
Controlling Cache Utilization of HPC Applications

Swann Perarnau Marc Tchiboukdjian Guillaume Huard
INRIA MOAIS Team, CNRS LIG Lab, Grenoble University

{perarnau,tchiboukdjian,huard}@imag.fr

ABSTRACT
This paper discusses the use of software cache partitioning
techniques to study and improve cache behavior of HPC ap-
plications. Cache partitioning is traditionally considered as
an hardware/OS solution to shared caches issues, particu-
larly to resource utilization fairness between multiple pro-
cesses. We believe that, in the HPC context of a single
application being studied/optimized on the system, with a
single thread per core, cache partitioning can be used in new
and interesting ways.

First, we propose an implementation of software cache
partitioning using the well known page coloring technique.
This implementation differs from existing work by giving
control of the partitioning to the application programmer.
Developed on the most popular OS in HPC (Linux), this
cache control scheme has low overhead both in memory and
CPU while being simple to use.

Second, we show how this user-controlled cache partition-
ing can lead to efficient measurements of the cache behavior
of a parallel scientific visualization application. While ex-
isting works require expensive binary instrumentation of an
application to obtain its working sets, our method only needs
a few unmodified runs on the target platform.

Finally, we discuss the use of our scheme to optimize mem-
ory intensive applications by isolating each of their critical
data structures into dedicated cache partitions. This isola-
tion allows the analysis of each structure cache requirements
and leads to new and significant optimization strategies. To
the best of our knowledge, no other existing tool enables
such tuning of HPC applications.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques

General Terms
Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS 2011 June 1–4, Tucson, Arizona.
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
page coloring, cache partitioning, working set

1. INTRODUCTION
The memory cache behavior of high performance comput-

ing (HPC) applications is a topic that has been the focus of
numerous studies. Most of those studies analyze the cache
usage ratio of a target application: how much cache is effi-
ciently used. This usage ratio is closely related to working
sets [2, 10].

From a general point of view, the working sets model the
performance of a process relative to its resource utilization
during a time interval. In particular, these working sets
highlight specific ranges of values of the quantity of resources
assigned to the process for which the process performance
does not vary. Applied to the full execution period it out-
lines the resources an application requires to reach a given
performance level. In [2, 10], this model has been applied
successively to cache performance analysis.

Closely related to working sets, the reuse distance of an
application, introduced by Beyls and D’Hollander in 2001 [1],
plays a major role in its cache performance. The reuse dis-
tance is defined, for each memory access performed by the
application, as the number of different memory accesses re-
alized before the next access to the same location, if any.
Under the assumption that the application runs on a ma-
chine equipped with a fully associative cache using the least
recently used (LRU) policy, this metric expresses exactly the
efficiency in cache of the application: measuring the reuse
distance of each memory access will determine if a cache
miss will be triggered by this access. Regarding set asso-
ciative caches, where line eviction depends on memory ac-
cesses in the same set and where the LRU implementation
usually presents slight modifications, several papers studied
and confirmed the accuracy of the reuse distance [1, 24].

Formally, if the number of accesses having a reuse distance
of d is H(d), then the number of cache misses Q(C) occurring
on a cache of size C is: Q(C) =

∑∞
d=C+1 H(d) where

a reuse distance of ∞ is associated to the initial access to
each element. Thus, the working sets of an application are
directly related to its reuse distance: if there exist a range
[i, j] for which H is null (i.e. ∀d ∈ [i, j] H(d) = 0), then
Q(C) will stay the same for values of C in this range [i, j].
This is obvious: if memory accesses of an application do
not change from misses to hits when giving it slightly more
cache, its performance will stay constant. More precisely,
working sets can be deduced from reuse distances as the
integral function of their distribution.

Unfortunately, despite its obvious usefulness, the evalua-
tion of the reuse distances of a given application is tremen-
dously difficult. Static analysis of the source code is quickly
limited by its complexity and by missing runtime data. As
an alternative, reuse distance are often determined by gath-
ering the application’s memory accesses using tools like Pin [20]
or Valgrind [22]. They can also be used to measure working
sets by feeding the memory access trace to a cache simulator
(Valgrind even include a virtually indexed one). Neverthe-
less, the simulation of all the memory accesses of an appli-
cation requires huge computational resources, limiting those
experiments to short runs.

Our first contribution is a tool and a method for measur-
ing working sets of an application. Our method do not suffer
from the huge computational overhead induced by simula-
tion methods. Indeed, determining one point of the working
sets function just requires one regular run of the application.
To achieve this result, we make use of well known page color-
ing techniques [16] to implement a cache control mechanism.
Then, we use this cache control mechanism to assign to a
given application a chosen fraction of the hardware cache.
The resulting performance is a point of the working set func-
tion Q.

Our second contribution aim at improving the cache per-
formance of a single HPC application. In particular, we
show that our cache control method can be used to evalu-
ate how memory accesses to each distinct data structure of
the application contribute to the working set function. We
deduce from this information an estimation of the cache re-
quirements of each of these data structures. Combining this
information with our cache control tool, we allocate to each
data structure a well chosen fraction of the cache: memory
accesses to this structure are then cached only to this frac-
tion of the hardware cache. Finally we demonstrate that
carefully choosing the partition size of each data structure
can result in significant performance improvements.

The remainder of this paper is organized as follows. The
next section presents a simple software cache partitioning
mechanism based on page coloring. It differs from previ-
ously presented works as it gives control of partitions to
users (application programmers) instead of the OS. Sec-
tion 3 describes the implementation of our proposal on the
Linux Operating System as well as its interfaces. We val-
idate this implementation both as a page coloring facility
and a cache controller in Section 4. This validation is based
on working sets detection of a perfectly understood applica-
tion, it makes sure that the working set changes accordingly
to the cache partition in use.

