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Abstract. In this paper we study the Multiple Strip Packing (MSP)
problem, a generalization of the well-known Strip Packing problem. For
a given set of rectangles, r1, . . . , rn, with heights and widths ≤ 1, the
goal is to find a non-overlapping orthogonal packing without rotations
into k ∈ N strips [0, 1]× [0,∞), minimizing the maximum of the heights.
We present an approximation algorithm with absolute ratio 2, which is
the best possible, unless P = NP, and an improvement of the previous
best result with ratio 2 + ε. Furthermore we present simple shelf-based
algorithms with short running-time and an AFPTAS for MSP. Since
MSP is strongly NP-hard, an FPTAS is ruled out and an AFPTAS is
also the best possible result in the sense of approximation theory.
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1 Introduction

In this paper we study the Multiple Strip Packing (MSP) problem, a generaliza-
tion of the well-known Strip Packing (SP) problem. For a given set of rectangles,
r1, . . . , rn, with heights and widths ≤ 1, the goal is to find a non-overlapping
orthogonal packing without rotations into k ∈ N strips [0, 1] × [0,∞), mini-
mizing the maximum of the heights. As much as Strip Packing, its general-
ization Multiple Strip Packing is not only of theoretical interest, but also has
many applications to real-world problems as in computer grids, server consol-
idation and -naturally- in Cutting Problems. In computer grids for example,
MSP is related to the problem of finding a schedule for parallel tasks into
different clusters of processors with minimum makespan [15]. Consider an in-
stance L = {r1, . . . , , rn} of MSP. The value k always denotes the number of
strips S1, . . . , Sk. For i ∈ {1, . . . , k} the value hi denotes the height of a fea-
sible packing in strip Si. For an algorithm A for MSP let A(L) be the output
of the algorithm, in this case the maximum height of the packing generated,
i.e. maxi∈{1,...,k} hi. The optimal value is denoted with OPT (L), in this case the
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minimal height that can be achieved. The quality of an approximation algorithm
is measured by its performance ratio. For a minimization problem as MSP we
say that A has absolute ratio α, if supL

A(L)/OPT (L) ≤ α, and asymptotic ratio
α, if α ≥ lim supOPT (L)→∞ A(L)/OPT (L), respectively. A minimization problem
admits an (asymptotic) polynomial-time approximation scheme ((A)PTAS), if
there exists a family of polynomial-time approximation algorithms {Aε|ε > 0}
of (asymptotic) (1 + ε)-approximations. We call an approximation scheme fully
polynomial ((A)FPTAS), if the running-time of every algorithm Aε is bounded
by a polynomial in n and 1

ε . Zhuk showed in [19] that there is no approximation
algorithm for MSP with absolute ratio less than 2. Since MSP can be reduced
to 3-Partition, it is also strongly NP -hard. Since a PTAS and an FPTAS are
ruled out, an AFPTAS is asymptotically the best possible.
A related problem is 3D Strip Packing (3SP), which also is a generalization of
Strip Packing. Here the goal is to find a packing of a given list of cuboids with
side lengths bounded by one into a 3-dimensional strip [0, 1] × [0, 1] × [0,∞),
minmizing the height of the packing. Multiple Strip Packing with k strips can
be reduced to 3SP by introducing a cuboid with depth 1/k for each rectangle
packing the strips next to each other.
Parallel Job Scheduling in Grids with identical machines is also a related prob-
lem. In the offline case we have m machines Mi with ` processors and jobs J
with processing time pj , and a size sizej . The jobs must be executed on parallel
processors within one machine Mi, but not necessary on consecutive processors.
The machines can be seen as strips with width l and the Jobs as rectangles with
width sizej and height pj . In Multiple Strip Packing we have just the additional
constraint that a job must be scheduled on consecutive processors. Unfortunately
this is the reason why approximation ratios for Parallel Job Scheduling cannot
be applied to MSP maintaining their ratio.

