to I (by default, variables are passed by
value, similarly to mod firstprivate in OpenMP);

e READ(wariables list) :
but not modified;

those variables are read by I,

e WRITE(variables list) :
but not read;

those variables are written,

e READWRITE(variables list) : those variables are read

then written (update).

Note that the MODE macro allows to describes any task de-
pendencies that form a directed acyclic graph. Only those
explicit dependencies define synchronizations within a group,
before the local barrier at the end of the group.

3.3 PALADIn grammar

PALADIn extends the instruction set of C++ with new
instructions; the following grammar defines the sequences
of those instructions (traces) that are considered not only
valid syntactically but also at execution. In particular, it
doesn’t allow not only incorrect syntax constructions but
also incorrect in term of the performance of executions, as
for instance preventing nesting of PARFOR or PAR_BLOCK.

Any trace (full instructions stream) of a valid PALADIn
program is an instance of PALADIN_INSTR. In this gram-
mar, SEQ_INSTR denotes any sequential instruction (at any
level of trace) resulting from the execution of a standard
C++ block of instructions, excluding the new PALADIn
keywords.

We extend this grammar by adding new set of instructions
(lexicographic units are in bold):

PALADIN_INSTR — SEQ_INSTR
| PAR_BLOCK{SYNCH_INSTR}
| PARFOR1D(INTERAVLID, SYNCH_INSTR)
| PARFOR2D(INTERVAL2D, SYNCH_INSTR)
| (PALADIN_INSTR;)*

SYNCH_INSTR — SEQ_INSTR
| SYNCH_GROUP(ASYNCH_INSTR)
| (SYNCH_INSTR;)*

ASYNCH_INSTR — SYNCH_INSTR
| TASK(DEPENDENCIES, ASYNCH_INSTR)
| FORID(INTERVALID, ASYNCH_INSTR)
| FOR2D(INTERVAL2D, ASYNCH_INSTR)
| (ASYNCH-INSTR;)*

DEPENDENCIES — MODE((CONSTREF_STATE)?
| (REF_STATE)?
| (READ_STATE)?
| (WRITE_STATE)?
| (READWRITE_STATE)?)

INTERVAL1D — IDF, INT_EXPR, INT_EXPR, SPLIT-
TER

INTERVAL2D — IDF, INT_EXPR, INT_EXPR,
IDF, INT_EXPR, INT_EXPR, SPLITTER

CONSTREF_STATE — € | CONSTREFERENCE(VAR)+
REF_STATE — € | REFERENCE(VAR)+
READ_STATE — ¢ | READ(VAR)+

WRITE_STATE — ¢ | WRITE(VAR)+
READWRITE_STATE — € | READWRITE(VAR)+
SPLITTER — INT_EXPR, STRATEGY

STRATEGY — SINGLE
| ROW_FIXED

| COLUMN_FIXED

| BLOCK_FIXED

| ROW_THREADS

| COLUMN_THREADS
| BLOCK_THREADS

| GRAIN_SIZE

| TWO_D

| THREE_D_INPLACE
| THREE_D_ADAPT

| TWO_D_ADAPT

| THREE_D

3.4 Cutting strategies

The SPLITTER parameter in the previous grammar gives
the range cut strategy used to execute the corresponding
program inside the loop. We present here all the cutting
strategies that are used in the following macros: PARFOR1D
PARFOR2D, FOR1D and FOR2D.

PALADIn implements an overall of 8 different matrix cut-
ting strategies for iterative algorithms that are grouped in
two categories:

e One dimension cutting strategies:

ROW_THREADS This cutting strategy take into account
the number of processors p, and splits the rows of
the matrix into exactly p row slabs.

ROW_FIXED This cutting strategy cuts the rows of the
matrix with a fixed grain size set by default to
256.

COLUMN_THREADS As the ROW_THREADS strategy, COL-
UMN_THREADS take into account the number of pro-
cessors p but splits the columns of the matrix into
exactly p column slabs.