This working set analysis is then applied in Section 5 to a
parallel visualization application having more complex mem-
ory access patterns. This application can be configured to
use different parallelization schemes. Thus, using our tool,
we determined its working sets to select the most cache ef-
ficient parallelization scheme. To the best of our knowledge
this paper is the first to focus on such working set analysis
on actual application executions in the HPC context.

Section 6 presents various possible uses of our cache parti-
tioning scheme to improve the cache performance of several
parallel applications. First, we show how the noise of a
data structure with close-to-none reuse distance can be sup-
pressed, giving more cache to the remaining data structures
of a visualization application. Then, we analyze in details
an application (a multigrid stencil) to determine the work-

ing set of each of its data structures. Those working sets
are evaluated by isolating each data structure inside its own
partition and making the partition size vary. This analysis
leads to a global partitioning of the application, dramatically
improving its performance.

Finally we compare our tool to related works in Section 7
and summarize our results in Section 8.

2. CACHE CONTROL BY PAGE COLOR-
ING

Our cache control tool is based on a straightforward and
lightweight method: page coloring. It has been designed for
way-associative, physically indexed caches, but can also be
applied to direct mapped ones. As most cache architectures
are nowadays way-associative or direct mapped caches, our
control scheme can be applyed on almost all recent systems.
For clarity we define C as the cache size, A as its associa-
tivity (i.e. its number of ways), L as the cache line size and
P as the page size. All sizes are in bytes.

As page coloring is critical to understand both our cache
control mechanism and the experiments in the remainder of
the paper, we recall its principle in the following subsection.

2.1 Page Coloring
Most modern architectures use physically indexed caches.

In such systems, if the mapping of virtual pages to physical
ones performed by the virtual memory (VM) subsystem is
not properly chosen, unnecessary cache conflicts can be trig-
gered during processes execution. Kessler et al. [16] showed
that a VM subsystem choosing page mappings arbitrarily
contributed up to 30% of total cache conflicts in an appli-
cation execution. They proposed several careful-mapping
algorithms to solve this problem, of which page coloring is
the most popular in Operating System research. Several
major OS implement it in their virtual memory subsystems
(FreeBSD and Windows NT among others) and it has been
praised as a key component of cache optimization of appli-
cations as well as a good performance stabilizer [8, 17].

Page coloring identifies by a color the group of physical
pages that conflict (or overlap) in a cache. This definition
arises from the inner working of physically indexed caches.
It can be summarized as follows. Physical memory is cached
line by line and each page is several lines long. As lines are
mapped to associative sets in a round-robin fashion, consec-
utive lines of the same physical page are mapped to several,
consecutive associative sets. The number of lines (and sets)
in a cache being limited, many pages map to the same asso-
ciative sets. A color identifies indiscriminately the group of
pages overlapping in cache or the group of associative sets
they map to. As a cache possesses C/AL associative sets
and a page occupies P/L cache lines, the number of colors
in a cache is C/AP . Figure 1 illustrates this page mapping
and the corresponding colors on an hypothetical cache with
8 associative sets of 8 ways and physical pages being two
lines long.

An OS virtual memory subsystem implementing page col-
oring tries to optimize cache utilization by giving different
colors to consecutive virtual pages. As a page color never
changes, page coloring is easily implemented in an efficient
way. Of course, as the number of colors in a system is lim-
ited, it might still be necessary to give some pages of the
same colors to a memory demanding process.

RAM

. . .

.

.

.

Cache (Associative Sets)

Figure 1: Page coloring in an hypothetical system
with 2 lines per page and a 4 colored cache with 8
ways. Pages are placed in the cache in round robin,
each line in a different associative set. Pages of the
same color are placed in the same associative sets.

In a multiprogrammed environment this definition of page
coloring does not suffice. To ensure fair resource sharing,
page coloring is also tuned to give different colors to distinct
processes. This way, applications competing for the same
core will not trash each other’s cache. This well studied
issue [14,18] is close to our work although we focus on cache
sharing inside a single application. Indeed, our goal is to
provide a cache partitioning interface based on page coloring
directly to applications. Furthermore, in most HPC context,
applications only have one thread per core. Thus, the precise
issues we study relate to cache sharing (which is discussed
later in this article), rather than resources contention.

2.2 Cache Control
In a sense, page coloring was one of the first cache parti-

tioning algorithm. In this special case, each color represents
a partition and giving processes different colors ensures they
use different portions of the cache. Our cache control mecha-
nism is a direct extension of this partitioning scheme, allow-
ing a partition to span several colors. It works in two phase:
first, the user sets a portion of physical memory aside for the
page coloring scheme. Then he is provided with a specific
memory allocation device which returns pages of a config-
urable set of colors in response to allocation requests. This
control scheme allows an application programmer to select
the colors allocated to some dynamic memory allocations
(i.e data structures), creating custom cache partitions, us-
able in parallel. As further sections of this paper will show,
letting applications control their cache partitioning can im-
prove greatly their performance. Because the memory ac-
cesses of most HPC applications are well understood, our
scheme should be easy to apply.

Our mechanism does not provide automatic page recolor-
ing, a classical feature of cache partitioning schemes. This is
a design choice: we consider the whole automatic recoloring
mechanism as too intrusive in the context of HPC appli-
cations. Furthermore, a programmer knows better the key

phases of its application and when to trigger recoloring. In-
deed he can implement it by creating two different devices
(with different colors) and copy data from one to the other.