Known Results. Multiple Strip Packing was first considered by Zhuk [19], who
showed that there is no approximation algorithm with abolute ratio better than
2, and later by Ye et. al. [18]. Both concentrated on the online case. Additonally
an approximation algorithm for the offline case with ratio 2 + ε was achieved
in [18]. For Strip Packing Coffman et al. gave in [11] an overview about perfor-
mance bounds for shelf-orientated algorithms as NFDH (Next Fit Decreasing
Height) and FFDH (First Fit Decreasing Height). Those adopt an absolute
ratio of 3, and 2.7, respectively. Schiermeyer [14] and Steinberg [16] presented
independently an algorithm for SP with absolute ratio 2. A further important
result is an AFPTAS for SP with additive constant O(1/ε2) of Kenyon and Rmila
[12]. This constant was improved by Jansen and Solis-Oba, who presented in [10]
an APTAS with additive constant 1. For 3SP Jansen and Solis-Oba obtained an
algorithm with ratio 2 +ε in [9] as an improvement of the formerly known result
by Miyazawa and Wakabayashi [13], who presented an algorithm with asymp-
totic ratio at most 2.64. Bansal et al. presented in [3] an algorithm for 3SP with
a ratio of T∞ ≈ 1.69, which is the best known result. Schwiegelshohn et al. [15]
achieved ratio 3 for a version of Parallel Job Scheduling in Grids without release
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times, and ratio 5 with release times. Tchernykh et al. presented in [17] an al-
gorithm with absolute ratio 10 for the case of different machines and without
release times. However, this algorithm cannot be applied directly to MSP.

Our Results. In this paper we present an approximation algorithm with absolute
ratio 2, which is an improvement of the former result of 2+ε by Ye et al. [18] and
best possible, unless P = NP. We also introduce an AFPTAS for Mutiple Strip
Packing, which is a generalization of the algorithm of Kenyon and Rmila [12].
Our algorithm achieves an additive constant of O(1), if the number of strips is
sufficient large, otherwise an additive constant of O(1/ε2). Furthermore we show
how to use the simple shelf-based heuristics NFDH and FFDH to obtain ap-
proximation algorithms for MSP with the same asymptotic ratio as for SP.

Organisation of the Paper. In the next section we introduce two shelf-based
algorithms, using Next Fit and First Fit policies. In Section 3 we present a 2-
approximation for MSP. Here we distinguish between different sizes for k. For
k = 1 we use the 2-approximation of Steinberg [16] or Schiermeyer [14]. If k = 2
or bounded by a specified constant c we make use of a result by Bansal et al. [1,
2, 6] for Rectangle Packing with Area Maximization (RPA). For k ≥ c we use
an approximation algorithm for 2D bin packing with asymptotic ratio 1.69 [4, 5]
of Caprara et al. In the last section we present an AFPTAS for MSP. Here we
generalize the algorithm by Kenyon and Rmila [12]. Interestingly, the additive
constant in our AFPTAS can be reduced from O(1/ε2) to O(1), if the number k
of strips is large enough.

2 Shelf-based algorithms

In this section we modify the shelf-based heuristics NFDH and FFDH. [11]. A
shelf is a row of items placed next to each other left-justified. The baseline of a
shelf is either the bottom of the bin or the extended upper edge of the tallest
item packed in the shelf below. NFDH generates for a given list of rectangles
L = {r1, . . . , rn} a packing into a strip with height at most 2OPTSP (L) +hmax,
FFDH one of 1, 7OPTSP (L) + hmax, where OPTSP (L) is the optimum value
of Strip Packing for the instance L and hmax is the height of the tallest item
in L. Via this modification we obtain approximation algorithms for Multiple
Strip Packing with the same ratios. Furthermore, we present another algorithm,
that computes for rectangles with widths bounded by ε < 1 a packing of height
1/(1−ε)OPT (L) + 2hmax.

Theorem 1. Let A be one of the shelf-based Strip Packing algorithms NFDH
or FFDH with asymptotic ratio α > 1, that creates for an instance L a packing
of height less than αOPTSP (L) +hmax. For any k ∈ N there exists an algorithm
Ak that packs a list of rectangles L into k strips with Ak(L) ≤ αOPT(L)+hmax.
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For any instance L of MSP we define the algorithm Ak as follows

1 Pack the sorted rectangles with A into one strip S. (In particular the rect-
angles are first sorted by non-increasing height.) Let A(L) denote the height
of S.

2 Cut out the first shelf and pack it into the first strip S1.
3 Divide the residual strip S into k parts:

3.1 For each ` ∈ {0, 1, . . . , k} draw a horizontal line trough S at height
`(A(L)− hmax)/k.

3.2 For ` ∈ {0, 1, . . . , k − 1} pack all items intersecting the `th line and all
items between the `th and (`+ 1)th line into strip S`+1.

The running-time of the above algorithm is O(n log n).

Corollary 1. Let L be an instance of MSP. In a packing generated by the above
algorithm Ak we have maxi∈{1,...,k} |hi − Ak(L)| ≤ 2hmax, where hi denotes the
height of strip Si.

