A fast 5/2-approximation algorithm for hierarchical scheduling

Marin Bougeret ${ }^{\star 1}$, Pierre-François Dutot ${ }^{1}$, Klaus Jansen**2, Christina Otte ${ }^{2}$, and Denis Trystram ${ }^{1}$
${ }^{1}$ Grenoble University
38330 Montbonnot Saint Martin, France
\{bougeret, pfdutot, trystram@imag.fr\}
2 Department of Computer Science
Christian-Albrechts-University to Kiel
Christian-Albrechts-Platz 4, 24098 Kiel, Germany.
\{kj, cot\}@informatik.uni-kiel.de

Abstract

We present in this article a new approximation algorithm for scheduling a set of n independent rigid (meaning requiring a fixed number of processors) jobs on hierarchical parallel computing platform. A hierarchical parallel platform is a collection of k parallel machines of different sizes (number of processors). The jobs are submitted to a central queue and each job must be allocated to one of the k parallel machines (and then scheduled on some processors of this machine), targeting the minimization of the maximum completion time (makespan). We assume that no job require more resources than available on the smallest machine. This problem is hard and it has been previously shown that there is no polynomial approximation algorithm with a ratio lower than 2 unless $P=N P$. The proposed scheduling algorithm achieves a $\frac{5}{2}$ ratio and runs in $O\left(\log \left(n p_{\max }\right) k n \log (n)\right)$, where $p_{\text {max }}$ is the maximum processing time of the jobs. Our results also apply for the Multi Strip Packing problem where the jobs (rectangles) must be allocated on contiguous processors.

1 Introduction

Context and motivation. The evolution of the technology over the last past years leads to the emergence of new types of parallel and distributed platforms. Many of these new computing systems are hierarchical in nature. Such computing systems may be composed of several parallel machines, each having a certain number of processors, or composed of several clusters, each having a certain number of computers [1]. Thus, we make no distinctions between machines/clusters on one side, and between processors/computers on the other side.

[^0]In order to fully exploit the large number of available resources for reaching the best performances, we need to revisit the classical resource management algorithms taking into account new features induced by the hierarchical hardware. In such platforms, the users submit their jobs in a centralized queue. The resource manager selects the jobs and allocates them to a machine, and then the jobs are scheduled locally. We assume in this work that the machines have enough processors so as each job fits entirely in any machine. Notice that jobs are not executed on processors that belong to different machines.

In the common context of an execution by successive batches, we target on the minimization of the makespan (defined as the maximum completion time over all the processors) which is the most popular objective function [2]. We assume that the processing times of the jobs are available at the beginning (the algorithm is clairvoyant [2]).

Related works. Let us qualify by regular, the case where the machines have the same number of processors. The irregular case corresponds to the situation where the machines have different sizes.

There exist a lot of related works for the regular case, as it is closely related to the multiple strip packing problem. Indeed, the only difference is that in multiple strip packing (MSP), the jobs are considered as rectangles and thus, they must be allocated on "consecutive" processors. This problem (and the non-contiguous version) are strongly $\mathcal{N} P$-hard, and Zhuk [3] (and later Schwiegelshohn et al. [7]) showed that there is no approximation algorithm with absolute ratio better than 2 unless $P=N P$, even for 2 machines. The proof is a gap reduction from 2-partition problem. The main related positive results for MSP are a $2+\varepsilon$-approximation in [4] whose cost is doubly exponential in $\frac{1}{\epsilon}$, a (costly) 2-approximation and an AFPTAS in [5]. Some variants have been investigated (like in [6]) where additional constraints come from pre-allocation.

Concerning the hierarchical scheduling problem in the irregular case, one of the most relevant work is the result of Schwiegelshohn, Tchernykh and Yahyapour [7]. The authors address a version of this problem where a job may not fit everywhere, meaning that a job may requires more processors than the total number of processors of some machines. They provide a 3 -approximation for the off-line case, and a 5 -approximation when the jobs are submitted over time (on-line). Their algorithms handle non-clairvoyant jobs (meaning that the processing time of a job is only known at the end of its execution), but do not easily apply for MSP. They also emphasize that the performance of the classical Garey and Graham's list scheduling algorithm is significantly worsened in hierarchical environments. Finally, (as we will see in remark 4), it is possible to derive a better approximation ratio using the remark in [4] that leads to a $2+\epsilon$ ratio (in time polynomial in $\frac{1}{\epsilon}$) for the regular case. However, the cost of the induced algorithm is considerably too large, for instance taking $\epsilon=\frac{1}{2}$ leads to a cost in $\Omega\left(n^{60}\right)$!

