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Binary Mesh Partitioning for
Cache-Efficient Visualization

Marc Tchiboukdjian, Vincent Danjean and Bruno Raffin

Abstract—One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-
aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms.
CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed
for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees.
We present in this paper a O(N logN) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a
coherent traversal of a N-size mesh in dimension d induces less than N/B + O(N/M1/d) cache-misses where B and M are the block
size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming
than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns,
or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We
also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

Index Terms—Cache-aware, cache-oblivious, mesh layouts, data locality, unstructured mesh, isosurface extraction.
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1 INTRODUCTION

Many visualization related processing steps, like isosurface
extraction, rely on read-only and memory intensive algorithms.
Adequately combining data layout and access patterns can
significantly improve performance. Since classical processor
architectures cache blocks of adjacent data, storing data ac-
cessed consecutively nearby in memory enables to reduce
cache-misses. Enforcing locality is also relevant for some GPU
architectures that coalesce parallel memory accesses to save
clock cycles when the target data are close in memory. For
instance the Nvidia G80 and G200 [1] can coalesce concurrent
threads data accesses, while the Intel Larrabee supports vector
level coalesced loads and stores for its VPUs.

For regular data structures, data layouts based on space
filling curves, like the Z curve, are common [2]. They provide
a cache-efficient layout for access patterns showing a strong
spatial locality. For irregular data structures, computing cache-
efficient layouts is significantly more difficult.

We can distinguish two classes of cache-efficient algo-
rithms: Cache-Aware (CA) and Cache-Oblivious (CO) algo-
rithms. CA algorithms are based on the external-memory (EM)
model [3]. The memory hierarchy consists of two levels, a
main memory of size M called cache and an infinite size
secondary memory. The data are transferred between these
two levels in blocks of B consecutive elements. CA algorithms
can be very efficient but require the layouts to be recomputed
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Fig. 1. The cache-oblivious memory model. The data
are transfered by block of B consecutive elements into
a cache of size M. Both parameters are unknown to the
algorithm.

for each memory architecture. It makes it difficult to efficiently
share the same layout between heterogeneous processing units
mixing CPUs and GPUs for instance. CO approaches [4]
intend to overcome this limitation by proposing layouts that
are independent from the cache size M and the block size
B (Fig. 1). The Z curve is an example of a CO layout
(Fig. 2). For irregular data structures, the most significant
and recent work is probably the CO mesh layout proposed
by Yoon et al. [5] (OpenCCL algorithm). In comparaison to
other layouts, experiments show speedups ranging from 2 for
in-core computations, up to 20 for out-of-core computations.
This algorithm is experimentaly efficient for a wide range
of meshes. However this algorithm is based on heuristics,
without theoretical performance guarantees, neither on the
layout computation complexity nor on the quality of the
resulting layout.

In this paper we introduce a new CO layout algorithm for
irregular but well shaped meshes with a theoretical perfor-
mance guarantee. It relies on a recursive mesh partitioning
using a specific BSP (Binary Space Partitioning) algorithm
introduced by Miller et al. [6]. This algorithm cuts the mesh
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Fig. 2. Good layouts can significantly reduce the number
of block transfers. On the left, 75% of the data must be
loaded to access the queried slice (each line corresponds
to a cache line), while the CO layout used on the right (Z
curve) enables to reduce this amount to only 25% of the
data (each block fits into a cache line).

guaranteeing a good tradeoff between minimizing the number
of cut elements and having two partitions of similar size. When
applied recursively it ensures that spatially close and strongly
connected data tend to be partitioned deeper in the BSP tree.
The CO layout is obtained by storing the data linearly in
memory from the first leaf of the BSP tree to the last one. The
data loaded in a cache block are thus contiguous leaves of the
BSP tree. It is cache oblivious as to any block and cache size
corresponds a BSP tree depth level ensuring a strong locality
and connectivity.

Classical BSP algorithms or space filling curves could be
used in a similar way for building layouts. But these space
partitioning techniques only take into account geometric infor-
mation and not connectivity. Performance is not guaranteed.

Our CO layout algorithm has several benefits. The layout
computation has a O(N logN) complexity. It also guarantees
that a coherent traversal of a N-size mesh in dimension d
induces less than N/B + O(N/M1/d) cache-misses where B
and M are the block and cache size. Experiments show that
the layout computation is about two to three times faster than
for the OpenCCL algorithm while requiring significantly less
memory (only 2% of the memory used by OpenCCL on the
biggest meshes). At execution, perfomance is comparable with
the OpenCCL algorithm for classical access patterns. The BSP
tree computed for the layout can also be used as an internal,
layout consistent, acceleration data structure. Experiments
reveal that using it as a min-max tree for accelerating an
isosurface extraction brings significant additional performance
improvements (from 12% to 55% for in-core computations)
compared to using an external kd-tree not necessarily consis-
tent with the layout.

We also show that CO layouts can lead to significant per-
formance improvements on recent NVIDIA GPUs (speedups
ranging from 1.52 to 4.09), even if no cache mechanism is
involved. Because CO algorithms enforce data locality, they
favor coalesced data accesses. To our knowledge, this is the
first time such benefits of CO layouts on GPUs are highlighted.

Related work is discussed in section 2. We introduce our

Fig. 3. Visual illustration of different layouts for the torso
mesh. Successive cells in memory are colored from blue
to red. From left to right, the original, geometric (sorted by
x,y and z coordinates), OpenCCL (cache-coherent layout
from [5]) and FastCOL (our approach) layouts. For spa-
tially close tetrahedra, color discrepancy decreases from
the left to right layouts. It denotes an improved memory
locality, less likely to generate cache-misses for spatially
coherent access patterns.

framework and review common mesh access patterns in sec-
tion 3. Overlap graphs, the class of meshes our algorithm
applies to, and the graph separator algorithm are presented
in section 4. The CO algorithm and its implementation are
described in section 5. Experimental results are presented in
section 6 before the conclusions.

2 RELATED WORK

2.1 Cache-Efficient Algorithms
Today, many algorithms have their CA or CO versions [7]
where computations and data are reordered for an efficient
cache use. A widely used technique is blocking or tiling:
elements are mapped in memory and accessed by blocks of
size B to fit in a cache line. For instance, regular search trees
are made CA by grouping B keys in a single node. Such trees
are called B-trees. Another example is matrix multiplication.
Instead of rows or columns, the ATLAS library [8] traverses
the matrix by blocks such that all involved blocks for a partial
computation fit in the cache.

It is often possible to obtain the same result while being
oblivious to the block size. For example, by carefully storing
a binary tree in memory with the vam Emde Boas layout [7],
a search can match the I/O bound of the CA B-tree. In
this layout, the tree is divided at the middle of its height
into a top tree and several bottom trees. The same layout
is recursively applied to each of these trees, which are then
stored sequentially in memory. The same recursive blocking
technique is applied within the divide and conquer matrix
multiplication. Indeed, this is a CO algorithm [7] with the
same theoretical complexity as its CA counterpart.