COLUMN_FIXED This cutting strategy cuts the columns
of the matrix with a fixed grain size set by default
to 256.

e The two dimensions cutting strategies:

BLOCK_THREADS This strategy cuts the two dimensions
of the output matrix. When performing the op-
eration C < A x B, it splits A in s row slabs and
B in t column slabs, and splits the matrix C' in
s X t tiles. The values for s and ¢ are chosen such
that their product equals the number of threads
available.

BLOCK_FIXED This strategy cuts the two dimensions of
the matrix C as the BLOCK_THREADS cutting strat-
egy by with a fixed grain size set to 256. This
gives tiles of size 256 x 256.

GRAIN_SIZE This strategy allows the user to give a
block size b. Thus tiles are of size b X b.

The SINGLE strategy is the strategy that does not cut the
matrices and thus allows a standard sequential behavior of
the loop.

In the case of recursive matrix multiplication algorithms
that involve splitting of three dimensions, one can use 5 dif-
ferent recursive cuttings provided by PALADIn. We show
here these cutting strategies, that are dedicated for the par-
allel general matrix multiplication (pfgemm) operation: com-
puting C < aA X B+ C, where A, B and C are dense ma-
trices with dimensions respectively (m, k), (k,n) and (m,n).

TWO_D The 2D recursive partitioning performs a 2 x 2 split-
ting of the matrix C at each level of recursion. Each
recursive call is then allocated a quarter of the number
of threads available. This constrains the total number
of tasks created to be a power of 4 and the splitting
will work best when the number of threads is also a
power of 4.

TWO_D_ADAPT The 2D recursive adaptive partitioning cuts
the largest dimension between m and n, at each level
of recursion, creating two independent recursive calls.
The number of threads is then divided by two and
allocated for each separate call (with a discrepancy of
allocated threads of at most one). This splitting better
adapts to an arbitrary number of threads provided.

THREE_D_INPLACE The 3D in-place recursive cutting strat-
egy performs 4 multiply calls, waits until blocks el-
ements are computed and then performs 4 multiply
and accumulation. This variant is called inplace since
blocks of matrix C are computed in place.

THREE_D performs 8 multiply calls in parallel and then per-
forms the add at the end. To perform 8 multiplications
in parallel we need to store the block results of 4 mul-
tiplications in temporary matrices. As in the previous
routine, each task calls recursively the routine.

THREE_D_ADAPT The 3D recursive adaptive cutting strategy
cuts the largest of the three dimensions in halves. When
the dimension k is split, a temporary is allocated to
perform the two products in parallel. As the split
the k dimension introduces some overhead, one can
introduce a weighted penalty system to only split this
dimension when it is largely greater than the other di-
mensions: with a penatly factor of p, the dimension k
is split only when max(m,n) < pk.

3.5 Implementation issues and extensions

The PALADIn language is implemented by macro defi-
nitions with implementations provided for sequential C++
programs and several target parallel environments. Cur-
rently for the C+4 language the libraries OpenMP, TBB
and xKaapi are targeted. Thus syntax of C++ is not mod-
ified, enabling to use PALADIn for any program written in
C++.

While OpenMP 4 and xKaapi supports data dependen-
cies, environments like OpenMP 3 or TBB does not. Hence,
to guarantee synchronizations related to data dependencies
in a language with no support of it, we have defined a new in-
struction CHECK_DEPENDENCIES that forces the dependencies

N OOt W N

[

[V)

previously defined in the current group. This implementa-
tion may be pessimistic but ensures PALADIn independence
from the underlying parallel environement. In our OpenMP
4 and xKaapi implementations, since dependencies are en-
sured at task creation, CHECK_DEPENDENCIES has no effect.
But in OpenMP 3 and TBB it is compiled as a local syn-
chronization barrier within the group.