Contribution. Our main contribution is a new $\frac{5}{2}$-approximation (almost) greedy algorithm (called FAHS for fast approximation hierarchical scheduler) for scheduling a set of (clairvoyant) rigid jobs on parallel machines that have different num-
ber of processors, and where every job fits everywhere. The algorithm runs in $O\left(\log \left(n p_{\max }\right) k n \log (n)\right)$. This result also applies for MSP.

2 Preliminaries

2.1 Problem statement

The problem studied in this paper is to schedule n jobs on a parallel system composed of k parallel machines. Machine M_{i} (for $1 \leq i \leq k$) has m_{i} processors. We assume that $m_{i} \leq m_{i+1}$ for any i. A job J_{j} is characterized by the number of processing resources needed for its completion, denoted by $q_{j} \in \mathbb{N}^{*}$ (sometimes called the degree of parallelism) and its corresponding processing time $p_{j} \in \mathbb{N}^{*}$. The q_{j} processors must be allocated on the same machine. We assume that every jobs fits everywhere, meaning that $\max _{j} q_{j} \leq m_{1}$. We denote by $w_{j}=p_{j} q_{j}$ the work of job J_{j}. The objective is to minimize the maximum completion time over all the machines (called the makespan and denoted by $C_{\max }$). Given a fixed instance, we denote by C^{*} the optimal makespan for this instance.

2.2 Other notations

Given a schedule, we denote by $u_{i}(t)$ the utilization of M_{i} at time t, which is the sum of the required number of processors of all the jobs that are running on M_{i} at time t. We say that job $J_{j_{1}}$ is higher than job $J_{j_{2}}$ if $q_{j_{1}} \geq q_{j_{2}}$. We extend the p_{j}, q_{j}, w_{j} previous notations to $P(X), Q(X)$ and $W(X)$ where X is a set of jobs and the capital letter denotes the sum of the corresponding quantity of all the jobs in the set (for instance $P(X)=\Sigma_{J_{j} \in X} p_{j}$).

We call shelf a set of jobs that are scheduled on the same machine and finish at the same time. Scheduling a shelf at time t means that all the jobs of the shelf finish at time t. This reverse definition of shelf (where usually jobs start simultaneously) is used because some machines are filled from right to left. Using v as a guess for the optimal makespan C^{*}, let $L=\left\{J_{j} \left\lvert\, p_{j}>\frac{v}{2}\right.\right\}$ denote the set of long jobs, and let $H_{i}=\left\{J_{j} \left\lvert\, q_{j}>\frac{m_{i}}{2}\right.\right\}$ denote the set of high jobs for M_{i}, for $1 \leq i \leq k$.

2.3 Useful results

We present briefly in this section some classical results that we will use later. Let us recall first the well known Highest First ($H F$) list algorithm that, given a set of jobs and one machine, starts from time 0 and schedules at any time the highest job which fits. Secondly, let us state the following result that was established by Steinberg [8]. Notice that even if this result is stated in term of rectangle packing, it remains valid for parallel jobs (without the contiguous constraint).

Theorem 1 ([8]). Let $L=\left\{r_{1}, \ldots, r_{n}\right\}$ be a set of rectangles. Let w_{j}, h_{j} and s_{j} denote the width, the height and the surface of r_{j}. Let $S(L)=\sum_{j=1}^{n} s_{j}$, $w_{\max }=$ $\max _{j} w_{j}$ and $h_{\max }=\max _{j} h_{j}$. If
$w_{\max } \leq u, h_{\max } \leq v$ and $2 S(L) \leq u v-\max \left(2 w_{\max }-u, 0\right) \max \left(2 h_{\max }-v, 0\right)$
then it is possible to pack $L\left(\right.$ in time $O\left(n \log ^{2}(n) / \log (\log (n))\right)$ in a rectangular box of width u and height v.

We are now ready to describe the $F A H S$ algorithm.