We should also mention that partitioning cache induces a
partition of the memory. This means that, as with any other
cache partitioning scheme, the memory available to one par-
tition is limited to the pages that can fall is that partition
(in our case, the ones with the good color). In other words, a
small cache partition will contain few colors, thus few pages
to use. Since we provide those partitions to applications
as memory mappable devices, a small partition will limit
the size of the virtual memory mapped to it. This sounds
like a constraining limitation, but our cache control scheme
is only remapping available memory to specific parts of a
process address space. Applications having enough memory
without cache control should have enough with cache con-
trol enabled, except that it might be necessary to give cache
partition larger than they need (regarding reuse distance) to
data structures that occupy a large space in memory.

Most modern processors are composed of several cores and
a cache hierarchy. Top level caches are shared by all cores
and low level ones are private to a single core. In the remain-
ing of this article we do not address the complex problem
of cache partitioning across the whole hierarchy. We rather
have chosen to enforce the partitioning according to the top
level only, to benefit from the greater flexibility it provides
and to avoid noise during experimental measurements. This
choice already gives promising results and do not change our
analysis of presented applications. Nevertheless, we plan to
inspect the additional improvements that could result from
a multilevel partitioning scheme in our future works.

3. IMPLEMENTATION
We implemented our cache control mechanism on Linux.

We chose this OS for several reasons. First, contrary to
some other operating systems, Linux does not implement
page coloring. This makes our implementation easier as no
existing mechanism needs to be bypassed. Second, according
to the latest TOP500 [21], Linux (or its variants) is the most
popular OS in HPC.

3.1 Linux Memory Subsystem
Before explaining how our cache control scheme has been

implemented, some information on virtual memory manage-
ment in Linux is necessary. Using the standard GNU C
library, a process calling the memory allocation functions
can trigger two events. If the requested allocation size is
large (more than a page) the library will call the system
function mmap. In the other case, the library will return a
memory location coming from a pool of pages. In the latter
case, the pools are managed dynamically, thus, along with
new allocation requests, new pages will be asked eventually.
Consequently any memory allocation will eventually ask the
OS for more virtual pages.

This request is always handled in the same way: Linux
creates or expands an area. Such area represents a region of
the address space of a process that is managed by the same
memory handler. Once new pages are made available to the
process, the Linux kernel returns without having touched
any of the pages (no page faults are triggered). For each
area, a particular memory handler inside Linux is in charge
of page faults handling. Thus, when a process accesses a
virtual page for the first time, the kernel dispatch the page

fault to the fault handler of the area which faulted. Clas-
sically this means a physical page will be allocated to the
process, but it could also triggers a DMA to fetch a file re-
gion on disk or instruct a particular device to send data on
a network for example. Thus, in the Linux kernel, virtual
memory management works in two steps: virtual pages are
made available inside the virtual address space and physical
pages are allocated when page faults occur.

Linux is a modular kernel: modules (code) can be loaded
at runtime to enable additional functionalities. Such modu-
larity also extends to virtual memory management: the new
code can add to the system special (virtual) files having
their dedicated page fault handler. Once a process will have
those files mapped to its virtual memory, the first access
to this area will trigger the dedicated page fault handler.
Thus, kernel modules can add functionalities to the memory
subsystem.

3.2 Cache Control as a Kernel Module
Cache control is implemented as a very simple module and

a set of special devices. The kernel module is responsible
for the management of a configurable number of contiguous
physical page blocks (obtained from the kernel memory al-
locator). Once the color of each allocated page has been
identified, users can ask for the creation of memory map-
pable virtual devices to the module by issuing ioctls on
a special control file. Such commands contain the size and
authorized colors of the new device.

When an application maps one of the device into its ad-
dress space, every page fault in the corresponding area will
trigger our module page fault handler, which will provide a
page with an allowed color. Thus, the user can create cache
partitions dynamically during the execution of its applica-
tion.

When allocating memory, the module tries to reserve the
same number of pages for each color. This design is mo-
tivated by the Linux physical memory allocator behavior:
to obtain several pages of the same color, it is necessary
to allocate all the memory between them. Such behavior
makes allocating the same number of pages to each color
much simpler than any other possibility (like asking the de-
sired number of pages for each partition). As a result, the
module allocates physical memory by contiguous blocks as
large as the requested memory and partitions it according
to colors.

Once the module is loaded, two interfaces to the control
mechanism are available to users. The first one is a library
providing simple functions to define a set of colors and a
zone: a memory allocator working inside a specific device.
This interface is close in design to systems like the Linux
hugepages: a function creates a zone using a size (maximum
number of bytes that can be allocated) and a color set, and
memory allocations can then be made inside the zone. The
zone corresponds exactly to a colored device. To ease de-
velopment and to enable the use of our control scheme by
existing applications, we provide a second interface which is
a memory allocation hijack. Such interface enable any user
to install a custom library intercepting any standard POSIX
memory allocation call (malloc,realloc,calloc,free) on
any C application. Upon loading, this custom library will
create various partitions and map them to the process ad-
dress space, creating various memory allocation pools inside
the application. Upon an allocation request the library will

#include<ccontrol.h>

char *t;
struct ccontrol_zone *z;
color_set c;

/* allocate region */
COLOR_ZERO(&c);
for(int i = 0; i < 32; i++)
COLOR_SET(i,&c);

z = ccontrol_new_zone();
i = ccontrol_create_zone(z,&c,size);
t = ccontrol_malloc(z,size);

do_stuff(t,size);

ccontrol_free(z,t);
ccontrol_destroy_zone(z);
ccontrol_free_zone(z);

Figure 2: Code snippet using our cache control li-
brary to create a cache partition of 32 colors and to
allocate some character array into it.

determines the pool to use and return a part of this memory
pool to the user process. It is, of course, possible to tune
this library by changing the function determining for each
allocation the pool to use.