Another CO alternative to blocking is the use of space filling
curves. These layouts have been used efficiently for regular
mesh traversals [2] and matrix multiplication algorithms [9].

CO algorithms for regular structures are not always as
efficient as their CA counterparts. The access pattern to a CO
layout is more complex, leading to a significant overhead that
limits the benefit of a CO approach. For instance, the CO ma-
trix multiplication is not competitive with the CA version [10].
We do not face this problem here as an unstructured mesh has
already a complex access pattern.
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2.2 Mesh Layouts

The problem of reordering mesh elements for efficient cache
use was first encountered when a vertex cache was introduced
in graphic cards. To maximize the efficiency of the hardware
vertex cache, triangles needed to be reordered before being
sent to the graphic card. The algorithm developed by [11]
reorders triangles to form triangle strips. They assume the
cache has a FIFO policy and the cache size is known to
the algorithm. Algorithms not based on strips that work for
all cache sizes have been introduced in [12]. The layout
quality has been improved in [13], and the overdraw rate
reduced in [14]. When the geometry and the topology of the
mesh can be modified, the method of [15] generates a single
strip representing all the mesh while improving the efficiency
of back-face culling. In [16], the authors propose a mesh
compression scheme that is also cache efficient. However, as
they target graphic cards, all these approaches only reorder
mesh cells and not points. They consider the graphics card
cache model (no cache line, independent vertices fetching,
etc.) which is very different from the CPU cache models. Only
the temporal locality on mesh points is taken into account and
not the spatial locality. Moreover, the application must access
the mesh in the exact same order as given by the cell layout
(especially for triangle strips). Finally, work in this area mostly
deals with surface meshes.

Processing sequences [17] reorder the points and the cells of
a mesh, but this approach focuses on streaming computations.
The goal is to minimize the maximum amount of memory used
during the computation. The application should again follow
the mesh layout.

OpenCCL [18] presented in [5] casts the mesh layout
problem as a graph optimization problem. To describe the
access pattern of the application using the mesh, the user must
provide a graph where vertices represent data and edges link
data that are likely to be accessed in sequence at runtime. A
good mesh layout is a permutation of the graph vertices that
results in a more efficient layout of the mesh in memory. They
developed a local metric to decide if a swap of some vertices
improves the layout. They optimize this measure thanks to
a multilevel optimization scheme. In [19], two global cache-
oblivious metrics are introduced to quantify the quality of
a mesh layout. These two metrics involve edge lengths. If
two mesh elements i and j likely to be accessed sequentially
are stored in the layout at position xi and x j then the edge
length li j is

∣∣xi− x j
∣∣. The first metric proposed (COMa) is the

arithmetic mean of edge lengths and the second (COMg) is the
geometric mean of edge lengths. While both metrics yield a
good correlation with measured cache misses, COMg seems to
perform better. All previously proposed mesh layout optimiza-
tion algorithms [5], [19] are based on heuristics. No bound
on the quality of the layout, i.e. number of cache-misses, is
provided. Our algorithm, called FastCOL, guarantees an upper
bound on the number of cache-misses for the class of meshes it
applies to. This bound is closely related to edge lengths, like
the COMa and COMg metrics introduced in [19]. FastCOL
is based on the mesh geometry, a data often available for
the meshes considered in scientific visualization. OpenCCL is

more general on that aspect as it only uses the mesh topology
and thus can be applied to graphs not embedded in space.

Aforementioned approaches mainly focus on optimizing
mesh layouts when the application accesses the mesh with-
out the help of any additional data structure. That is, the
application only traverses the mesh with the help of the cells
and points arrays or with the cell-to-points or point-to-cells
pointers of the mesh. Another approach [20] optimizes the
layout for applications accessing the mesh through bounding
volume hierarchies (BVH) trees. To generate an efficient
layout, they use the OpenCCL algorithm and provide two
kind of links in the access graph: links representing spatial
locality in the mesh and links representing parent-child locality
in the BVH tree. Our algorithm also handles these two kinds
of locality. During the layout computation, we build a BSP
tree that is used to reorder the mesh. This tree is tailored
to efficiently use our mesh layout. Contrary to the approach
in [20] where the layout algorithm takes a mesh and a BVH
tree as input to produce a layout, we only take the mesh as
input and produce both a layout and a BSP tree consistent
with this layout. This BSP tree can be used as an acceleration
structure, for isosurface extraction for instance.

2.3 Isosurface Extraction
The marching tetrahedra algorithm can be accelerated with
various data structures allowing to efficiently search for the
cells intersected by the isosurface. One such data structure
is the min-max tree [21]. An octree where each node stores
the minimum and maximum values of its subtree permits to
quickly discard parts of the mesh that do not contain any
intersected cell. The search is thus improved from O(n) to
O(k + k logn/k) where n is the number of cells and k the
size of the isosurface (usually k� n). If the scalar field is
spatially coherent, the performance is actually improved on
the theoretical bound.

An optimal data structure for this problem is the interval
tree storing for each cell c the interval whose extremes are
the minimum and maximum value of the points of c [22].
The query time is improved to O(logn + k) whatever the
spatial repartition of the scalar field is. The interval tree has
been made I/O-efficient allowing a query with complexity
O(logB n + k/B), where B is the block size. This bound is
optimal [23]. However this approach is not space-efficient
since the vertex information is duplicated many times. The
2-level indexing scheme based on the meta-cells technique
introduced in [24], [25] is both practical and space-efficient
as there is no duplicated information. Spatially close cells
are grouped into meta-cells, which are then used in the I/O-
efficient interval tree.

The approach we developed with the consistent BSP tree is
a CO alternative to the meta-cells technique but we use the
min-max tree instead of the interval tree, which may not be
as efficient on a scalar field with high spatial variations.

3 FRAMEWORK
3.1 Common Mesh Access Patterns
A mesh data structure usually consists of two multidimen-
sional arrays: an array storing point attributes (e.g. coordinates,
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Fig. 4. The vtkUnstructuredGrid data structure (from
the VTK Textbook [26]). The Points array contains points
coordinates and the Cells array contains the indices of cell
points. The Cell Types array contains the nature of each
cell and provides O(1) random access to cells.

scalar values, etc.) and an array storing for each cell its
points and attributes (e.g. the nature of the cell, scalar values,
etc.). When the mesh is composed of cells of different nature
(using various number of points), an additional array allows
random access to cells (Fig. 4). As many visualization filters
also need to access neighbors of a point or a cell (e.g. the
gradient filter), additional structures storing the connectivity
permit efficient access to point and cell neighbors. Finally,
accelerating structures can be used to efficiently select cells or
points verifying a certain property (e.g. select cells intersecting
an isosurface).

A mesh can be traversed using the following strategies:
• layout order traversal: traverse all points or all cells

in the order given by the corresponding array (e.g. the
marching tetrahedra algorithm);

• connectivity traversal: traverse all points or all cells
using the connectivity information (e.g. the ray casting
algorithm or the VTK connectivity filter);

• data structure traversal: traverse points or cells in the
order given by an external data structure (e.g. isosurface
extraction with a min-max tree).