3.6 Code examples

We show here the PALADIn semantics and its equivalence
in OpenMP and TBB on the axpy example given in section
3.1. The task that performs this operation is invoked by :

void axpy(const Element a,
Element y){
y += axx;

}

const Element b,

SYNCH_GROUP (
TASK(MODE(READ(x, y) READWRITE(y)),
axpy(a, x, y)););

J

We show its equivalent implementation with OpenMP 3 syn-
tax:

#pragma omp task
axpy(a, x, y);
#pragma omp taskwait

With OpenMP 4 syntax using the "depend” clause:

#pragma omp task depend(in:a,x) depend(inout:y)
axpy(a, x, y);
#pragma omp taskwait

Using lambda function, the syntax with tbb becomes:

tbb::task_group g;
g.run([&y, a, x](O{axpy(a, x,
g.wait () ;

y);H);

J

The SYNCH_GROUP macro ensures that a local synchroniza-
tion is set at the end of the AXPY task.

Below we illustrate two examples using the PALADIn syn-
tax, and show, in section 4, how the cutting strategy can
have an impact on the parallel performance.

The first example depicts three different implementations
to write a parallel loop of a C++ program: one using the
OpenMP parallel loop syntax, Listing 4, the other one using
TBB parallel_for, Listing 5, and the PALADIn syntax,
Listing 6, for the parallelization of the same loop by using
different cutting strategies. In this example we attempt to
perform the operation C' < A + B, where the matrices A, B
and C' are stored in a row major manner. The pfadd routine
processes this operation on several pairs of operands simul-
taneously which allows each thread to execute a vectorized
add operation.

Listing 4: parallel fadd with OpenMP parallel loop

void pfadd(const Field & F, const Element *A,
const Element *B, Element *C, size_t n){
#pragma omp parallel for

for(size_t i = 0 ; i < n ; ++i){
FFLAS::fadd(F, 1, n, A+i*n, n, B+i*n, n, C+
i*n);
}

W

© 00O O

Listing 5: parallel fadd with TBB

void pfadd(const Field & F, const Element *A,
const Element *B, Element *C, size_t n){
parallel_for(blocked_range<size_t>(0, n),
[¥] (blocked_range<size_t> & r){
for(size_t i = r.begin() ; i < r.end() ;
++i){
FFLAS::fadd(F, 1, n,
, C+i*n, n);

A+i*n, n, B+i*n, n

3

Listing 6: parallel fadd with PALADin

void pfadd(const Field & F, const Element *A,
const Element *B, Element *C,
size_t n){

FFLAS::ParSeqHelper::Parallel splitter = FFLAS
::ParSeqHelper::Parallel (32, ROW_THREADS);
PARFOR1D(it, O, n, splitter,

FFLAS::fadd(F, it.end()-it.begin(), n, A+it
.begin()*n, n, B+it.begin()*n, n, C+it.
begin()*n, n););

}

The splitter parameter, in Listing 6, can be defined as
a parallel or a sequential helper. In the sequential case,
no cutting strategy will be used. In this example it is set
as a parallel helper with FFLAS: :ParSeqHelper: :Parallel
and takes two arguments to specify a cutting strategy: the
number of threads (i.e. 32 threads in this example) and the
strategy of splitting (for instance the ROW_THREADS strategy)
of the matrix.

As a second example, we use the sparse matrix-vector
product over a finite field. In this operation, the matrix
is stored in the classical Compress Sparse Rows (CSR) for-
mat [8], see Figure 2. The CSR format is composed of 3
arrays: the first one to store the value of non zeros, the
second one to store the column indices of the non zeros ele-
ments, and a third one containing pointer of where the ith
rows start in the two previous arrays. Hence the CSR save
some memory which increase performance as the SpMV op-
eration is memory bound. The OpenMP implementation is
shown in Listing 7, the TBB implementation in Listing 8
and the PALADin implementation in Listing 9. The perfor-
mance behaviour of this operation and its implementations
are explained in subsection 4.1.

We illustrate, in this example, the implementation of a
simple parallel loop with OpenMP and TBB on a sparse
matrix-vector multiplication operation.

Listing 7: Parallel implementation of SpMV with OpenMP

void spmv(const Field & F, const CSRMat & A,
const Element *x, Element *y){
#pragma omp parallel for
for(size_t i = 0 ; i < n ; ++i){
size_t start = M.rowPtr[i], stop =
[i+1];
for(size_t j = start ; j < stop ;
y[i]l += M.val[j]l * x[M.col[jl];

M.rowPtr
++3)1{

}
}

= O © 0w NOo ot

_ =

© N>

o .
2 5 8
46
1-1
M= 9 (1)
11
4 6
L 7 9]

Figure 1: A matrix M.