Another way to pack a set of rectangles with a modified version of the NFDH
heuristic into k strips is the following:

Algorithm 2

1 Sort the rectangles by non-increasing height.
2 For each i ∈ {1, . . . , k} pack one shelf according to the NFDH heuristic into

strip Si, that means starting in the lower left corner pack the rectangles next
to each other on the baseline of strip Si, until the next rectangle does not fit.
Draw a new baseline at the top edge of the tallest rectangle (that clearly is
the first one).

3 Take the strip S− with the current lowest height h− and pack one shelf
according to the NFDH heuristic on top of the shelves.

4 Repeat Step 3 until all rectangles are packed.

The packing generated by the above algorithm is very smooth, in the sense
that the heights of the strips only differ by hmax.

Lemma 1. For a set of rectangles L = {r1, . . . , rn} Algorithm 2 with output
A(L) generates a packing into k strips, so that maxi∈{1,...,k} |A(L)−hi| ≤ hmax.

This leads to a further result about rectangles with bounded width. Coffman
et al. showed in [11] that FFDH applied to an instance L of rectangles with
widths bounded by 1/m for some integer m generates a packing into a strip of
height at most (1 + 1

m )OPTSP (L) + hmax. Our result for packing into k strips
is the following:

Theorem 3. For a set of rectangles L = {r1, . . . , rn} with widths bounded by
ε > 0 we obtain by the Algorithm 2 with output A(L) a packing into k strips
with height less than 1

1−εOPT (L) + 2hmax.

For ε = 1
m this is equal to A(L) ≤

(
1 + 1

m−1

)
OPT(L) + 2hmax.
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3 A two-approximation for MSP

In this section we construct a polynomial-time approximation algorithm for MSP
with absolute ratio 2. Since there is no approximation algorithm for MSP with
ratio smaller than 2 (unless P=NP), this is the best possible result. To handle
different sizes of k we use, besides the well-known algorithms of Steinberg [16]
or Schiermeyer [14], a result of Bansal et al. [1, 2, 6] for Rectangle Packing with
Area Maximization (RPA) and results of Caprara [4].

3.1 One or two strips

The case k = 1 is trivial, because we can use the algorithm of Steinberg [16] or
Schiermeyer [14] with absolute performance bound 2.

Theorem 4 (Steinberg [16]). Let L = {r1, . . . , rn} be a set of rectangles with
heights hi and widths wi and Q be a rectangle with width u and height v. Let
h := maxi∈{1,...,n} hi and w := maxi∈{1,...,k} wi. If the following inequalities hold,

w ≤ u, h ≤ v, 2SIZE(L) ≤ uv − (2w − u)+(2h− v)+ (1)

then it is possible to pack L into the rectangle Q.(As usual, x+ = max(x, 0).)

Therefore let us first consider the case for k = 2. Here we use the PTAS
found by Bansal et al. [1, 2, 6] for RPA. In RPA we are given a set of rectangles
L = {r1, . . . , rn} with widths wi and heights hi and a bin of unit size. The goal
is to find a feasible packing of a subset L′ of the rectangles and to maximize the
area of the rectangles in L′.

Algorithm 5

1 Guess the height of an optimal solution for MSP and denote it with v.
2 Scale the heights of the rectangles in L by 1/v so that the corresponding pack-

ing fits into one bin of height and width one.
3 The set of resulting rectangles Lv is now considered as an instance of RPA

with OPTRPA(L) = SIZE(Lv), where SIZE(Lv) is the total area of all
rectangles in Lv. Apply the algorithm in [1, 2, 6] with accuracy ε = 1/2 and
find a packing of a subset L′v ⊂ Lv with total area at least (1− ε)SIZE(Lv).
By rescaling the rectangles of L′v get a packing for the first strip with height
at most v.

4 Since SIZE(Lv) ≤ 2 the remaining items in Lv\L′v have total area SIZE(Lv\L′v) ≤
εSIZE(Lv) ≤ 1. Therefore we can pack them with Steinberg’s algorithm into
a strip of height at most 2. Rescaling gives us a second strip of height at most
2v.

The running-time of the algorithm is polynomial in n: In the first step we
can use Binary Search to find the height of an optimal solution. Step 3 is also
polynomial, since we apply the algorithm for a fixed value ε = 1/2.
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3.2 A bounded number of strips

In the case of a constant number of strips we can use an extended version of
the PTAS for RPA in [1, 2, 6] called kRPA. Another helpful tool is the next
lemma. To see the proof apply Steinberg’s algorithm for h,w, u = 1 and v = k/2
in equation 1.

Lemma 2. Let k ≥ 3 and L be an instance of 2DBP with total area SIZE(L) ≤
k/4. There exists a packing of L into k bins.