3 Algorithm

As we target a $5 / 2$ ratio, it is convenient to consider that we have in each machine an empty available rectangular area of height m_{i} and length $5 C^{*} / 2$. Moreover, we want to particularly take care of the jobs that have a processing time greater than $C^{*} / 2$, since these jobs are harder to schedule. As C^{*} is unknown, we use the classical dual approximation technique [9], and we denote by v the current guess of C^{*}. According to this technique, our goal is to provide the FAHS (Fast Approximation Hierarchical Scheduler) algorithm that either schedules all the jobs with a makespan lower than $5 v / 2$ or rejects v, implying that $v<C^{*}$. For the sake of simplicity, we do not mention in the algorithm the "reject" instruction. Thus, we consider throughout the paper that $v \geq C^{*}$, and it is implicit that if one of the claimed properties is wrong during the execution, the considered v should be rejected.

FAHS is described in detail in Algorithm 1. The principle is to fill the machines from the smallest $\left(M_{1}\right)$ to the largest one. As long as it is possible, we aim at scheduling on each M_{i} a set of jobs whose total work is greater than $m_{i} v$. The algorithm is designed such that the only reason for failing (meaning that it does not reach $m_{i} v$) is the lack of jobs. Thus, if a failure occurs, there will be only a few amount of jobs that will be straightforward to schedule.

In order to schedule a work of (at least) $m_{i} v$, we first intent to schedule a set X of jobs of H_{i} such that $P(X)$ is greater than $2 v$ (phase 1). If it fails, we schedule as many jobs of H_{i} as possible (again in phase 1), with a strict limit $P(X)<3 v / 2$ to have enough space to pack a shelf of long jobs between $3 v / 2$ and $5 v / 2$. Then, we select (in phase 2) some jobs of $I \backslash H_{i}$, targeting a total work of at least $m_{i} v$.

These selected jobs are then scheduled in phase 3. If the work goal $m_{i} v$ is reached we schedule the considered jobs in M_{i} (using the add algorithm in Algorithm 2 in case 1 or HF in case 2), otherwise (case 3) there is by construction only a few amount of unscheduled jobs, and they are scheduled using the pack procedure described in Algorithm 3.