While traversing the mesh, several local operations are
commonly used to process a mesh element:
• neighborhood operation: get all points/cells connected

to the current point/cell (e.g. the VTK gradient filter);
• attributes operation: get attributes from points compos-

ing the current cell or get attributes from cells using the
current point (e.g. marching cube).

Multiple local operations can be used at the same time.

3.2 Layout Influence on Cache Performance
The cache performance of visualization filters is greatly influ-
enced by the underlying mesh data structure and specifically

the indices of points and cells: the mesh layout. These indices
can be modified without affecting the intrinsic characteristics
of the mesh like the geometry or the topology and without
any modification on the visualization filters. Depending on the
access pattern, the layout can impact the cache performance
in various ways.
• Cache performance is optimal with layout order traver-

sals as they lead to sequential memory accesses.
• A layout improves cache performance of connectivity

traversals and neighborhood operations if the elements
that are connected in the mesh topology are stored nearby.
Spatial locality is increased as two consecutive cells in
the traversal could be in the same memory block. It also
enhances temporal locality since the current cell in the
traversal has a good probability to still be in cache if its
memory block has been accessed recently.

• A layout improves cache performance of data structure
traversals if the elements that are accessed consecutively
by the data structure are stored nearby. Two consecutive
elements could be in the same memory block, increasing
spatial locality.

• A layout improves cache performances of attributes
operations if points corresponding to a same cell (or cells
using a common point) are stored nearby. Points may
share memory blocks, which increases spatial locality.

A layout order traversal with attributes operations can be
further optimized if the layout stores nearby the cells that
share common points. The memory blocks containing the
common points have a higher chance to still be in cache, which
enhances temporal locality. The marching tetrahedra algorithm
is an example of such access pattern.

3.3 The Access Graph Model
To optimize a layout for a specific access pattern, we need to
model the data accesses. As in [5], we use a graph G = (V,E)
where vertices are mesh elements (point or cell) and edges
represent consecutive data accesses. However we constrain the
topology of the access graph to forbid edges between elements
that are ’far’ from each other, as detailed in section 3.5.

We now model a visualization filter as a function f applied
once to each element of the mesh. As we are interested in the
cache performance, we do not consider the processing part of
f . We restrict its memory accesses so that they are compatible
with the access graph: only the neighbors of the element i in
the access graph can be accessed to compute f (i).

Figure 5 presents examples of access graphs for the neigh-
borhood and attributes operations. A point neighborhood oper-
ation is represented in 5(a). This kind of local access scheme
is used by the VTK gradient filter. To compute the gradient
value at a point, values of the scalar field at the neighborhood
points are needed, thus edges link neighbor points in the access
graph. Likewise, a point attributes operation is represented
in 5(c). The marching cube algorithm is an example of such
a scheme. Indeed, to compute the isosurface within a cell, the
coordinates and scalar value for each point composing the cell
are needed. Therefore, edges link each cell to its points in the
access graph.
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(c) Points attributes
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(d) Cells attributes

Fig. 5. Example of access graphs for the neighborhood
and attributes operations defined in section 3.1. Numbers
represent points (a), cells (b) or points and cells (c,d)
indices in the layout. Data accesses are represented in
blue: neighbor points in (a), neighbor cells in (b), points
of each cell in (c) and cells of each point in (d). Dashed
circles show that all these graphs are overlap graphs (cf.
section 4.1).

3.4 Access Graph for Layout Order Traversals
Visualization filters do not always rely on intrinsic mesh char-
acteristics such as topology or geometry when accessing the
mesh. They sometimes rely on the layout itself. For example,
the Seed Set isosurface extraction algorithm processes the
mesh with a connectivity traversal. The access graph does
not change when the layout changes, provided that the initial
seeds stay the same (Fig. 6(a) and 6(b)). On the contrary, the
Marching Cube algorithm processes the mesh with a layout
order traversal and thus the access graph depends on the layout
(Fig. 6(c) and 6(d)).

The access graph of fig. 5(c) properly models the local op-
erations of the marching cube algorithm. However, to optimize
the global traversal strategy, the edges of the access graph of
fig. 5(b) should be added instead of using the access graphs of
fig. 6(c) or fig. 6(d). First, because the resulting access graph
does not depend on the layout. Second, because it enables
temporal locality optimization: cells that share common points
should be stored nearby.

3.5 Restriction to Overlap Graphs
Access graphs can model a large range of access patterns,
even ones with a weak spatial coherency where edges connect
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Fig. 6. Example of access patterns for two isosurface
extraction algorithms: Marching Cube (layout dependent)
and Seed Set (layout independent). Arrows represent the
access pattern followed to extract the isosurface (dashed
line). Numbers represent cell indices in the layout.

distant elements. To be able to build efficient CO layouts with
a provable quality, we restrict access graphs to be overlap
graphs. These graphs model spatially coherent access patterns,
i.e. where edges connect spatially close elements. They are
formally defined in the next section.

In contrast to OpenCCL [5], we add geometric information
to the access graph and use it to constrain its topology. We add
to each vertex the coordinates of the corresponding element of
the mesh and we restrict the graph to be an overlap graph. This
assumption forbids consecutive access of mesh elements that
are too ’far’ from each other. This restriction is satisfied by
most visualization filters and allows us to devise an efficient
separator-based algorithm with a theoretical guarantee on the
quality of the mesh layout generated.

Meshes are often composed of elements that are well shaped
in some sense, such as having a bounded aspect ratio or angles
that are not too small or too large. Provided that the underlying
mesh is constrained by such geometric features, the access
graphs for connectivity traversals, neighborhood and attributes
operations are overlap graphs [6] (Fig. 5). We have seen in
the previous section that the layout order traversals should be
handled differently depending on the visualization filter as they
are based on the layout.

The only remaining mesh access pattern is data struc-
ture traversal. Unfortunately, access graphs for data structure
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(a) Overlap Graph

r
R =
√ 5r

(b) Not Overlap Graph

Fig. 7. (a) Example of overlap graph for α = 1. There
is an edge (solid blue line) between two points if their
corresponding circles are tangential.(b) Example of a
non overlap graph for α = 1 but overlap for α =

√
5 (K5

complete graph).

traversals may not always be overlap graphs. For instance, the
interval tree used in the isosurface extraction of [22], does not
traverse cells intersected by the isosurface in an order based
on the geometry or topology of the mesh. However in this
case, the access graph depends on the value of the isosurface.
It is not practical to compute a layout and reorder the mesh
for each isosurface extraction. We develop an alternative with
our consistent BSP tree (cf. section 5.6). This tree is tailored
to efficiently use our layout as the induced mesh traversal is
a layout order traversal with good cache performance.

4 OVERLAP GRAPHS PARTITIONING

In this section, we review the work of Miller et al. [6] on
overlap graphs, which we use to restrain the topology of the
access graph.

4.1 Overlap Graphs
We associate to each vertex vi of the access graph the
coordinate pi in Rd of the corresponding mesh element (point
or cell). A graph is α-overlap if:
• It is possible to associate to each vertex vi a ball Bi

centered at pi such that the two balls of any pair intersect
in at most one point (Fig. 7(a)) ;

• Edges can connect two vertices only if expanding the
smaller of their two balls by a factor of α make them
intersect (Fig. 7(b)).