Figure 2 gives a code snippet describing the few functions
calls needed to create a cache partition of 32 colors and
allocate some character array into it.

The kernel module is a lightweight process (both in CPU
and memory). During the execution of the target appli-
cation it is only triggered by page faults in the virtually
mapped partitions. The Linux kernel calls our page fault
handler with the page number (as an offset to the first vir-
tual page of the area) to allocate. Thus our fault handler
only retrieves one page pointer from its color arrays and
returns it. The setup phase of the module, during which
physical memory is requested from the kernel might seems
more costly. It is not the case, even if a huge number of
physical page allocations is made, the kernel is still able
to respond quickly. For example, in the experimentation
system used in the following sections, allocating 24 GB of
physical memory to our module takes approximately 1 sec-
ond. Our module also has low memory requirements as it
only saves one pointer per physical page managed.

4. VALIDATION
We validated our cache control mechanism on two aspects:

its capability to provide memory allocations with a good
page coloring and its capability to partition the hardware
cache.

4.1 Experimental Setup
All experiments were conducted on a Quad Intel Xeon

E5530 System. Each CPU possesses 4 cores, with a L1 Data
cache size of 32 KB, a L2 Unified cache, 8 ways associative of
256 KB and a L3 Shared Unified cache, 16 ways associative
of 8 MB. All caches have 64 B lines.

All our validation experiments use the same memory in-
tensive application. This program consists only of a huge
number of random accesses (reads) to a single memory re-
gion dynamically allocated. The size of this memory re-
gion can be configured. Given the fact that the number of

accesses performed on the memory region outnumbers the
number of elements in it, this application will have perfor-
mance depending on its ability to cache said memory region.
If the region fit in L1 cache then the first access to each ele-
ment will cache it and further accesses will all be hits. As the
region size grows, upper levels of the cache will be required
until the top level does not suffice (then the application will
touch frequently the physical memory).

Thus, if we measure the average access time per read on
our setup, the application will exhibits 3 working sets: a first
one when the region is smaller than L2 cache, a second one
when the region fits in L3 and the third one when the region
is bigger than L3. A fourth working set could have appeared
when the region fits the L1 cache, but practically the perfor-
mance drop is too small to be noticed on our system. Notice
that a similar program was used dy Ulrich Drepper [10] to
demonstrate this working set effect with Valgrind as a cache
simulator.

Each data point in the following figures is the result of
100 executions of 5 000 000 reads on a memory region. The
program was fixed on a single core, running on real-time
scheduling policy (SCHED FIFO) with max priority (en-
suring no other program disturbs the measurements). Con-
fidence intervals were too small to be included.

In the following, we refer to partition size as the number
of colors used by a partition: it directly maps to the amount
of cache made available.

4.2 Results
In the first experiment (Figure 3) we compare working

sets of our application when the region is managed by the
Linux kernel to a cache controlled region allocated by our
tool and having access to the whole cache. In such setup,
because of our pages allocation method, our cache control
is only performing a classical page coloring on the memory
region. Thus, as the Linux kernel does not implement page
coloring the performance of the measured application should
drop faster when the memory region size is close to the L3

size. This experiment also validates our page fault handler:
if it performs poorly the whole application performance will
suffer from it.

As both physical memory allocators give the whole cache
to the application, we can observe what we expected: 3
working sets corresponding to the size of each cache in the
hierarchy. A small performance drop appears at region size
217 which is the size of the L2 and a big performance drop
around 223 (the size of the L3 cache). Notice that under
cache control the program still achieves good performance
for a region of the same size as the L3, whereas the imperfect
page allocation of Linux make performance drop faster. This
validates that our cache controller performs a proper page
coloring. Those results were confirmed by measuring cache
misses during the same experiment with hardware perfor-
mance counters [3].

Next we validate the cache partitioning in itself: by mak-
ing the available cache size vary, the application should ex-
hibit working sets at different sizes. We compare several
partition sizes given to the whole random access applica-
tion. Each cache size should make the last working set of
this program appear when the memory region get close to
it. Figure 4 reports our measurements. The performance
drop in access time follows closely the cache partition size.
This assesses that our program behaves as if its cache was

210 213 216 219 222 225

20

30

40

50

60

Memory Region Size (bytes)

A
cc

es
s

T
im

e
p

er
R

ea
d

(n
s)

CacheCtrl

Linux

Figure 3: Random reads on a memory region using
Linux page allocation and the cache controlled one.

only the size of the partition it uses.

5. WORKING SETS ANALYSIS FOR ALGO-
RITHMIC CHOICES

This section presents an analysis of the cache performance
of a parallel application from the scientific visualization do-
main. In particular it shows how the analysis of its working
sets can lead to appropriate algorithmic choices for its par-
allelization.

5.1 Isosurface Extraction with Marching Tetra-
hedron (MT)

Isosurface extraction is one on the most classical filters
of scientific visualization. It provides a way to understand
the structure of a scalar field in a three dimensional mesh
by visualizing surfaces having the same scalar value. Our
application is based on the marching tetrahedrons (MT) al-
gorithm, known for its good performance [15]. For each cell
of a mesh, the MT algorithm reads the point coordinates
and scalar values and computes a triangulation of the iso-
surface going through this cell. The triangulation consists of
0, 1 or 2 triangles according to how the isosurface intersects
the tetrahedron.