Remark 1 (Notation). For any set X considered in the algorithm or in the proof, we use the \tilde{X} notation to denote the set X during the execution of the algorithm $(\tilde{X} \subset X)$. We consider that a job is removed from the instance when it is scheduled.

```
Algorithm 1 Fast Approximation Hierarchical Scheduler (FAHS)
    for all \(i, \tilde{H}_{i} \leftarrow H_{i}\) and \(\tilde{L} \leftarrow L\)
    for \(i=1\) to \(k\) do
        if \(\tilde{H}_{i} \cap \tilde{L} \neq \emptyset\) then
            - \(J_{j_{i}} \leftarrow\) highest job of \(\tilde{H}_{i} \cap \tilde{L}\)
            - schedule \(J_{j_{i}}\) at time 0 and remove it from \(\tilde{H}_{i} \cap \tilde{L}\)
        else
            - \(J_{j_{i}} \leftarrow\) "dummy" job (with \(p_{j_{i}}=q_{j_{i}}=0\) )
        end if
        if \(p_{j_{i}}+P\left(\tilde{H}_{i} \backslash \tilde{L}\right) \geq 2 v\) then
            - target \(\leftarrow 2 v\)
        else
            - target \(\leftarrow v\)
        end if
        - schedule sequentially (in any order) jobs of \(\tilde{H}_{i} \backslash \tilde{L}\) (and remove them from \(\tilde{H}_{i}\) )
        until one of them ends later than target or until ( \(\tilde{H}_{i} \backslash \tilde{L}=\emptyset\) )
        - High \(\leftarrow\) jobs scheduled on \(M_{i}\)
        - reschedule jobs of High in non-increasing order of height
        if target \(=v\) then
        - Select \(\leftarrow \emptyset\)
        - add to Select some jobs of \(\tilde{I} \backslash \tilde{H}_{i}\) (and remove them from \(\tilde{I}\) ) in non increasing
        order of their work, until \(\left(W(\right.\) High \()+W(\) Select \(\left.) \geq m_{i} v\right)\) or until \(\left(\tilde{I} \backslash \tilde{H}_{i}=\emptyset\right)\)
        if \(W(\) High \()+W(\) Select \()>\frac{5}{4} m_{i} v\) then //case 1
            - schedule Select using add(i, Select)
        else if \(\frac{5}{4} m_{i} v \geq W(\) High \()+W(\) Select \() \geq m_{i} v\) then \(/ /\) case 2
            - reschedule jobs High \(\cup\) Select on \(M_{i}\) using \(H F\) algorithm
        else //case 3
            if \(\mathrm{i}=\mathrm{k}\) then
                            - reschedule High \(\cup\) Select \(\cup \tilde{H}_{i}\) on \(M_{i}\) using \(H F\) algorithm (and remove
                    jobs from \(\tilde{H}_{i}\) )
                    else
                            - reschedule High \(\cup\) Select on \(M_{i}\) using \(H F\) algorithm
                            - schedule \(\tilde{H}_{i}\) on \(\left\{M_{i+1}, \ldots, M_{k}\right\}\) using \(\operatorname{pack}\left(i, \tilde{H}_{i}\right)\) (and remove jobs from
                    \(\left.\tilde{H}_{i}\right)\)
            end if
            - break //all the jobs are scheduled
                end if
        end if
    end for
```

```
Algorithm 2 add ( \(i\), Select)
    - create a shelf \(S h\) with the highest jobs of Select and schedule \(S h\) at time \(\frac{5 v}{2}\)
    - reschedule \(S h\) such that the shortest jobs are on the top (as depicted figure 1)
    if one job \(J_{1} \in\) Select remains then
        - \(t_{1} \leftarrow\) smallest \(t\) such that \(u_{M_{i}}(t)+q_{1} \leq m_{i}\)
        - schedule \(J_{1}\) at time \(t_{1}\)
    end if
    if two jobs \(\left\{J_{1}, J_{2}\right\} \subset\) Select remain then
        - create a shelf \(S h^{\prime}\) using \(J_{1}\) and \(J_{2}\) and schedule \(S h^{\prime}\) at time \(\frac{3 v}{2}\)
    end if
```

```
Algorithm \(3 \operatorname{pack}\left(i, \tilde{H}_{i}\right)\)
    if \(\tilde{H}_{i} \cap L=\emptyset\) then
        - schedule jobs of \(\tilde{H}_{i}\) sequentially on \(M_{i+1}\) from 0 (we know that \(i<k\) )
    else
        - \(x \leftarrow i\)
        while \(\tilde{H}_{i} \cap L \neq \emptyset\) do
            - \(x \leftarrow x+1\)
            - \(S h \leftarrow \emptyset\)
            while \(\left(\left(Q(S h) \leq m_{x}\right)\right.\) and \(\left.\left(\tilde{H}_{i} \cap L \neq \emptyset\right)\right)\) do
                - add to \(S h\) a job \(J_{j}\) from \(\tilde{H}_{i} \cap L\)
            end while
            - schedule all the jobs of \(S h \backslash\left\{J_{j}\right\}\) at time 0
            if \(Q(S h)>m_{x}\) then
                - schedule \(J_{j}\) at time \(v\)
            else
                - schedule \(J_{j}\) at time 0
            end if
        end while
        - schedule all the remaining jobs (which all belong to \(\tilde{H}_{i} \backslash L\) ) sequentially on \(M_{k}\)
        from \(v\)
    end if
```

Let us now quickly analyze the running time of $F A H S$.
Remark 2. FAHS runs in $O\left(\log \left(n p_{\max }\right) k n \log (n)\right)$.
Proof. Phase 1 and phase 2 run in $O(n \log (n))$ as the jobs are sorted according to their height at the end of phase 1 and according to their work before starting the phase 2. Phase 3 runs in $O(n \log (n))$ because of the $H F$ algorithm. Thus, for a fixed value of v, the cost of $F A H S$ is in $O(\operatorname{knlog}(n))$, and the dichotomic search on v can be done in $\log \left(n p_{\max }\right)$ since $n p_{\max }$ is an upper bound of the optimal. \square

4 Analysis of the algorithm

Notice first that the case where target $=2 v$ is clear as in this case the schedule has a makespan lower than $\frac{5 v}{2}$, and the scheduled work is greater than $2 v \frac{m_{i}}{2}=$ $m_{i} v$. Thus, we will focus on the second part of $F A H S$, where target $=v$. We will first prove in lemma 1,2 and 3 that (if $v \geq C^{*}$, as usual) it is possible to schedule the considered set of jobs with a makespan lower than $\frac{5 v}{2}$ in the three cases of phase 3. Then, the final proof of $F A H S$ is derived in theorem 2.