The α factor constrains the topology of the graph to follow
the geometry of the mesh: two elements that are too far away
from each other cannot be edge connected (Fig. 7(b)).

As detailed in section 3.5, most access patterns of visualiza-
tion filters can be modeled with overlap graphs. Fig. 5 shows
how balls can be added to the neighborhood and attributes
access graphs so that all edges respect the overlap graph
constraint.

4.2 Geometric Separator Algorithm
Given their geometrical properties, overlap graphs can be
partitioned efficiently in two parts of approximately equal size,
while minimizing the number of edges cut.

The following randomized algorithm introduced by Miller
et al. [6] computes in linear time and with a high probability
an optimal geometric separator (Algo. 1). It starts by randomly
sampling a constant number of points Vs from the input graph.
Next it projects these Vs points onto the surface of the unit
sphere centered at the origin in Rd+1, using a stereographic
projection. It produces Vp points. Then it finds a centerpoint
c of this random sample Vp in linear time relative to the
sample size. A point is a centerpoint if every hyperplane
passing through it divides the sample set Vp approximately
evenly, at most in a ratio d +1 : 1. With good probability, this
centerpoint is a centerpoint of the projection of the original set
of points V [27]. Finally, we randomly choose a hyperplane
(c,n) passing through this centerpoint. This hyperplane splits
the graph into two partitions, each one consisting of the points
of V that project on the same side of the hyperplane in Rd+1.
Repeating this process and selecting the separator cutting the
smallest number of edges gives a small separator with high
probability.

Algorithm 1 Geometric separator algorithm
Input: Graph G = (Vertices V, Edges E)
Output: A separator φ

1: repeat nc times
2: Vs← sample of (d +3)4 points of V
3: Vp← project Vs to the unit sphere in Rd+1

4: c← find a centerpoint of Vp
5: repeat nh times
6: n← random normal vector
7: φ ← separator defined by (c,n)
8: compute the number of edges cut by φ

9: end
10: end
11: return the best φ

The most time consuming part of the algorithm is the quality
evaluation of the separator (Alg. 1 line 8). The other operations
involve only a small number of points.

The quality of the obtained separator is guaranteed by the
following theorem.

Theorem 1 (Geometric separator [6]): Let G be an n-
vertex α-overlap graph in d dimensions. With high probability,
the previous algorithm (Alg. 1) partitions the vertices of G into
two sets A and B such that |A|, |B| ≤ d+1

d+2 n and the number of
edges between A and B is O

(
αn1−1/d

)
.

Such a separator is asymptotically optimal for the class of
overlap graphs. Indeed we cannot find a smaller separator for
a regular d dimensional grid [6].

5 RECURSIVE MESH LAYOUT

Applying the separator algorithm recursively for a given over-
lap graph corresponding to the mesh access pattern enables
us to define a CO layout. In this section we present the
CO layout computation algorithm, prove its performance and
discuss some implementation details.
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Fig. 8. Illustration of the correspondence between mesh
regions, BSP tree branches and data arrays.

5.1 Mesh Layout Algorithm
The recursive application of the separator gives a BSP tree
where each node is a separator (Fig. 8). Leaves of this tree
correspond to small subparts of the mesh that are stored
consecutively to provide the layout (Algo. 2).

Algorithm 2 Layout algorithm
1: function COLAYOUT(G,layout,i, j)
2: if size(G) > 1 then
3: FINDSEPARATOR(G,Gle f t ,Gright )
4: nle f t ← size(Gle f t)
5: COLAYOUT(Gle f t ,layout,i,i+nle f t )
6: COLAYOUT(Gright ,layout,i+nle f t , j)
7: end if
8: end function

Given the linear complexity of the geometric separator, our
layout algorithm has a complexity of:

W (N) = max
1/2≤λ≤δ

[W (λN)+W ((1−λ )N)]+O(N)

= O(N logN)

where δ = d+1
d+2 . The only requirement to obtain the claimed

complexity is to have a point sampler of linear complexity and
an iterator on edges of linear complexity too.

5.2 Layout Quality
The algorithm 2 generates a BSP tree that can be used to
create a partition of the access graph such that each subpart
fits in cache. When processing the mesh, the edges of the
access graph linking elements in the same subpart do not
generate extra cache misses as the whole subpart fits in cache.
Conversely, edges of the access graph linking elements in
different subparts (cut edges) may generate extra cache misses.
Because the number of such cut edges is known, we can
exhibit an upper bound on the number of cache misses for
the layout (Th. 3). The number of cut edges is equal to the
total number of edges cut by all separators down to the largest
nodes fitting in cache (Lm. 2 and Fig. 9).

Lemma 2 (Cut Edges): Let G be a N-vertex α-overlap
graph in d dimensions. Let T be the BSP tree obtained by
recursively applying the geometric separator. Let Tm be the
tree corresponding to T after removing all nodes that have
a father node with less than m vertices. The leaves of Tm
verify size( f ather(x)) > m and size(x)≤m (Fig. 9). The total

BSP Tree

Layout

Cut edges

Fig. 9. A full tree generated by the algorithm 2. The sub-
tree (solid lines) represents Tm and the purple arrows the
edges cut for this sub-tree. The leaves of Tm (green filled)
all have less than m vertices. Bellow, the green elipses
identify the leaves of Tm in the layout.

number of edges cut by all separators in Tm is bounded by
km = O

(
N

m1/d

)
.

Proof: We sum the number of edges cut by all separators
from the root of Tm to its leaves. The separator theorem (Th. 1)
ensures that the number of cut edges is less than αcr1−1/d for
a r-vertex graph (c is a constant). It provides two subgraphs
of size λ r and (1−λ )r with 1/2≤ λ ≤ d+1

d+2 .
The total number of cut edges in a subtree rooted at a node

v ∈ Tm representing an r-vertex graph is thus:

K(r)≤ max
1/2≤λ≤ d+1

d+2

[K(λ r)+K((1−λ )r)]+ cαr1−1/d .

The K(λ r) and K((1−λ r)) terms are due to the edges cut by
all the separators in the left and right subtrees. The cαr1−1/d

term corresponds to the edges cut by the separator of node v.
By induction on r, we show that

K(r)≤ c′
( r

m1/d − r1−1/d
)

taking
c′ ≥ αc

21/d−1
.

And thus
km = K(N) = O

(
N

m1/d

)
.

We now assume that the mesh is traversed by chunks of m
elements, i.e. each chunk contains m consecutive elements in
the layout that should all be processed (in any order) before
accessing another chunk anywhere in the layout. The size of a
chunk m expresses how much the filter access pattern respects
the layout locality. As spatially close elements in the mesh
tend to be close in the layout, filters with spatially coherent
access patterns use big chunks.