The cache misses induced by MT can be analyzed as fol-
lows. The mesh data structure consists of two multidimen-
sional arrays: an array storing for each point the coordinates
and a scalar value and an array storing for each cell the in-
dexes of its points (cf. Figure 5). Due to the mesh construc-
tion process, the order of points and cells has some locality:
points and cells close to each other in the mesh space of-
ten have close indexes. Thus, processing cells in the order
of their indexes induces fewer cache misses when accessing
the point array due to an improved locality: successive cells
often share common points or points located in the same
cache line. This locality can even be optimized by reorder-
ing points and cells to obtain better cache performance [27].

5.2 Parallel MT for Shared Cache

210 212 214 216 218 220 222 224

20

30

40

50

Memory Region Size (bytes)

A
cc

es
s

T
im

e
p

er
R

ea
d

(n
s)

C = 216

C = 218

Figure 4: Random access: access time per element
for varying memory size and various cache sizes.

As each cell can be processed independently, it is relatively
easy to parallelize the MT algorithm. One can logically
divide the cell sequence into contiguous chunks and assign
one chunk to each processor core. Since cell processing times
differs according to the number of triangles generated, we
used a work stealing scheduler to dynamically balance the
load. When a core becomes idle, it selects another core at
random and steal half of its remaining cells. This scheme
efficiently uses the private caches of a multicore processor:
each core processes contiguous cells and maximizes the reuse
of points loaded in its private cache. However, cores operate
on parts located far from each other in the cell sequence
(and thus in the mesh space), reducing the chance that two
cores use common points. Therefore, this parallel algorithm,
denoted NoWindow, does not efficiently use the last level
of cache of multicore processors which is shared amongst all
cores.

To improve the reuse of data stored in the shared cache, a
new parallel algorithm denoted SlidingWindow has been
introduced in a previous work [26]. A fixed size window slid-
ing on the cell sequence constrains cores to operate on cells
close in mesh space. Threads still process chunks of contigu-
ous cells for efficient private cache usage but these chunks
are now smaller and closer to each other in the cell sequence
thus improving shared cache usage. The SlidingWindow
algorithm can be efficiently implemented using work steal-
ing. The core operating at the beginning of the window has
a specific status and is called the master. Steals to other
cores are treated in the same way as the previous algorithm.
However, when another core steals the master, it can only
steal cells inside the window. The master is responsible for
sliding the window on the sequence to enable new cells to
be processed. This stealing mechanism guarantees that cores
are operating inside the window at all time.

5.3 Shared Cache Misses Analysis with Reuse
Distances

The SlidingWindow algorithm improves shared cache
usage but increases synchronization overheads compared to
the NoWindow algorithm as cores are stealing smaller amounts

x0

y0

z0

t0

x1

y1

z1

t1

xn−1

yn−1

zn−1

tn−1

.

.

.

Points

n

p1

p2

p3

p4

n

p1

p2

p3

p4

.

.

.

Cells

Figure 5: Mesh Data Structure. The point array
stores coordinates and scalar values (t) and the cells
array contains indexes to points defining each cell.

of work. We would like to use the SlidingWindow al-
gorithm only when it significantly reduces the number of
shared cache misses. We show in this section how we can
predict the gain in shared cache misses of the SlidingWin-
dow algorithm over the NoWindow algorithm using the
working sets function Q of the sequential algorithm which
processes the cell sequence in order.

Let H(d) denote the number of memory references with
a reuse distance d in the sequential algorithm. The num-
ber of cache misses on a fully associative cache of size C is
given by Q(C) =

∑∞
d=C+1 H(d). We assume that the se-

quential algorithm has good temporal locality, i.e. cells far
away from each other in the sequence use distinct points
while cells having close indexes use common points. We
first consider the NoWindow parallel algorithm on p cores
sharing a cache of size C. In this case, as distinct cores do
not operate on common points, the reuse distance is equal
to the reuse distance of the sequential algorithm multiplied
by p: each access performed by a core is followed by p − 1
unrelated accesses performed by the other cores in parallel.
Thus, Hno-win(d) = H(d

p
) and the number of cache misses

of the NoWindow algorithm is

Qno-win(C) =

∞∑
d=C+1

H
(d
p

)
=

∞∑
d=C

p
+1

H(d) = Q
(C
p

)
.

The NoWindow algorithm induces as many cache misses
as the sequential algorithm with a cache p times smaller.

We now consider the SlidingWindow algorithm where
cores operate on elements at distance at most m in the cell
sequence. Let r(m) be the maximum number of distinct
memory references when processing m − 1 consecutive ele-
ments of the cell sequence. In the worst case, when process-
ing the last element of the window, all other elements have

2 3 4 5 6 7 8

40

50

60

Cache size C (in MB)

L
3

ca
ch

e
m

is
se

s
Q

(C
)

(·
1
0
6
)

Figure 6: Number of shared cache misses of the se-
quential MT algorithm for varying cache sizes.

L3 cache misses Time (ms) Speedup

Sequential (C = 2MB) 60.5 · 106 5015 0.66
Sequential (C = 8MB) 34.7 · 106 3320 1.00
NoWindow 55.3 · 106 1137 2.92
SlidingWindow 38.4 · 106 964 3.44

Table 1: Performance of the two parallel MT algo-
rithms NoWindow and SlidingWindow compared to
the sequential algorithm.

been processed accessing at most r(m) additional distinct
elements compared to the sequential algorithm. Thus the
reuse distance is increased by at most r(m). The number of
cache misses of the SlidingWindow algorithm is

Qw(C) ≤
∞∑

d=C+1

H(d− r(m)) = Q(C) +

C∑
d=C+1−r(m)

H(d).

As we assumed the sequence has good temporal locality,
r(m) is small compared to m and H(d) is small for large d.