Algorithm 6

1 Guess an optimal height for MSP and denote it with v.
2 Scale the heights of the rectangles of L by 1/v so that the corresponding pack-

ing fits into k bins of height and width one.
3 The set of resulting rectangles Lv is now considered as an instance of RPA

with OPTRPA(L) = SIZE(Lv). Apply kRPA to k bins of unit size and
find for an accuracy ε ≤ 1/4 a packing for a subset L′v ⊂ Lv with total area
(1 − ε)SIZE(Lv). By rescaling the rectangles of L′v we get k bins of height
v.

4 For the total area of the remaining rectangles in Lv\L′v we have SIZE(Lv\L′v) =
εSIZE(Lv) ≤ k/4. Pack those rectangles according to Lemma 2 into k bins
and rescale the rectangles. This results again in k bins of height at most v.

5 Stack every two bins on top of each other and get a solution with bins of
height at most 2v.

3.3 A large number of strips

Caprara presented in [4] a shelf algorithm for 2DBP that produces a solution
whose asymptotic ratio can be made arbitrarily close to T∞ = 1.69.... Clearly if
the number of strips is large enough (≈ 104) applying this algorithm we get a
two-approximation forMSP stacking every two bins on each other. Alternatively
in we can use the two-approximation for 2DBP by Jansen et al. to achieve this
result [8, 7].
Along with the previous sections we have the following:

Theorem 7. For any k ∈ N there is a polynomial-time algorithm for MSP with
absolute ratio two.

4 An AFPTAS for MSP

In this section we present an AFPTAS for MSP. The algorithm is a generaliza-
tion of an AFPTAS found by Kenyon and Rmila [12] for Strip Packing. For an
instance L of Strip Packing and an accuracy ε > 0 their algorithm generates a
packing with height (1+ε)OPTSP (L)+O(1/ε2). Our algorithm for Multiple Strip
Packing achieves the same ratio. For instances with k sufficient large, namely
k ∈ Ω(1/ε3), our algorithm adopts an improved additive constant of O(1). More
precisely for an accuracy ε and k ≥ d128/ε3e we get an approximation ratio of
(1 + ε)OPT(L) + 6hmax.



Approximation Algorithms for Multiple Strip Packing 7

4.1 The regular case

As in Section 2 we divide a packing into one strip into k parts of nearly the same
height and distribute them to k strips.

Theorem 8 (Kenyon & Rmila [12]). For a list L = {r1, . . . , rn} of rectangles
with widths and heights ≤ 1 and an accuracy ε > 0 the algorithm AKR

ε in
[12] generates a packing into one strip with height at most (1 + ε)OPTSP (L) +
(4( 2+ε

ε )2 + 1)hmax.

Our result is the following:

Theorem 9. For a list L = {r1, . . . , rn} of rectangles with widths and heights
≤ 1 and an accuracy ε > 0 there exits an algorithm Aε that generates a packing
into k strips, so that Aε(L) ≤ (1 + ε)OPT (L) + (2( 2+ε

ε )2 + 2)hmax.

4.2 Instances with a large number of strips

In this section we consider the case k ≥ d128/ε3e. In this case it is possible to
improve the additive constant to O(1) by balancing the configurations.

Rounding. We choose ε′ = ε/4 (w.l.o.g. 1/ε′ integral) and divide the list of rect-
angles L into a list of narrow rectangles Lnarrow := {ri ∈ L|w(ri) ≤ ε′} and
a list of wide rectangles Lwide := {ri ∈ L|w(ri) > ε′}. Then we round Lwide

to an instance Lsup with only M := (1/ε′)2 different widths. For the rounding
step we put the wide rectangles sorted by non-increasing widths left-aligned on
a stack. Let STACK(L) denote the total area of the plane covered by this stack
and let H denote its height. Moreover, for arbitrary lists L′′, L′ we define a
relation ≤g, so that L′′ ≤g L

′, if and only if STACK(L′′) ⊆ STACK(L′). We
draw M − 1 horizontal lines through STACK(L) with distance H/M starting at
the bottom. Therefore we get M so-called threshold rectangles. A rectangle is a
threshold rectangle if it either with its interior or with its lower edge intersects a
line at height iH/M, i ∈ {1, . . . ,M − 1}. For i ∈ {1, . . . ,M − 1} we round up the
width of each rectangle between the lines iH/M and (i+ 1)H/M to the width of
the ith threshold rectangle. The widths of the rectangles below the first line are
rounded up to the width of the undermost rectangle in the stack. So we get at
most M groups of different widths (see Fig 1). Furthermore, we get a list Lsup of
rectangles with widths larger than ε′ and only M different widths, in particular
we have Lwide ≤g Lsup.