Theorem 3 (Chunk traversal): The CO layout guarantees
that a traversal by chunks of size m ≤M of an N-size mesh
induces less than N/B+O(N/m1/d) cache misses where B and
M are the block and cache size, respectively.
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Proof: Assume first that there is no edge cut in Tm, i.e.
processing an element in a chunk only accesses elements in the
same chunk. Processing a chunk would not induce any cache
miss beside the m/B compulsory ones to read the chunk as
the entire chunk fits in cache. This sums up to N/B cache
misses for processing all the mesh. However, processing an
element may require data that are not in the same chunk,
causing O(1) extra cache-misses per edges linking elements
in different chunks: the cut edges. Accessing an element in
another chunk induces one cache miss to read the element
and may generate another one as it can evict a block of the
current chunk that may still be needed. The total number of
these extra cache misses is proportional to the number of cut
edges: O

(
N

m1/d

)
. We thus obtain the claimed bound.

For the sake of simplicity, we assume in the proof that the
chunks are perfectly aligned with the leaves of Tm. One can
easily show that there are still O

(
N

m1/d

)
cut edges when the

chunks are not aligned with the leaves. Consider leaves of size
2m and add edges within a leaf that link different chunks. This
only modifies the number of cut edges by a constant factor.

Corollary 4 (Layout order traversal): The CO layout guar-
antees that a layout order traversal of an N-size mesh induces
less than N/B+O(N/M1/d) cache misses where B and M are
the block and cache size, respectively.

Proof: A layout order traversal is a traversal by chunks
of size M.

With our layout, a visualization filter still needs to traverse
the mesh in an order coherent with the layout, but the assump-
tion is strongly relaxed compared to a layout order traver-
sal. We believe that we could obtain the same performance
guarantee slackening the traversal by chunks assumption to
rely only on the characteristics of the mesh itself. We are
however not able to prove it yet. Experiments (cf. section 6)
use visualization filters that traverse the mesh in the layout
order (e.g. gradient, vtkiso, cpuiso, etc.), filters that traverse
the mesh by connectivity (e.g. connectivity, RC), and filters
that traverse the mesh through another data structure (e.g.
CpuTree). All of them yield speed up, which indicates that
in practice the chunk traversal assumption is usually verified
for some m.

At this point we cannot directly compare this algorithm
with OpenCCL. OpenCCL is based on a meta-heuristic and
no upper bound on the quality of the resulting layout is given.

5.3 Layout Computation

We implemented the geometric separator algorithm in C++.
We first randomly generate all the nhnc separators (Alg. 1).
We then traverse all the cells of the mesh and for each of
them we check that its points are on the same side of the
separator. If not, the cell is cut by the separator and we
increment the cut size by 1. Using cells instead of edges to
select the best separator produces a very close result and allows
us not to compute the edges of the graph, a task that can
be computationally expensive. The bound of theorem 3 still
applies as at most a constant number of edges correspond to
a cell. All separators are checked against a cell before going

to the next one. This allows us to dereference each cell index
only once for the entire separator computation.

To keep the memory usage low, we do not project all the
points before evaluating a separator but project them on the
fly. This induces duplicate computation as a point is used in
several cells but keep memory overhead close to zero. That
way we do not need to store an entire copy of the points in
memory.

Once we found the best separator, the points of the mesh
are reordered according to this separator. All points laying to
the left of the separator are moved to the left part of the array
and points laying to the right are moved to the right part of the
array. The same partitioning is done on cells. When a cell is
cut by the separator we choose a side according to the center
of gravity of the cell. We then recurse on the left and right
mesh generated. This algorithm is very similar to a quicksort
and could be efficiently parallelized.

We stop when a submesh has a size lower than 8. We
choose nc = 2 and nh = 30 for the experiments (Alg. 1). As the
randomized centerpoint algorithm is quite good we can keep nc
low. During our experiments we noticed that even substantial
changes of all these parameters did not impact significantly
the quality of the generated layout.

5.4 Choosing the Access Graph
The algorithm described in section 5 can be applied to any
access pattern as long as the corresponding graph is an overlap
graph (actually the algorithm still works if it is not the case
but the bound on cache-misses does not hold). However to
generate a new layout for each application is not practical. For
instance to compute a volume rendering by ray casting of the
mesh, one might want to optimize the mesh layout according
to the rays direction. Both our algorithm and OpenCCL are
too slow to generate a layout before each image generation.

In practice it is better to compute only once a layout that
will be efficient in general. We choose in the implementation
to only consider the graph where vertices are points of the
mesh and edges link two points sharing a cell (Fig. 5(a)).
Using this access graph produces an efficient layout for most
access patterns as access graphs for connectivity traversal,
neighborhood and attributes operations look alike (Fig. 5).
Following on our volume rendering example, this layout will
be reasonably good for any ray direction. One ray traversing
c cells of the mesh induces c/B1/3 cache-misses while a
layout optimized for this specific direction may induce only
c/B cache-misses (but as bad as 1 cache-miss per cell for an
orthogonal direction). In this specific case, packing rays should
also improve performance of the more general layout to c/B.

5.5 Cells Layout
A mesh layout tries to optimize both points and cells ordering.
As points and cells are usually accessed in a similar way, a
consistent ordering for points and cells is better. For instance
in an isosurface extraction, points composing a cell are often
accessed immediately after the cell itself. Thanks to our
geometric approach, the same geometric separators can be
applied for both points and cells. A separator cutting few edges
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for the points graph (Fig. 5(a)) also cut few edges for the
cells graph (Fig. 5(b)). It is not possible to do the same with
OpenCCL for example as their separators are combinatorial
and not geometric.

Computing points and cells layouts independently often
leads to a larger computation time and a lower runtime ef-
ficiency. For OpenCCL, computing the cell layout is around 3
times slower than computing the points layout on our meshes.
A consistent cells layout (min-vertex), can be deduced from
the points layout by sorting the cells using the minimal index
of their points.

Having consistent points and cells layouts can also improve
runtime performance. The min-vertex approach enforces the
consistency. For instance, min-vertex with OpenCCL leads to
a 20% runtime performance increase compared to applying
OpenCCL to both points and cells. The FastCOL layout further
enforces this consistency. On large meshes the consistent
layout for points and cells with the BSP tree is up to 10%
faster than the min-vertex layout applied to FastCOL points
layout on isosurface extraction.

5.6 Consistent BSP Tree
The BSP tree defining the partitioning of the mesh can be used
as an acceleration structure that has the advantage of being
consistent with the layout. In this article we show how it can
be used as a min-max tree for isosurface extraction. At each
node of the BSP tree we store the minimum and maximum
value of the scalar field in the corresponding region of the
mesh. A region that do not contain any cell intersected by the
isosurface can be quickly discarded.

An interesting property of this BSP-tree is that each region
corresponds to a small part of the mesh stored sequentially in
memory (Fig. 8). When traversing the BSP-tree in prefix order
and examining the mesh cells that might contain a part of the
isosurface, mesh cells are accessed sequentially. The sequence
of cells can jump part of the mesh but it never goes back. This
leads to a layout order traversal of the mesh that induces fewer
cache-misses (see experimental results in section 6.3).