Therefore
∑C

d=C+1−r(m) H(d) is small and the SlidingWin-
dow algorithm induces approximately the same number of
shared cache misses as the sequential algorithm.

We experimentally verify this result by computing the
number of shared cache misses for the sequential algorithm
Q(C) for cache sizes C varying from 2MB to 8MB on the
Xeon E5530 (cf. Figure 6). We used a mesh composed of
150,000,000 cells. The number of cache misses for a cache
of 2MB is much greater than when using an 8MB cache.
Thus, we expect that using the SlidingWindow algorithm
will result in a big gain in cache misses compared to the
NoWindow algorithm on the 4 cores of the Xeon E5530.
It is the case (cf. Table 1): the NoWindow exhibits almost
the same number of misses as the sequential algorithm using
four times less cache. Consequently its speedup is hindered
by its poor use of this application locality. In contrary, as
expected, the SlidingWindow version induces only a few
more cache misses than the sequential algorithm and offers
a better speedup.

6. DATA STRUCTURE(S) ISOLATION

L3 cache misses Time (ms)

Linux 37.1 · 106 4124
Cache Control 34.7 · 106 3320
Optimized Cache Control 23.7 · 106 3090

Table 2: Performance of the sequential MT algo-
rithm with 3 different allocation policies.

Our objective, in this section, is to distribute as best as
possible the cache available to the application. Our ap-
proach works in two steps: first we estimate from a deriva-
tive of the working sets analysis the cache requirements as-
sociated to each data structure of the application. Secondly,
we use our cache controller to distribute the cache accord-
ing to the first analysis. This method is especially effective
in identifying the data structures (or memory regions) that
would benefit the most from an increased cache size. We
first use it to inhibit the negative effects of a streaming ac-
cess pattern in the MT application. Then, we demonstrate
better cache allocation strategies on a stencil algorithm sim-
ilar to multigrid applications.

6.1 Avoiding Cache Pollution Due to Stream-
ing Accesses in MT

When examining the access patterns of the MT algorithm,
one can notice that only accesses to points exhibit data
reuse. The other two access patterns, reading the cell se-
quence and writing the generated triangles, are pure stream-
ing accesses and waste cache space. To avoid this negative
effect, our implementation of the MT uses non temporal
instructions to write the triangle sequence [7]. These in-
structions bypass the cache to avoid polluting it with use-
less data. We would like to do the same while reading the
cell sequence. Unfortunately, non temporal read instruc-
tions do not exist. However, our cache controller can avoid
the cache pollution by streaming-like access patterns by iso-
lating them to a small portion of the cache. We have added
this optimization on the cell array of the mesh in our MT
implementation and compared the resulting 3 methods to
allocate our data structures in Table 2.

In the first method, denoted Linux, we simply allocate
them using malloc. In the second one, denoted Cache Con-
trol, we allocate them with our cache controller in a single
region using all available colors thus realizing a perfect map-
ping of virtual to physical memory. In the last one, denoted
Optimized Cache Control, we allocate the point array in a
region composed of 100 colors and the cell and triangle ar-
rays in the remaining 28 colors. As expected, due to a better
color distribution in allocated pages, using a perfect map-
ping reduces the number of cache misses and improves the
running time. Moreover, allocating more cache space to the
array that exhibits reuse while confining the data structure
accessed in streaming into a small cache region greatly re-
duces the number of cache misses (by 36%) and offers the
best performance, a speedup of 1.33 over the unmodified
application.

6.2 Multigrid Stencil
To demonstrate the full potential gains that can be ob-

tained when using our cache partitioning scheme, we pro-
grammed a toy application derived from classical stencil fil-
ters. Our application makes a simultaneous use of three

different matrices that reside in memory to compute the el-
ements of a result matrix. The input matrices form the
multigrid structure, it is made of a large matrix (Y ×X 64
bytes elements), a medium-sized matrix (one fourth of the
large matrix size) and a small matrix (one sixteenth of the
large matrix size). The resulting matrix has the same size
as the large matrix. Each of its elements is a linear combi-
nation of nine points stencils taken from each input matrix
at the same coordinates (interpolated for smaller matrices).

This application is interesting for two reasons: it is ex-
tremely memory intensive and it makes a simultaneous use
of several working sets of different sizes. Our nine points
stencil forms a cross (a center element, the two elements
above it, the two elements on the right, and so on) and it is
included in five lines of a matrix. Thus, in the ideal case, if
five lines of each input matrix can remain in the cache during
the computation, the stencil will be computed with a maxi-
mal reuse. This translates into a cache space of X × 64× 5
bytes for the large matrix, half of this size for the medium
one and one fourth of this size for the small one. Of course
if these working sets are not mapped to disjoints colors sets,
they will mutually trash each other cache when running the
application.

Because the previous testing architecture (Intel Xeon) is
known to prefetch memory too aggressively for the kind of
access patterns our application contains, the following ex-
periments were done on an Intel Core 2 Duo System. It
contains 2 cores, with a L1 Data cache size of 32 KB, a L2

Unified cache, 16 ways associative of 4 MB. All caches have
64 B lines. From a coloring point of view, the L2 cache
contains 64 colors, each being 64 KB wide.

As we want to measure the cache requirements of each
data structure independently, we modified our stencil so that
it can use a different cache partition for each of the matri-
ces. Then, for each application run, we isolated one of the
matrices in a dedicated partition and the others in another
one. The experiment consists in measuring the cache misses
of the whole application while varying the size of the cache
part associated to the isolated data structure. As the rest of
the application is confined in a cache part of fixed size, the
variation of cache misses can only be the result of the vari-
ation of the cache size given to the isolated data structure.
As a result, we obtain the shape of the working sets of each
data structure present in the application.