Lemma 1 (Feasibility of case 1). Any call to add(i, Select) produces a valid schedule of makespan lower than $\frac{5 v}{2}$.

Proof. Notice first that calling the add procedures implies that target $=v$. We assume that the sets High and Select have been constructed in phase 1 and 2, implying $W($ High $)+W($ Select $)>\frac{5}{4} m_{i} v$. Let $p=\mid$ Select \mid and Select $=$ $\left\{J_{1}^{\prime}, \ldots, J_{p}^{\prime}\right\}$, with $w_{j+1}^{\prime} \leq w_{j}^{\prime}$ for all j, as stated in Algorithm 1. Let us start with the following properties:

1) $P($ High $) \leq \frac{3}{2} v$
2) for all $J_{j}^{\prime} \in$ Select, $w_{j}^{\prime}>\frac{m_{i} v}{4}$, implying $J_{j}^{\prime} \in L$ and $0 \leq p \leq 4$
3) $\forall X \subset$ Select, $W($ High $)+W($ Select $\backslash X)<v m_{i}$

The first property is true because target $=v$, and the jobs of High scheduled in phase 1 have a processing time lower than $\frac{v}{2}$. The second point comes from the fact that $W\left(\right.$ Select $\left.\backslash\left\{J_{p}^{\prime}\right\}\right)<m_{i} v$ and W (Select) $>\frac{5}{4} m_{i} v$. This implies that $w_{p}^{\prime}>\frac{m_{i} v}{4}$ and property 2 . The third point is true by definition of phase 2.

We start by creating a shelf $S h$ with the higher jobs of Select (as depicted figure 1). We schedule $S h$ at time $\frac{5 v}{2}$ (remind that it means that all the jobs of $S h$ finish at time $\frac{5 v}{2}$), which is possible according to property 1 . Let α denote the number of jobs in this shelf. As Select $\cap H_{i}=\emptyset$, we know that $\alpha \geq 2$, implying that cases where $p \leq 2$ are straightforward.

We now study the cases where $p=3$. Let J_{1} be the remaining job (we use the same notations as in Algorithm 2). Let us now analyze how the add procedure schedules J_{1}. Let us suppose by contradiction that J_{1} intersects $S h$.

Let $t_{1}^{\prime}=\frac{5 v}{2}-t_{1}-p_{1}$. We get

$$
\begin{aligned}
W(H i g h \cup S h) & >t_{1}\left(m_{i}-q_{1}\right)+t_{1}^{\prime}\left(m_{i}-q_{1}\right)+\left(Q(S h)-\left(m_{i}-q_{1}\right)\right) \frac{v}{2} \\
& >t_{1}\left(m_{i}-q_{1}\right)+\left(\frac{3 v}{2}-t_{1}\right)\left(m_{i}-q_{1}\right)+\left(3 q_{1}-m_{i}\right) \frac{v}{2} \\
& =m_{i} v
\end{aligned}
$$

Fig. 1. Example for the $a d d$ procedure. Case where $p=3$ is depicted on the left side, and case where $p=4$ is depicted on the right side.

The inequality $Q(S h) \geq 2 q_{1}$ used above is true since add schedules the highest jobs in the shelf. The inequality $W(H i g h \cup S h)>m_{i} v$ is a contradiction according to property 3 , implying that J_{1} must fit in the "staircase".

Let us now study the case where $p=4$. Let Select $=$ Select $\backslash\left\{J_{4}^{\prime}\right\}$. We have $W\left(\right.$ Select $\left.{ }^{\prime}\right)>3 \frac{m_{i} v}{4}$ (according to property 2), implying W (High $)+3 \frac{m_{i} v}{4}<$ $W\left(\right.$ High \cup Select $\left.{ }^{\prime}\right) \leq v m_{i}$. Thus, we get $P($ High $) \frac{m_{i}}{2}<W(H i g h)<\frac{m_{i} v}{4}$, leading to $P(H i g h)<\frac{v}{2}$. Thus, the second shelf $s h^{\prime}$ scheduled at time $\frac{3 v}{2}$ does not intersect jobs of High. It ends the proof of feasibility of case 1.