6 EXPERIMENTS

We compare the performance of the initial, geometric,
OpenCCL and FastCOL layouts on various meshes and access
patterns. For sake of conciseness, we present only some
representative results. Full results are provided in our research
report [28].

6.1 Architectures, Filters and Meshes
We took 9 different meshes1, processed to generate several
instances of various sizes. We used tetgen2 to refine the meshes
by adding a volume constraint to each tetrahedron3. For each
mesh and each size (100 k, 1 M, 10 M and 50 M cells) we

1. Blunt fin, buckyball, langley fighter, liquid oxygen post, plasma64, san
fernando and spx models are provided by the AIM@SHAPE Shape Repository
(http://shapes.aim-at-shape.net/). Torso is courtesy of SCI and the last one is
not published.

2. Available at http://tetgen.berlios.de/.
3. We used the command tetgen -raq.

generated two finer meshes. In the first one, all tetrahedra have
approximatively the same volume. In the second one, we used
a volume constraint proportional to the inverse of the gradient
of the scalar field to mimic an adaptive mesh refinement. It
leads to a set of 50 meshes that can be divided by their size
into 4 groups: 5 meshes of about 100 k cells, 10 meshes of
about 1 M cells, 17 meshes of about 10 M cells, and 18 meshes
of about 50 M cells.

The experiments were conducted on three different archi-
tectures, two classical CPU architectures with 2 cache levels
(AMD Opteron875 @ 2.2Ghz, cache L1 8KB, cache L2 1MB
and Intel Core2 E6750 @ 2.66Ghz, cache L1 32KB, cache
L2 4MB), and one GPU architecture (NVIDIA GTX280 with
1GB of memory) tested to probe the influence of the layout
on the number of coalesced memory accesses.

Ten filters were tested on each layout, using VTK fil-
ters [26], homemade CPU codes or Cuda (version 1.3) codes
for the GPU tests:
• Gradient. The VTK gradient filter computes the gradient

of the mesh scalar field. Each gradient value is computed
from the local scalar value and the values of neighbor
points. Data are processed in the order given by the point
layout. Using the terms introduced in section 3 this is
a point layout order traversal with point neighborhood
operations.

• Connect. The VTK connectivity filter applies a breadth
first search on the mesh to compute the connected region
each cell lies in. This filter uses a connectivity traversal.

• RC. A mesh volume rendering computed by the VTK
Bunyk Ray Cast filter [29]. Each ray traverses the mesh
cell by cell and then accesses points attributes to compute
the contribution of the cell to the pixel color. This is a
connectivity traversal with point attributes operations.

• PT. A mesh volume rendering computed by the VTK
Projected Tetrahedra filter [30]. Tetrahedra are sorted by
their centroid according to the viewing direction and then
sent to the GPU for projection. During the sorting phase,
each tetrahedron accesses its points and tetrahedra are
processed in the order given by the cell layout. This is
a cell layout order traversal with points attributes opera-
tions. Both CPU and GPU computations are included in
the time measure but only the CPU part is included in
the number of cache misses.

• HAVS. A mesh volume rendering computed by the VTK
HAVS filter [31]. Data accesses are similar to PT. Again,
both CPU and GPU computations are included in the time
measure but only the CPU part is included in the number
of cache misses.

• VtkIso. The VTK isosurface extraction filter implements
the marching tetrahedra algorithm. Each cell accesses to
its points. Cells are processed in the cell layout order.
This is a cell layout order traversal with points attributes
operations.

• CpuIso and GpuIso. One CPU and one GPU homemade
implementation of the marching tetrahedra isosurface
extraction algorithm.

• CpuTree and GpuTree. The CpuIso and GpuIso code
extended to include a min-max tree acceleration structure.

http://shapes.aim-at-shape.net/
http://tetgen.berlios.de/
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TABLE 1
Layout computation (on Opteron)

Mesh size OpenCCL FastCOL

#cells Bytes Time Mem. Time Mem.
space space

100k 3.7 MB 4.5 s 123 MB 1.2 s 22 MB
1M 43 MB 54 s 1.24 GB 17 s 81 MB

10M 370 MB 9 min 24 s 9.96 GB 3 min 50 s 0.56 GB
50M 1.8 GB NA > 96 GB 26 min 44 s 2.72 GB

For the OpenCCL layout a kd-tree is used. For the
FastCOL layout two versions are tested: one based on
a kd-tree and one relying on the BSP tree built when
computing the layout. Only some cells are processed,
in a min-max tree driven order. This is a data structure
traversal with points attributes operations. We only time
the processing of the cells intersected by the isosurface
and not the tree traversal (the kd-tree is the same for both
layout and the code for its traversal is not optimized).

The bigger meshes (50 M cells) have not been tested with the
volume rendering filters due to the very large execution time,
nor on the GPU that has only 1GB of memory.

For our GPU implementation, we only measure the time
to compute the kernel and not the memory transfers between
CPU and GPU, which take the same amount of time for all
layouts.

6.2 Layout Algorithm Performance

All layouts have been prepared on an Opteron875 @ 2.2Ghz
with 32 GB of memory and 64 GB of swap. Table 1 shows
the execution time and memory needs for computing the
OpenCCL and FastCOL layouts. Our FastCOL program is
about three times faster than the OpenCCL one. It requires far
less memory. The bigger meshes with 50 M cells have not been
processed with OpenCCL because their computation would
have required more than 96 GB of memory. The multilevel
heuristic used in OpenCCL may explain such memory con-
sumption. Space is needed at each level to store the coarsened
access graph and additional information to undo the coarsening
operation.

Computing the geometric layout, a coordinate sort by the
x, y and z axes, is very fast (less than 40 s for the biggest
meshes) and compact in memory.

6.3 Mesh Layout Performance

We measured the execution time, the number of L1 and L2
cache-misses using the PAPI software [32] for the CPU tests,
and the number of uncoalesced parallel accesses for the GPU
ones. For each experiment (architecture, layout and algorithm
fixed), the execution time, the numbers of cache-misses and
uncoalesced accesses are very stable.

Tables 2 and 3 show the means of the speedup (“Speedup”),
ratio of saved L2 cache-misses on CPU (“L2”) and ratio
of coalesced memory accesses on GPU (“Coal.”) for the
geometric, OpenCCL and FastCOL layouts. These ratios are

TABLE 2
CPU and GPU performance ratios relative to the original

layout (on Core2)