Val [1[7]2]5[8]4[6][1]-1[9[1]1[4][6]7[9
Col A1 |63 151947 |1 514[5[1]6]7]9]
RowPtr\[1[3 /6 9 11]12]12]1315[17

Figure 2: CSR storage of the matrix M.

Listing 8: Parallel implementation of SpMV with TBB

void spmv(const Field & F, const CSRMat & A,
const Element *x, Element *y){
parallel_for(blocked_range<size_t>(0,
[&] (blocked_range<size_t> & r){
for(size_t i = r.begin() ; i < r.end() ;
++i){

A.m),

size_t start = M.rowPtr[i], stop = M.
rowPtr [i+1];
for(size_t j = start ; j < stop ; ++j){

y[il += M.vall[j]
}
}
b

* x[M.col[jl];

J

Listing 9: Parallel implementation of SpMV with PALADin

void spmv(const Field & F, const CSRMat & A,
const Element *x, Element x*y){
PARFOR1D(it, O, A.m, splitter,
for(size_t i = it.begin() ;
;o ++id{

i < it.end()

size_t start = M.rowPtr[i], stop = M.
rowPtr[i+1];
for(size_t j = start ; j < stop ; ++j){

y[i] += M.val[j] * x[M.col[jl];
}
}

4. PERFORMANCE OF PALADIN LIBRARY

In this section we show the performance the PALADIn li-
brary for the data parallelism and task parallelism program-
ming styles. Experiments are done on 32 cores (4 NUMA
nodes with 8 cores each) Xeon E4620 2.2Ghz.

4.1 parallel loop performance

Parallelizing loops with OpenMP can be very simple us-
ing #pragma omp parallel for. This lets the scheduler of
OpenMP to choose the default mode for cutting loop itera-
tions in chunks and distribute them on available resources.
The user can set the strategy for the scheduler to specify
the size of chunks that can be executed statically or dynam-
ically. Using the PALADIn cutting strategies one can have

better performance without important modification of the
program.

We show here the performance of the two examples de-
scribed in the previous section.

Matrix Addition.

Table 1 shows the performance of Listing 4, Listing 5 and
Listing 6 described before. For the PALADIn implemen-
tation two cutting strategies are used, ROW_THREADS and
ROW_FIXED, according to one dimension to show that for
a simple parallel loop one can achieve better performance
using the PALADIn cutting strategy than the default cut-
ting strategies given by a standard parallel model such as
OpenMP and TBB. We execute the PALADIn cutting strate-
gies with OpenMP and TBB. Table 1 demonstrates that
the best performance are obtained with the ROW_THREADS
cutting strategy for the parallel dense matrix-matrix addi-
tion operation. Even when using the same cutting strategy
(ROW_THREADS) we can see that TBB is slower than OpenMP.
Since the executions are done on 32 cores of a NUMA ma-
chine architecture, TBB does not chose obviously the best
cutting strategy adapted to the machine hierarchy.

Matrix dimension 1000 2000 3000 4000
omp parallel for 1.7 4.2 8.4 15.0
omp PARFOR1D (ROW_THREADS) 1.2 3.6 8.2 14.0
omp PARFOR1D (ROW_FIXED) 1.9 5.8 9.8 17.0
TBB parallel_for 5.0 16.0 28.0 160.0

TBB PARFOR1D (ROW_THREADS) 1.4 6.6 15.0 30.0
TBB PARFOR1D (ROW_FIXED) 2.6 11.0 23.0 34.0

Table 1: Timings in milliseconds of the PALADIn language
using two different cutting strategies compared to openmp
“parallel for” for the fadd operation of two square matrices.

SpMYV Operation.