Concerning the feasibility of case 2 , we prove a slightly more general statement which can be interpreted as a particular case of Steinberg's theorem [8].

Lemma 2 (Feasibility of case 2). Let us consider an arbitrary machine M with m processors. Let v such that for all $j \in X, p_{j} \leq v$. Let X be a set of jobs such that $W(X) \leq \alpha m v$, with $\alpha \geq 1$. Then, the $H F$ algorithm schedule X on M with a makespan lower than $2 \alpha v$.

Proof. Let C denote the makespan of the schedule, and let $J_{j_{0}}$ be a job that finishes at time C. If $q_{j_{0}}>\frac{m}{2}$, then all the jobs J_{j} of X have $q_{j}>\frac{m}{2}$, implying $\alpha m v \geq W(X)>\frac{C}{2} m$. Let us suppose now that $q_{j_{0}} \leq \frac{m}{2}$. Let s denote the starting time of $J_{j_{0}}$. As there are strictly less than $q_{j_{0}}$ available processors between
time 0 and s, we have $W(X)>p_{j_{0}} q_{j_{0}}+s\left(m-q_{j_{0}}\right)$, implying $s<\frac{W(X)}{m-q_{j_{0}}}-\frac{p_{j_{0}} q_{j_{0}}}{m-q_{j_{0}}}$. Thus,

$$
\begin{aligned}
C & \leq s+p_{j_{0}} \\
& \leq \frac{W(X)}{m-q_{j_{0}}}+p_{j_{0}} \frac{m-2 q_{j_{0}}}{m-q_{j_{0}}} \\
& \leq v \frac{(\alpha+1) m-2 q_{j_{0}}}{m-q_{j_{0}}}
\end{aligned}
$$

As the last expression is an increasing function of $q_{j_{0}}$ and $q_{j_{0}} \leq \frac{m}{2}$ we get $C \leq 2 \alpha v$.

Remark 3. Notice that Lemma 2 does not apply for strip packing. However this lemma can be simply adapted using Steinberg algorithm [8], as explained in Section 5

We now study the feasibility of case 3 .
Lemma 3 (Feasibility of case 3). The pack procedure schedules all the remaining jobs.

$$
\begin{aligned}
& \square \tilde{H}_{i}^{1} \\
& \sum_{j=1}^{4} w_{j}<m_{2} v \\
& \sum_{j=1}^{5} w_{j} \geq m_{2} v \\
& p_{12}+p_{13} \leq \frac{3 v}{2} \\
& \sum_{j=7}^{11} q_{j} \leq m_{4}+m_{5}
\end{aligned}
$$

Fig. 2. Example for the pack procedure. Case 3 occurs for $i=3 . \tilde{H}_{i}^{1}$ is defined as in Lemma 3.

Proof. Let i be the index of the current machine when case 3 occurs for the first time. Let \tilde{H}_{i}^{0} be \tilde{H}_{i} at line 7 of phase 1 (after setting the value of $J_{j_{i}}$) and let \tilde{H}_{i}^{1} be \tilde{H}_{i} at the beginning of phase 3 . Notice that $W($ High \cup Select $)<m_{i} v$ implies that we collected all the jobs of $\tilde{I} \backslash \tilde{H}_{i}^{1}$, and thus the set of jobs that have not been scheduled on $\left\{M_{1}, \ldots, M_{i-1}\right\}$ is High \cup Select $\cup \tilde{H}_{i}^{1}$. If $i=k$, then $W\left(\right.$ High \cup Select $\left.\cup \tilde{H}_{i}^{1}\right) \leq v m_{i}$ (otherwise, v is rejected), and $H F$ is sufficient according to lemma 2. We consider now that $i<k$. Jobs of High \cup Select are scheduled (on M_{i}) with a makespan lower than $\frac{5 v}{2}$ using again lemma 2. We now
prove that $\operatorname{pack}\left(i, \tilde{H}_{i}^{1}\right)$ successfully schedules \tilde{H}_{i}^{1}. If $\tilde{H}_{i}^{1} \cap L=\emptyset$, it implies that $\tilde{H}_{i}^{0} \backslash \tilde{L}=\tilde{H}_{i}^{0}$, and thus $P\left(\tilde{H}_{i}^{1}\right) \leq P\left(\tilde{H}_{i}^{0}\right) \leq 2 v-p_{j_{i}} \leq 2 v$ because phase 3 only occurs if target $=v$. Thus, we can schedule \tilde{H}_{i}^{1} sequentially on M_{i+1}.