Figure 7 gives the resulting working sets for a partition
size varying between 8 and 56 colors. The other data struc-
tures are contained in a fixed partition of 8 colors. This
application was run with X = 7168 and Y = 100. Matrices
are named from the smallest one M1 (X/4 by Y/4) to the
biggest M3 (X by Y), the result matrix is named Mr.

Notice that, on such experiments, a difference in cache
misses between structures for a given number of colors does
not convey any significance: different structures are present
in the small, static cache partition, inducing a different num-
ber of cache misses for the rest of the application. Thus, only
the shape of the curve (the variation in cache misses for each
structure) is of interest.

These working sets match the theoretical analysis of this
application: each matrix needs to cache 5 rows at most to
benefit optimally from cache, except for Mr which is only
written to (needing no cache at all). As each matrix Mi is
two times larger than Mi+1 (in X), each matrix needs twice
more cache than the previous. Given those working sets, we

8 12 16 20 24 28 32 36 40 44 48 52 56

4

4.5

5

5.5

6

Cache Partition Size

L
2

C
a
ch

e
M

is
se

s
(·

1
0
6
)

M1

M2

M3

Mr

Figure 7: Multigrid Stencil: L2 cache misses per
partition size for each data structure.

L2 cache misses Time (ms)

Linux 3.6 · 106 139
Cache Control 3.3 · 106 78
Optimized Cache Control 2.2 · 106 57

Table 3: Performance of the stencil application with
3 different allocation policies.

choose an optimized cache partitioning with 9 colors for M1,
18 for M2, 35 for M3 and 2 for Mr. Table 3 presents the
resulting performance of our application compared to the
unmodified (Linux) and the single partition (Cache control)
versions.

Using our cache controller, compared to the unmodified
application, we achieve a tremendous performance improve-
ment of 38% in L2 cache misses and a speedup of 2.4 re-
garding the execution time. This very good speedup can
be explained easily: a cache miss cost a lot more in execu-
tion time than a cache hit. Thus, reducing the number of
cache misses significantly improves the running time of our
application.

Of course, such results are only an indication of the kind of
performance improvements our cache control scheme makes
available. This stencil application is specially tailored so
that an unmanaged cache is not able to use the locality
of each data structure while a good partitioning can fit in
the whole cache. Nevertheless, we can safely assume that
any application containing streaming access patterns or very
different reuse distances per data structure should benefit
from our scheme.

7. RELATED WORKS
Soft-OLP [19], a tool making cache partitions at the object

level inside an application using page coloring, is the closest
work related to our proposal. However Soft-OLP relies, like
most previous works, on binary instrumentation techniques:
to determine a good partitioning among objects, they mea-
sure reuse distances for each object on instrumented runs
(with Pin). As the authors acknowledge, instrumented runs
are 50 to 80 times slower than real executions. To cope with

longer execution times, they extrapolate the cache usage of
each object in real word instances using measurements on
small inputs (supposed representative). Our tool does not
suffer from such limitations: measuring working sets is as
fast as unmodified runs and thus can handle real sized in-
stances. Instead of using Pin, we isolate each object in its
own cache partition and measure misses with varying parti-
tion size.

A small part of the optimizations presented here were also
discussed by Soares et al. in 2008 [25]. They proposed a OS
scheme capable of detecting streaming access patterns us-
ing hardware performance counters. More precisely, they
detected the virtual pages causing the most cache thrashing
and isolated them to a small partition (using page color-
ing). Such technique can also be related to cache-bypassing
instructions found on most modern architectures [7]. We
believe our scheme goes further, by balancing cache usage
between data structures (even if overall they do not fit in
cache). We demonstrated its use both to reduce streaming
access patterns influence on performance and to better dis-
tribute the cache among data structures of an application.

Several works have already resulted in the implementa-
tion of a Linux kernel module to provide a basic software
cache partitioning mechanism using page coloring [5,17,18].
However, these works were focused on a different context:
cache sharing issues among multiple running processes on
the same core. Such issues require tedious OS optimization
and complicated heuristics whereas our proposal deals with
only one thread per core, focusing on providing good colors
to the right memory region used by the thread. Moreover,
not a single paper has provided its implementation to the
community, limiting the reuse of these works.

Most existing implementations of page coloring also make
a trade-off between protecting processes from each other and
avoiding cache trashing inside an address space. Several
works presented a cooperation between hardware mecha-
nisms and compilers do cope with the latter [4, 23]. Un-
fortunately such methods are limited to data reorganization
techniques inside compilers and QoS strategies of the OS,
whereas our cache control allows any application program-
mer to fine tune the cache usage of each of its data struc-
tures.

Finally, control of the virtual memory subsystem by user
programs has also been suggested in the domain of micro and
exokernels [11, 12]. In those cases, an application could ask
the OS to use other virtual memory managers than the de-
fault one, thus making it possible to rewrite a virtual mem-
ory manager fine tuned for a single memory access pattern.
Several issues prevented those works to ever be made avail-
able in standard HPC configurations. First, all the virtual
memory manager (not just the physical memory allocator)
needed to be replaced. Such OS component is among the
most complicated and it is considered too cumbersome to
rewrite it for the improvement of a single application. Sec-
ond, most of those specific operating systems are designed
for single processor architectures and were never ported to
HPC ones.

8. CONCLUSION
The Internation Exascale Software Project Roadmap [9]

defines the support for explicit management of the memory
hierarchy by runtime systems/user applications as one of the
most critical aspect of future operating systems for HPC.