For the experiments we used two matrices:

e ffs619 of dimensions 653365 x 653365 with an average
of 100 non zeros elements by row

e {fs619 of dimensions 3602667 x 3602667 with an average
of 110 non zeros elements by row

The computation is done over the finite field Z/524309Z,
using 8 cores, results are reported in table 2.

The non zeros elements of the matrices are not uniformly
distribute, more than 90 % of the non zeros elements are
in the first thousand rows and the last rows have at most 3
elements.

The OpenMP implementation does not perform well be-
cause the scheduling strategy cannot deal with unbalanced
workload provide by the particular distribution of the non
zeros elements. The TBB implementation perform better
because TBB uses task parallelism with work stealing strat-
egy to compute the loop, thus balancing the workload more
efficiently over the cores. However, by default the TBB task
are composed of at most two rows which mean that for the
sparsest part of the matrix, a task only compute 8 multi-
plications and 8 additions. Hence, the overhead of TBB
task management greatly impact performances. With the

PALADin implementation, the ROW_THREADS cutting strat-
egy produces only 8 tasks where each one as a part of the
loop range, this strategy is similar to the OpenMP parallel
for, thus produces bad performances. The ROW_FIXED cut-
ting strategy split the loop in a fixed number of iterations
(256 in this benchmarks) allowing the scheduler to efficiently
balance the workload over the cores and the tasks are big
enough to cover the management overhead.

Matrix ffs619 fI809

OpenMP 0.49 0.26
omp FORID(ROW_THREADS) 0.40 0.24
omp FORID(ROW_FIXED) 2.00 0.95

TBB 0.95 0.43
tbb FORID(ROW_THREADS) 0.44 0.26
tbb FORID(ROW_FIXED) 1.99 0.90

Table 2: Performance in Gfops of PALADIn compared to
OpenMP and TBB "parallel for” for the CSR spmv opera-
tion of two sparses matrices arising in the discrete logarithm
problem [2].

We can see clearly, in this table, that using the cutting
strategy ROW_FIXED one can achieve at least a speed-up of 2
to perform a sparse matrix-vector multiplication operation.

4.2 Fork-join performance

In this section we show performance of PALADIn inter-
face implementing exact linear algebra routines using tasks.
We compare here execution speed of different cutting strate-
gies, described in section 3, for the matrix product operation
using OpenMP (using libgomp runtime library) and xKaapi
(using libkomp runtime library).

In these experiments, we use the effective Gfops metric:

GfOpS _ # of field ops usingtiﬁlz;ssic matrix product . Tt stands for
Giga field operations per second and is 2;”"’“ for the product
éme
2n

of an m X k by a k x n matrix, and 37— for the Gaussian
elimination of a full rank n X n matrix.

Experiments are conducted on square matrices with di-
mensions between 1000 and 15000 and elements are over
the finite field Z/131071Z, using 32 cores.

Figures 4 and 5, for sake of simplicity, show the behavior
of the best 5 different cutting strategies for the parallel ma-
trix multiplication operation. With the libgomp runtime,
the BLOCK_THREADS cutting strategy is much faster, as re-
cursive tasks seem to be poorly handled. Thanks to its ef-
ficient management of recursive tasks, the libkomp runtime
behaves better for the recursive variants. Using TBB tasks,
all cutting strategies have almost the same behavior when
matrix dimensions gets bigger. These experiments demon-
strates also that TBB handles better than OpenMP parallel
recursive tasks and this shows the impact of a work-stealing
based library on the overall performance.

4.3 Dataflow dependencies performance

In this section, we show the performance of PALADIn
library when the dataflow parallelization is set.