If $\tilde{H}_{i}^{1} \cap L \neq \emptyset$, then there is one job of $H_{i} \cap L$ scheduled on M_{1}, \ldots, M_{i}. Moreover, $P\left(\tilde{H}_{i}^{1} \backslash L\right) \leq P\left(\tilde{H}_{i}^{0} \backslash L\right) \leq \frac{3 v}{2}$ as there was not enough jobs to fill M_{i} up to $2 v$. We will prove that $\operatorname{pack}\left(\underset{\tilde{H}}{i} \tilde{H}_{i}^{1}\right)$ can schedule $\tilde{H}_{i}^{1} \cap L$ on machines $\left\{M_{i+1}, \ldots, M_{k}\right\}$ such that no job (of $\tilde{H}_{i}^{1} \cap L$) is scheduled after time v on M_{k}. Then, it will be obvious that $\tilde{H}_{i}^{1} \backslash L$ can be added on M_{k} between v and $\frac{5 v}{2}$.

Let us prove it by contradiction by assuming that there is a job of $\tilde{H}_{i}^{1} \cap L$ scheduled on machine M_{k} after time v (meaning that we stared a second shelf of jobs of $\tilde{H}_{i}^{1} \cap L$ on M_{k}).

For any $t \in[|1, \ldots, k|]$, let S_{t} denote the schedule constructed by $F A H S$ on machine M_{t}, and S_{t}^{*} be the schedule (for a fixed optimal solution) on machine M_{t}. Let $X=\cup_{t=1}^{i} S_{t}$ and $X^{*}=\cup_{t=1}^{i} S_{i}^{*}$. We have $Q\left(X \cap H_{i} \cap L\right) \geq Q\left(X^{*} \cap H_{i} \cap L\right)$ as in phase 1 we scheduled on machines $M_{1} \ldots M_{i}$ the i highest jobs of $H_{i} \cap L$ (called the $J_{j_{t}}$ in the algorithm), and the optimal cannot schedule more than i jobs of $H_{i} \cap L$ on these machines. Moreover, we have $Q\left(S_{t} \cap H_{i} \cap L\right)>m_{t}$ for every t in $[|i+1, k|]$ as we started a second shelf on each of these machines. Thus, it means that $Q\left(\tilde{H}_{i}^{1} \cap L\right)>\Sigma_{t=i+1}^{k} m_{t}$ which is impossible as the optimal solution had a total height of jobs of $H_{i} \bigcap L$ greater than $Q\left(\tilde{H}_{i}^{1} \cap L\right)$ to schedule on M_{i+1}, \ldots, M_{k}.

We can now complete the main proof.
Theorem 2. If $v \geq C^{*}, F A H S$ schedules all the jobs with a makespan lower than $\frac{5 v}{2}$.

Proof. If case 3 of phase 3 occurs, then we know according to lemma 3 that all the remaining jobs are scheduled in $\frac{5 v}{2}$. Otherwise, we know that for every $i \in[|1, \ldots, k|]$, the $F A H S$ algorithm had a target equal to $2 v$, or executed case 1 or case 2 . This implies by construction that the area scheduled on M_{i} is greater than (and in this case exactly equal to) $m_{i} v$. Thus, there can not be unscheduled jobs at the end.

5 Concluding remarks

In this paper, we presented a new algorithm for scheduling a set of clairvoyant rigid jobs in a hierarchical parallel platform, assuming that every job fits in any machine. A sophisticated analysis proved that it is a $\frac{5}{2}$-approximation, improving the best existing algorithm. There exists for this problem a lower bound equal to 2 .