Fractional Packing. Our first objective is to create a fractional packing for the
wide rectangles into k strips. To do this we introduce configurations. A con-
figuration is a non-empty multiset of widths, which sum up to less than one.
Denote with q the number of different configurations Cj with height xj . Let αij

be the number of occurence of width wi in configuration Cj and let βi be the
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H/M

2H/M

3H/M

4H/M

Group 1

Group 2

Group 3

Group 4

Fig. 1. Rounding the rectangles in Lsup.

total height of all rectangles of width wi. Based on the solution of the following
Linear Program

min

∑q
j=1 xj

k
s.t.

q∑
j=1

αijxj ≥ βi for all i ∈ {1, . . . ,M}xj ≥ 0 for all j ∈ {1, . . . , q},

(2)
by distributing the configurations to k strips we get the requested fractional
packing for the rectangles in Lsup. Note that rank(αij)ij ≤M and hence a basic
solution x of LP (Lsup) has at most M nonzero entries. In the next section we
show how to get from a fractional packing to a feasible packing for Lsup. Later
the rectangles in Lnarrow are packed into the unemployed space in a Greedy
manner. For a list L of rectangles let LIN(L) denote the height of an optimum
fractional packing for L. Let h0 := LIN(Lsup) and note that h0 ≤ OPT (L).

Lemma 3. Let x = (x1, . . . , xq) be a solution of LP (Lsup) with at most m ≤
M nonzero entries x1, . . . , xm. For k ≥ d128/ε3e we get a fractional packing
into k strips with height at most (1 + ε′)h0 and at most m′ ≤ 2M different
configurations.

For details refer to the appendix.

Integral Packing. The next Lemma shows how to get from a fractional packing
to a feasible integral packing. A proof is given in the appendix.

Lemma 4. Let x = (x1, . . . , xq) be a solution of LP (Lsup) with at most m′ ≤
2M nonzero entries x1, . . . , xm′ . For k ≥ d128/ε3e we can convert x to a feasible
packing for the wide rectangles with height at most (1 + ε′)h0 + 2hmax and at
most 2 different configurations per strip.

Since we can guarantee that there are at most 2 different configurations per strip,
the additive constant will be improved, while the running-time is still polynomial
in n and 1/ε. If k = 1 this does not work.

Our last step is to pack the narrow rectangles. We use a modified version
of the NFDH algorithm: For strip Si as above we pack narrow rectangles with
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0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Cj

C`

Fig. 2. Si with Cj and C`.

0

h0 − hmax

h0

h0 + hmax

(1 + ε′)h0 + hmax

(1 + ε′)h0 + 2hmax

Fig. 3. Si after packing the narrow rectan-
gles.

NFDH into the empty space next to the configurations until the total height is at
most (1+ε′)h0+2hmax. After that we repeat the process for strip Si+1. When all
strips are filled in this way, we draw a horizontal line at height (1+ε′)h0 +2hmax

in each strip and pack the remaining narrow rectangles with Algorithm 2 on top
(see Fig 2 and 3). Thus we can ensure by Lemma 1 that the maximum difference
of the heights of two arbitrary strips is at most hmax (see Fig 3). Let hfinal

denote the height of the packing after packing the narrow rectangles.

Lemma 5. Let k ≥ d128/ε3e. If hfinal ≥ (1 + ε′)h0 + 2hmax, then we have
hfinal ≤ SIZE(Lsup∪Lnarrow)

k(1−ε′) + 6hmax + ε′h0.

For details we refer to the journal version. The next lemma is shown in [12] for
the Linear Program corresponding to Strip Packing, but obviously also holds for
our linear program LP (Lsup).

Lemma 6. [12] For the rounded instance Lsup and Lwide the inequalities LIN(Lsup) ≤
LIN(Lwide)

(
1 + 1

Mε′

)
and SIZE(Lsup) ≤ SIZE(Lwide)

(
1 + 1

Mε′

)
hold.

The entire algorithm is now defined as follows:

Algorithm 10

1 Set ε′ := ε/4 and M := (1/ε′)2.
2 Partition L into Lwide and Lnarrow.
3 Construct Lsup, so that Lwide ≤g Lsup and there are only M different widths

in Lsup.
4 Solve the linear program LP (L).
5 Construct a feasible solution for Lsup by balancing the configurations.
6 Use modified NFDH to pack the rectangles in Lnarrow into the remaining

space and on top of the strips.

Theorem 11. If k ≥ d128/ε3e the Algorithm 10 generates for an instance L of
MSP a packing of height at most (1 + ε)OPT(L) +O(1).
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