Figure 6 shows the behavior of an iterative algorithm that
computes the PLUQ decomposition [11] with explicit syn-
chronizations (red and blue curves) and with data depen-
dency synchronizations (black and yellow curves). In this

pfgemm on 32 cores Xeon E4620 2.2Ghz with TBB
500

=

i
400 /t\ . P =

300

LS
200 //4

/ BLOCK-THREADS —+—
100 TWO-D
TWO-D-ADAPT ——

Gfops
A

THREE-D
T‘H REE—D—A‘DAPT —
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

Figure 3: Speed of different matrix multiplication cutting
strategies using TBB tasks

pfgemm on 32 cores Xeon E4620 2.2Ghz with OpenMP
500

400 /,,, ,,,,\ = TNy
300 /
"
2 / .4
g / et
& 200 / /%%m/
—
r// T BLOCK-THREADS —+—
100 TWO-D |
L] TWO-D-ADAPT —%—
THREE-D
THREE-D-ADAPT —e—
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension
Figure 4: Speed of different matrix multiplication cutting

strategies using OpenMP tasks

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp
500

‘
—
400
s
p
300 ; s
2 v
2 £
[C)
200 [y
BLOCK-THREADS —+—
100 TWO-D |
TWO-D-ADAPT —%—
THREE-D
THREE-D-ADAPT —e—
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

Figure 5: Speed of different matrix multiplication cutting
strategies using xKaapi tasks

experiment we used an iterative version of the algorithm de-
scribed in [11]. Since TBB does not support dataflow par-
allelization, the execution speed of the algorithm is shown
using the two runtime systems OpenMP and xKaapi.

This figure demonstrates that an algorithm that gener-
ates many dependent tasks could take advantage from the
dataflow parallelization model supported in the PALADIn
library.

5. CONCLUSION

We presented in this work, the PALADIn interface that al-
lows the user, using mainly C macros, to write C4++ code and
benefit from sequential and parallel executions on shared
memory architectures. We have shown three parallel en-
vironment libraries: OpenMP, TBB and xKaapi, that are

Speed of parallel PLUQ with PALADIn library on full rank matrices
200 T

A
-
100 . H%/??Z//

50

Gfops

KAAPI dataflow sync pluq iter<131071> —e—
OMP dataflow sync pluq iter<131071>

KAAPI explicit sync plug iter<131071> —e—

OMP exphcit‘ sync p\uq iter<131971> —e‘—

.

0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

Figure 6: Speed of parallel PLUQ decomposition using the
PALADIn library with and without dataflow dependencies
between tasks

supported in this domain specific language. This interface
provides data parallelism and task parallelization. Hence,
depending on the runtime system used, the task paralleliza-
tion can be performed either by using explicit synchroniza-
tions or using data-dependency based synchronizations.

We have proved that, comparing to OpenMP and TBB
parallel for, the diversity of matrix cutting strategies pro-
vided in this language, helps the user to obtain always better
performance.

The PALADIn interface can be used in any C4++ library
for linear algebra computation and gets the best parallel
performance from three supported runtime systems.

Further extensions of the PALADIn library can be im-
plemented, especially when detecting dependencies between
tasks. For now, data dependencies are detected thanks to
the pointer passed in parameters. The computation of data
dependencies could be affected and the result could be in-
correct when treating with overlapping blocks. In the latter
case, the range of the blocks can be passed in parameter in
the macros READ, WRITE and READWRITE.

References

[1] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A.
McKenney, J. D. Croz, S. Hammarling, J. Demmel,
C. H. Bischof, and D. C. Sorensen. “LAPACK: a portable
linear algebra library for high-performance comput-
ers”. In: Proceedings Supercomputing 90, New York,
NY, USA, November 12-16, 1990. 1990, pp. 2—-11.

[2] R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H.
Jeljeli, E. Thomé, M. Videau, and P. Zimmermann.
“Discrete Logarithm in GF(2809) with FFS”. In: Public-
Key Cryptography - PKC 2014 - 17th International
Conference on Practice and Theory in Public-Key Cryp-
tography, Buenos Aires, Argentina, March 26-28, 2014.
Proceedings. 2014, pp. 221-238.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J.
Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G.
Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 1997.

[4] O. A. R. Board. OpenMP Application Program Inter-
face version 3. 2008. URL: http://www.openmp.org/
mp-documents/spec30.pdf.

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf

[11]

[12]

[13]

[14]

[15]

[16]

O. A. R. Board. OpenMP Application Program Inter-
face version 4. 2013. URL: http://www.openmp.org/
mp-documents/spec30.pdf.