We now explain how to adapt the algorithms and the proofs to the MSP problem where jobs, called rectangles, must be allocated on contiguous processors. The only adaptation needed is in Lemma 2, where HF can be directly replaced by

Steinberg's algorithm (see Section 2.3). Phase 1, pack and add build contiguous schedule (and thus a valid schedule for rectangles), and proofs of Lemma 1 and 3 still hold for the contiguous case. Thus, we get a $\frac{5}{2}$-approximation algorithm for MSP that runs $O\left(\log \left(n p_{\text {max }}\right) k n \log ^{2}(n) / \log (\log (n))\right.$.

We describe now how to achieve a $2+\epsilon$ ratio for this problem at the price of a much higher algorithm complexity. This result is an extension of the result in [4] that was established for the regular case.

Remark 4. There is a $2+2 \epsilon$-approximation that runs in $O\left(n \log ^{2}(n) / \log (\log (n)) f(k, n, \epsilon)\right)$ where $f(k, n, \epsilon)$ is the complexity of any $1+\epsilon$ algorithm for the $Q \| C_{\text {max }}$ problem with k machines and n jobs (for example $f(\epsilon)=O\left(k n^{\frac{10}{\epsilon^{2}}}\right)$ using [9]).

Proof. We follow here the same idea as in [4]. Let I denote the instance of the irregular hierarchical problem (where every job fits everywhere). We define an instance I^{\prime} of the $Q \| C_{\max }$ problem as follows. For each job J_{J} of I we associate a job J_{j}^{\prime} of I^{\prime} of processing time $p_{j}^{\prime}=w_{j}$. For each machine M_{i} of I^{\prime} we associate a machine M_{i}^{\prime} of I^{\prime} whose speed is m_{i}. Then, we apply a PTAS (and get a schedule $\left.S^{\prime} \leq(1+\epsilon) O p t\left(I^{\prime}\right)\right)$ on I^{\prime}. The schedule gives a partition of the jobs of I among the different machines. Let X_{i}^{\prime} denote the set of jobs scheduled on M_{i}^{\prime} in S^{\prime}, and let X_{i} denote the corresponding set of jobs (meaning the jobs of same index) in I. Let c_{i}^{\prime} denote the completion time on M_{i}^{\prime}. We create the schedule S of I as follows. According to the Steinberg's theorem (see Section 2.3), we know that for each i the set X_{i} can be scheduled in a "box" (created on machine M_{i}) of size $m_{i} \times 2 c_{i}^{\prime}$ as $c_{i}^{\prime}=\frac{W\left(X_{i}^{\prime}\right)}{m_{i}}=\frac{W\left(X_{i}\right)}{m_{i}}$. Thus, the makespan of S is lower than $2 \max _{i} c_{i}^{\prime} \leq 2(1+\epsilon) O p t\left(I^{\prime}\right) \leq 2(1+\epsilon) O p t(I)$.

A natural (but hard) question is to fill the gap between the new approximation ratio $\frac{5}{2}$ and the lower bound with a low cost algorithm.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. International Journal of High Performance Computing Applications $15(3)$ (2001) 200
2. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory and practice in parallel job scheduling. In: JSSPP. (1997) 1-34
3. Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete Mathematics and Applications 16(1) (2006) 73-85
4. Ye, D., Han, X., Zhang, G.: On-Line Multiple-Strip Packing. In: Proceedings of the 3rd International Conference on Combinatorial Optimization and Applications (COCOA), Springer (2009) 165
5. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation algorithm for multiple strip packing. In: Proceedings of the 7th Workshop on Approximation and Online Algorithms (WAOA). (2009)
6. Pascual, F., Rzadca, K., Trystram, D.: Cooperation in multi-organization scheduling. In: Proceedings of the 13 th International European Conference on Parallel and Distributed Computing (EUROPAR). (2007)
7. Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids. In: IEEE International Symposium on Parallel and Distributed Processing, 2008. IPDPS 2008. (2008) 1-10
8. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26 (1997) 401
9. Hochbaum, D., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comput. 17 (3) (1988) 539-551

[^0]: * M. Bougeret has a PhD grant from DGA-CNRS.
 ${ }^{\star \star}$ Research supported by German Research Foundation (DFG) project JA 612/12-1,
 "Design and analysis of approximation algorithms for 2D and 3D packing problems".