Mesh Geometric OpenCCL FastCOL

size Speedup L2 Speedup L2 Speedup L2

G
ra

di
en

t 100k 1.02 1.51 1.01 1.49 1.02 1.52
1M 1.06 3.53 1.07 4.03 1.08 3.94

10M 1.07 2.36 1.15 8.22 1.15 7.81
50M 1.1 1.34 1.36 10.53

C
on

ne
ct 100k 0.95 0.94 1.12 1.17 1.11 1.21

1M 0.97 0.95 1.16 1.19 1.19 1.19
10M 1.09 1.08 1.45 1.49 1.46 1.49
50M 0.89 0.87 1.66 1.9

R
C

100k 0.98 1.08 1.05 1.4 1.06 1.36
1M 1.01 1.07 1.2 1.8 1.2 1.79

10M 0.76 0.72 3.28 5.02 3.2 4.89

PT

100k 1.06 0.82 0.93 1.18 1.15 1.18
1M 0.91 0.64 1.09 1.51 1.1 1.52

10M 0.97 0.9 1.37 2.66 1.37 2.65

H
AV

S 100k 1.02 2.04 1.01 2 1.08 2
1M 1.14 3.43 1.06 4.04 1.09 4.03

10M 1.2 1.9 1.33 5.96 1.32 5.77
V

tk
Is

o 100k 0.99 1.04 1.04 1.06 1.04 1.09
1M 1.1 1.22 1.15 1.24 1.15 1.24

10M 1.32 1.71 1.44 1.79 1.44 1.78

C
pu

Is
o 100k 1.06 1 1.16 1.02 1.17 1.02

1M 1.71 2.85 2.34 2.8 2.35 2.78
10M 2.28 5.4 4.08 5.78 3.99 5.68
50M 0.97 0.79 4.87 6.84

Time Coal.4 Time Coal.4 Time Coal.4

G
pu

Is
o 100k 0.96 1.18 1.56 3.08 1.52 2.97

1M 1.26 1.04 2.2 2.59 2.11 2.38
10M 1.83 1.25 4.09 3.85 3.8 3.39

relative to the performance obtained with the initial layout. In
all cases, higher values are better. Table 2 gathers the results
for the tests visiting the entire mesh, while Table 3 displays
the performance results for the min-max tree accelerated
isosurface extraction using a kd-tree for the OpenCCL and
FastCOL layouts, and the BSP tree computed for the FastCOL
layout (“FastCOL (bsp)”).

6.3.1 CO Layouts on CPU
Table 2 shows higher performance ratios with larger meshes
where cache effects are predictably more important. Indeed,
with smaller meshes, a bigger part of the mesh can be loaded in
the cache, whatever the layout is. Both CO layouts, OpenCCL
and FastCOL, lead to speedup ratios from 1.01 to 4.87, all tests
being in-core. It shows the benefits of CO layouts that can
bring significant performance increases without any change
to the application. The geometric layout is significantly less
efficient for most of the tests, a result analyzed in section 6.3.2.

The FastCOL layout reaches similar performance compared
to OpenCCL, while providing a theoretical performance guar-
antee.

Some important differences are observed between the L2
cache-miss ratio and the speedups for the Gradient and HAVS

4. Ratio of coalesced parallel memory accesses on GPU.
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TABLE 3
CPU and GPU performance ratios relative to the original

layout for tree accelerated isosurface extraction (on
Core2)

Mesh OpenCCL FastCOL FastCOL (bsp)

size Speedup L2 Speedup L2 Speedup L2

C
pu

Tr
ee 100k 1.23 1.31 1.21 1.30 1.37 1.23

1M 1.46 1.8 1.45 1.74 1.75 1.72
10M 2.37 3.14 2.31 3.02 2.75 3.06
50M 2.92 3.47 4.55 4.85

Coal.4 Coal.4 Coal.4

G
pu

Tr
ee 100k 1.20 1.85 1.18 1.75 1.33 1.90

1M 1.63 1.81 1.57 1.67 1.84 1.89
10M 2.50 2.14 2.34 1.86 2.79 2.14

tests. Gradient is computationally intensive and HAVS exten-
sively uses the GPU, making the cache-miss overhead a small
fraction of the overall computation time.

We can also observe that measured speedups are generally
smaller with VTK filters than with homemade ones. This
clearly appears for the isosurface filter that is implemented
with VTK (VtkIso) compared to the homemade code (CpuIso).
The VTK implementation shows a maximum speedup of 1.44
whereas our implementation goes up to 4 (with a smaller
global execution time). The VTK library is not fully optimized
and performs several other computations. For instance, after
the extraction of the isosurface, the VtkIso filter merges the
identical points to provide a mesh (instead of a triangle soup)
as a result.

6.3.2 Edge Lengths and Layout Quality

To better analyze the properties of the different layouts, we
analytically relate the performance improvements to the better
data locality in memory. We call “edge length” the memory
gap between two vertices of the same edge in the vertex array
loaded in memory. If a mesh has shorter edges, more of them
will fit in cache and a better performance should be observed.
Other analysis could also be conducted with similar metrics.
For example, instead of considering the length of edges, we
can consider the “size of a cell”, which would be either the
maximum memory gap between all vertices of the cell in
the vertex array, or the maximum memory gap between all
adjacent cells in the cell array.

Figure 10 shows the cumulative distribution of edge lengths
for the 10 M cells torso mesh5. The two graphs are focused
around the L1 and L2 cache sizes of the tested architectures.
CO layouts appear to favor small edge lengths.

The geometric layout behaves differently. The amount of
small edges is reduced compared to CO layouts, but almost all
edges have a length shorter than 2M. Actually, by construction,
the edge lengths are shorter than the size of two entire slices
of the mesh in the x direction. The layout thus leads to a good
performance when two slices in the x direction can fit in the
L2 caches. This is visible in the results where the geometric

5. The other meshes produce similar graphs.

(a) Zoom on L1 cache sizes

(b) Zoom on L2 cache sizes

Fig. 10. Cumulative distribution function of edge lengths
for various layouts applied to the torso mesh (10M res-
olution). The CO layouts (OpenCCL and FastCOL) favor
small edges: 80% of their edges have a length below 8K
(a) and 95% below 256K (b). The original layout does not
appear on graphic (b) as the cumulative distribution is too
small: only 40% of its edges have a length smaller than
2M.

layout performs well for small meshes while it is outperformed
by the CO layouts for the bigger ones. For small meshes, the
geometric layout is often slightly less efficient due to its low
efficiency with respect to the L1 cache (L1 cache-miss ratios
omitted for sake of conciseness).

We now estimate the number of cache misses using an edge
length based metric, and show that there is a strong correlation
with the actual number of observed cache misses. Let N be
the size of a mesh (in bytes), E the set of all edges of the
mesh, B the cache line size and M the cache size, we estimate
the number of cache-misses by:

ExpectedCM ≈ N
B

+ ∑
e∈E

1λe>M

where λe is the length of the edge e. We count the number of
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(a) Core2

(b) Opteron

Fig. 11. Correlation between edge lengths and measured
L2 cache-misses on CpuIso. Each point corresponds to a
mesh with geometric, OpenCCL or FastCOL layouts.

cache-misses for a linear full read of the data arrays and we
add one cache-miss per edge whose length is bigger than the
cache size M.

The theoretical upper bound N
B + O(kM) for our FastCOL

algorithm is larger because we count one cache miss for each
cut edge in the TM BSP tree (Th. 3). Some cut edges counted
in our theoretical bound can in fact have an edge length shorter
than M.

In figure 11, we display the correlation between the expected
cache-misses for the considered mesh layouts and the cache
misses observed on both CPU architectures. The N

B factor has
been subtracted from this measure as it does not depend on
the layout. The correlation between expected cache misses and
actual ones is very high with a calculated r2 of 0.98.