W. Bosma, J. J. Cannon, and C. Playoust. “The Magma
Algebra System I: The User Language”. In: J. Symb.
Comput. 24.3/4 (1997), pp. 235-265.

B. Boyer, A. Breust, J.-G. Dumas, P. Giorgi, C. Per-
net, Z. Sultan, and B. Vialla. FFLAS-FFPACK: Finite
Field Linear Algebra Subroutines / Package. v2.0.0.
http://linalg.org/projects/fHas-fipack. 2014.

B. Boyer, J. Dumas, and P. Giorgi. “Exact sparse matrix-
vector multiplication on GPU’s and multicore archi-
tectures”. In: Proceedings of the 4th International Work-
shop on Parallel Symbolic Computation, PASCO 2010,
July 21-23, 2010, Grenoble, France. 2010, pp. 80-88.

F. Broquedis, T. Gautier, and V. Danjean. “libKOMP,
an Efficient OpenMP Runtime System for Both Fork-
Join and Data Flow Paradigms”. In: OpenMP in a
Heterogeneous World - 8th International Workshop on
OpenMP, IWOMP 2012, Rome, Italy, June 11-13, 2012.
Proceedings. 2012, pp. 102-115.

J. Dumas, T. Gautier, C. Pernet, and Z. Sultan. “Par-
allel Computation of Echelon Forms”. In: Furo-Par
2014 Parallel Processing - 20th International Confer-
ence, Porto, Portugal, August 25-29, 2014. Proceed-
ings. 2014, pp. 499-510. por: 10.1007 /978-3-319-
09873-9_42.

J. Dumas, C. Pernet, and Z. Sultan. “Simultaneous
computation of the row and column rank profiles”. In:
International Symposium on Symbolic and Algebraic
Computation, ISSAC’13, Boston, MA, USA, June 26-
29, 2013. 2013, pp. 181-188.

T. Gautier, X. Besseron, and L. Pigeon. “KAAPIL: A
thread scheduling runtime system for data flow com-
putations on cluster of multi-processors”. In: Parallel
Symbolic Computation, PASCO 2007, International Work-
shop, 27-28 July 2007, University of Western Ontario,
London, Ontario, Canada. 2007, pp. 15-23.

T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin.
“XKaapi: A Runtime System for Data-Flow Task Pro-
gramming on Heterogeneous Architectures”. In: 27th
IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS 2013, Cambridge, MA, USA,
May 20-24, 2013. 2013, pp. 1299-1308.

W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast
Library for Number Theory. Version 2.4.0, http://
flintlib.org. 2013.

Intel Math Kernel Library. Reference Manual. ISBN
630813-054US. Santa Clara, USA: Intel Corporation,
2009.

Intel Threading Building Blocks. Santa Clara, USA: In-

20]

tel Corporation, 2008. URL: https://www.threadingbuildingblocks.

org/.

J. Jelinek and et al. The GNU OpenMP implemen-
tation. 2014. URL: https://gcc.gnu.org /onlinedocs /
libgomp.pdf.

M. library. http://icl.cs.utk.edu/magma/index.html.
P. library. http://icl.cs.utk.edu/plasma/index. html.

K. H. Randall. “Cilk: Efficient Multithreaded Comput-
ing”. PhD thesis. Department of Electrical Engineer-
ing and Computer Science, Massachusetts Institute of
Technology, May 1998.

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://linalg.org/projects/fflas-ffpack
http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://dx.doi.org/10.1007/978-3-319-09873-9_42
http://flintlib.org
http://flintlib.org
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://gcc.gnu.org/onlinedocs/libgomp.pdf
https://gcc.gnu.org/onlinedocs/libgomp.pdf

	Introduction
	Motivation

	langage of parallel libraries
	OpenMP
	TBB
	Kaapi

	macro-based PALADIn library
	Implementation examples
	PALADIn description
	PALADIn grammar
	Cutting strategies
	Implementation issues and extensions
	Code examples

	Performance of PALADIn library
	parallel loop performance
	Fork-join performance
	Dataflow dependencies performance

	Conclusion