We believe our cache control tool to be a first step in the
design of such mechanism. We presented a simple scheme,
based on a well understood technique (page coloring) to ex-
pose to user applications control of the partitioning of the
cache hierarchy. We validated this tool in Linux, one of the
most popular OS in HPC. Our implementation is simple to
use, efficient both in CPU and memory and does not nec-
essarily require modifications of the target application. To
the best of our knowledge, our tool is the first to allow mea-
surements of the working sets of an application or of its data
structures using only a small number of runs.

We also have presented a collection of experiments that
highlight different usages of our proposal. We demonstrated
how the analysis of application working sets can give hints
about the proper parallelization scheme to use for them.
We applied to two different applications our methodology
for fine cache optimization. First, we used the analysis of
the working sets of each data structure of a parallel scien-
tific visualization application to remove cache thrashing due
to small-reuse access patterns inside it. Then, this working
sets analysis was used on a stencil application to design a
dramatic optimization of its cache behavior. These experi-
ments assessed that our methodology was sound, useful and
might produce a reduction in caches misses of up to 38%
in the most favorable cases and similar (or even better) im-
provements in execution time.

As future works, we plan to study the possible additional
improvements that could be obtained when using a parti-
tioning scheme sensitive to the cache hierarchy. Our cache
control tool as well as all the code used for our experiments
are available on http://ccontrol.gforge.liglab.fr.

9. REFERENCES
[1] K. Beyls and E. D’Hollander. Reuse distance as a

metric for cache behavior. In Proceedings of the
IASTED Conference on Parallel and Distributed
Computing and systems, volume 14, pages 350–360,
2001.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: characterization and
architectural implications. In Proceedings of 17th
International Conference on Parallel Architecture and
Compilation Techniques, pages 72–81, 2008.

[3] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. The
International Journal of High Performance Computing
Applications, 14(3):189–204, 2000.

[4] E. Bugnion, J. Anderson, T. Mowry, M. Rosenblum,
and M. Lam. Compiler-directed page coloring for
multiprocessors. ACM SIGOPS Operating Systems
Review, 30(5):255, 1996.

[5] S. Cho and L. Jin. Managing distributed, shared l2
caches through os-level page allocation. In Proceedings
of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 455–468, 2006.

[6] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux
Device Drivers. O’Reilly Media, 3rd edition, 2005.

[7] I. Corporation. Intel Architecture Software Developer’s
Manual, Volume 2: Instruction Set Reference.

[8] M. Dillon. Design elements of the FreeBSD VM
system.

[9] J. Dongarra et al. The international exascale software
project roadmap. International Journal of High
Performance Computer Applications, 25(1), 2011.

[10] U. Drepper. What every programmer should know
about memory, 2007.

[11] D. R. Engler, M. F. Kaashoek, and J. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Proceedings
of the Fifteenth ACM Symposium on Operating
System Principles, pages 251–266, 1995.

[12] K. Harty and D. R. Cheriton. Application-controlled
physical memory using external page-cache
management. In Proceedings of the Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 187–197,
1992.

[13] J. L. Hennessy and D. A. Patterson. Computer
Architecture: a quantitative approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2nd edition, 1996.

[14] R. R. Iyer. CQoS: a framework for enabling QoS in
shared caches of cmp platforms. In Proceedings of the
18th International Conference on Supercomputing,
pages 257–266, 2004.

[15] C. Johnson and C. Hansen. Visualization Handbook.
Academic Press, Inc., 2004.

[16] R. E. Kessler and M. D. Hill. Page placement
algorithms for large real-indexed caches. ACM
Transactions on Computer Systems, 10:338–359, 1992.

[17] S. Kim, D. Chandra, and Y. Solihin. Fair cache
sharing and partitioning in a chip multiprocessor
architecture. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques, pages 111–122, 2004.

[18] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Gaining insights into multicore cache
partitioning: Bridging the gap between simulation and
real systems. In Proceedings of the 14th International
Conference on High-Performance Computer
Architecture, pages 367–378, 2008.

[19] Q. Lu, J. Lin, X. Ding, Z. Zhang, X. Zhang, and
P. Sadayappan. Soft-olp: Improving hardware cache
performance through software-controlled object-level
partitioning. In Proceedings of the 18th International
Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 246–257, 2009.

[20] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005
ACM SIGPLAN conference on Programming language
design and implementation, pages 190–200, 2005.

[21] H. Meuer, E. Strohmaier, H. Simon, and J. Dongarra.
35th release of the TOP500 list of fastest
supercomputers, 2010.

[22] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and
Implementation, pages 89–100, 2007.

[23] T. Sherwood, B. Calder, and J. S. Emer. Reducing
cache misses using hardware and software page

placement. In Proceedings of the 13th International
Conference on Supercomputing, pages 155–164, 1999.

[24] M. Snir and J. Yu. On the theory of spatial and
temporal locality. Technical report, 2005.

[25] L. Soares, D. K. Tam, and M. Stumm. Reducing the
harmful effects of last-level cache polluters with an
os-level, software-only pollute buffer. In 41st Annual
IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 258–269, 2008.

[26] M. Tchiboukdjian, V. Danjean, T. Gautier, F. Le
Mentec, and B. Raffin. A work stealing scheduler for
parallel loops on shared cache multicores. In
Proceedings of the 4th Workshop on Highly Parallel
Processing on a Chip (HPPC 2010), 2010.

[27] M. Tchiboukdjian, V. Danjean, and B. Raffin. Binary
mesh partitioning for cache-efficient visualization.
Transactions on Visualization and Computer
Graphics, 16(5):815 –828, sep. 2010.