Notice that the layout quality is not only influenced by the
edge lengths (directly linked with the number of edges cut),
but also by the dispersion of cut edges. The number of cache
misses is smaller than the number of edges cut by a separator
if successive cut edges point toward the same memory block
(Fig. 12).
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Fig. 12. Mesh layout using the solid purple line as a
separator. We assume that neighbor points are needed
to process each mesh point (e.g. the VTK gradient filter).
Even if the separator cuts seven edges of the access
graph, only two induce a cache miss if the cache can hold
at least 3 blocks (in light green).

6.3.3 CO Layouts on GPU
The last test of Table 2 (GpuIso) evaluates the benefits of CO
layouts on a Nvidia GPU. We measure the execution time and
the number of coalesced accesses. All data are stored in the
global GPU memory. There is no cache mechanism involved.
The only block-based data transfer that occurs is related to
coalesced parallel memory accesses. The concurrent global
memory access performed by all threads of a half-warp (16
threads) is coalesced into a single memory block transfer as
soon as the data accessed lie in the same 128 Bytes segment
for 32, 64 and 128 bit data. The context is very different
from cache based CPUs. We only have a single small block
M = B = 128 Bytes. CO layouts lead to speedups ranging
from 1.52 to 4.09, which is significant knowing that only
the layout is modified. It shows they efficiently minimize the
edge lengths even for very small sizes (128 Bytes). OpenCCL
slightly outperforms the FastCOL layout. The geometric layout
suffers from too long edges.

Various applications can share work between the CPU and
the GPU. The same CO layout can thus be shared between
the CPU and the GPU to reduce both cache-misses and non-
coalesced accesses.

6.3.4 Layout Consistent Min-Max Tree
In all tests the OpenCCL and FastCOL layouts show similar
results. However the FastCOL layout is computed from a
BSP tree that can be used as an internal, layout consistent,
acceleration data structure to further take advantage of this
layout. Experiments of Table 3 reveal that using it as a
min-max tree for accelerating an isosurface extraction brings
significant additional performance improvements. Compared
to OpenCCL or the FastCOL layout that both use an external
min-max kd-tree, the min-max BSP tree provides a perfor-
mance improvement of 11% to 55% on CPU and of 11% on
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TABLE 4
Comparison of OpenCCL and FastCOL on two triangle

meshes (Thai statue and UNC powerplant) with the VTK
connectivity filter and the VTK depth sort filter (Median of

30 runs on Core2).

OpenCCL FastCOL

Mesh Filter Speedup L2 Speedup L2

T
ha

i
St

at
ue Connectivity 1.09 1.26 1.08 1.23

Depth Sort 1.19 1.40 1.15 1.31

Po
w

er
pl

an
t Connectivity 0.84 0.71 0.89 0.90

Depth Sort 0.88 0.76 0.94 0.92

(a) Thai Statue (b) UNC Powerplant

Fig. 13. Two triangle meshes

GPU. The leaves to be processed being M-size leaves of the
BSP tree, they are less likely to trigger cache-misses than the
leaves of the kd-tree computed independently from the layout.
The speedup is smaller on the GPU because we could not use
the biggest meshes (50M cells) due to memory constraints.

6.3.5 Comparison on a Scanned Model
We compare OpenCCL and FastCOL on the Thai statue6.
This is a triangle mesh with 5M vertices and 10M triangles
(Fig. 13(a)). To build the layout, OpenCCL needs 912s and
FastCOL 311s, which is comparable with the tetrahedral
meshes. We compared these two layouts on two VTK filters,
the connectivity filter previously used and the depth sort filter
that sorts triangles with respect to a view direction. We cannot
use all previous filters as they require a tetrahedral mesh.
On these two filters, the performances of both layouts are
comparable, around 10−20% faster than the original layout,
OpenCCL being slightly better (Tab. 4).

6.3.6 Comparison on a CAD Mesh
We now compare OpenCCL and FastCOL on the UNC Power-
plant mesh7. This is a triangle mesh with 12.7M triangles and
11M points and a complex geometry and topology (Fig. 13(b)).
It consists of several totally disconnected parts (1,083,733).
We reorder each of those parts independently with OpenCCL
and FastCOL. OpenCCL reorder points and then use min-
vertex to find the cell order. For the whole mesh, OpenCCL
needs 671s and FastCOL only 223s.

6. available at http://graphics.stanford.edu/data/3Dscanrep/
7. available at http://www.cs.unc.edu/ geom/Powerplant/

Fig. 14. Visual illustration of the original cell layout of
the section 01 part a of the UNC powerplant model.
Successive cells in memory are colored from blue to red.

We again compare those two layouts on the connectivity
filter and the depth sort filter. Both layouts perform worse
than the original that is already well optimized (Tab. 4). In the
original layout, each connected part is stored contiguously and
each of those parts is then well organized. No big improvement
was expected due to this already good layout (Fig. 14).
Previous work on this mesh led to improvements over the
original layout using experiments much more based on the
geometry than the filters we used: view dependent rendering
in [19] and collision detection in [20].

6.3.7 Comparison with a Space Filling Curve Approach
We now compare our layout to a space filling curve approach.
We use the Z-curve as in [2]. To compute the layout efficiently,
we decompose the space using a kd-tree8 until there is only
one point for each leaf and then order the leaves in the order of
the Z-curve. This algorithm is very similar to FastCOL except
that, instead of looking for an efficient separator at each step
of the recursion, we use planes parallel to the x,y,z axes cutting
exactly in half the set of points.

The space-filling curve approach is faster but does not take
into account the topology of the mesh. The kd-tree does not
provide an upper bound on the number of cells cut by the plane
separator. However this approach performs almost as well as
FastCOL and OpenCCL on most of our meshes and very well
on regular meshes.

As the space-filling curve does not take into account the
topology of the mesh, it can perform badly on specific meshes.
We created a mesh with a high density of points and cells
where the kd-tree cut the mesh. To do so, we first generated
a set of points in [−1,1]3 with a high density around the
planes x = 0, y = 0, z = 0, x = ±0.5, y = ±0.5, z = ±0.5.
We tetrahedralized them with tetgen. We mapped the scalar
field of one of our meshes using a linear interpolation. On
CpuIso the FastCOL layout is about 1.4 time faster than the
space-filling curve layout.

7 CONCLUSION

We introduced FastCOL, an algorithm relying on Miller et
al. [6] geometric separator for computing CO mesh layouts.
To our knowledge this is the first CO layout algorithm for
unstructured meshes with a guaranteed theoretical upper bound
of N/B+O(N/M1/d) cache-misses.

Experiments show that this algorithm requires significantly
less computation time and memory than OpenCCL, the best

8. We used the VTK implementation of the kd-tree.
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known CO mesh layout algorithm [5]. Without modifying the
visualization algorithms, both CO layouts can bring compa-
rable performance improvements on CPUs where they reduce
the number of cache-misses, as well as on GPU architectures
where they favor parallel coalesced data accesses. FastCOL
improves its performance by more than 10% when using the
layout consistent BSP tree produced by the algorithm as an
acceleration data structure instead of an external one.
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