

Cache-Oblivious Algorithms

Marc Tchiboukdjian MOAIS Project
Grenoble Informatics Laboratory

Motivation

- Data sets are often too massive to fit completely inside the computer's internal memory
- I/Os between internal and external memory is the bottleneck

Outline

- Memory Hierarchy
- Disk Access Model

Cache Oblivious Model

Memory Hierarchy

Cache
 RAM

Access times
$10^{\circ} \mathrm{ns}$
$10^{2} \mathrm{~ns}$
$10^{6} \mathrm{~ns}$

Disk Access Model (DAM)

or external memory out-of-core cache-aware I/O model

Cache

Block transfers
Disk

W: \#operations CPU
Q: \#block transfers

Advantages of the DAM model

- Simple: only two levels

Good when the bottleneck is between two specific levels

Principles of external-memory algorithm design

- Internal efficiency: work is comparable to the best internal memory algorithms
- Spatial locality: a block should contain as much useful data as possible
- Temporal locality: as much useful work as possible before the block is ejected

Scanning in the DAM model

Read an N -elements array: the naive algorithm is optimal

$W(N)=N$
$Q(N)=\lceil N / B\rceil$

$$
\operatorname{scan}(N)=\lceil N / B\rceil
$$

this bound is optimal

Searching in the DAM model

Searching a key in an N -nodes balanced binary tree: naive doesn't work

$$
\begin{aligned}
& W(N)=1 . O(\lg N)=O(\lg N) \\
& Q(N)=1 . O(\lg N)=O(\lg N)
\end{aligned}
$$

Searching in the DAM model

Searching a key in an N-elements B-tree [Bayer and McCreight 1972]

$$
\begin{aligned}
W(N) & =\lg B \cdot O\left(\log _{B} N\right)=O(\lg N) \\
Q(N) & =1 . O\left(\log _{B} N\right)=O\left(\log _{B} N\right)
\end{aligned}
$$

Multiplying in the DAM model

NxN matrices in row-major order: naive doesn't work

Using the naive N^{3} algorithm:

$$
\begin{aligned}
& W(N)=O(N) \cdot N^{2} \\
& W(N)=O\left(N^{3}\right)
\end{aligned}
$$

Memory accesses in B are suboptimal:

$$
\begin{aligned}
& Q(N)=O\left(\frac{N}{B}+N\right) \cdot N^{2} \\
& Q(N)=O\left(N^{3}\right)
\end{aligned}
$$

Multiplying in the DAM model

NxN matrices in submatrices

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Multiplying in the DAM model

 NxN matrices in submatrices
- Cost for two sub-matrices

$$
W(N)=O\left(\sqrt{M}^{3}\right) \quad Q(N)=O\left(\frac{M}{B}\right)
$$

- Total cost

$$
W(N)=O\left(\sqrt{M}^{3}\right) \cdot O\left(\frac{N}{\sqrt{M}}\right) \cdot O\left(\frac{N^{2}}{M}\right)
$$

A

$$
W(N)=O\left(N^{3}\right)
$$

$$
Q(N)=O\left(\frac{M}{B}\right) \cdot O\left(\frac{N}{\sqrt{M}}\right) \cdot O\left(\frac{N^{2}}{M}\right)
$$

$$
Q(N)=O\left(\frac{N^{3}}{B \sqrt{M}}\right)
$$

Sorting in the DAM model

M / B-way merge sort of an N -elements array
, Cut into M/B sublists

- Recursively sort them
- Merge using a heap of size M/B
cache

Sorting in the DAM model

M / B-way merge sort of an N -elements array

$$
\begin{aligned}
& W(N)=\left\{\begin{array}{l}
\frac{M}{B} W\left(\frac{N}{M / B}\right)+N . O\left(\log \frac{M}{B}\right) \\
\text { if } N>1 \\
O(1)
\end{array}\right. \\
& W(N)=O(N \log N) \\
& Q(N)=\left\{\begin{array}{l}
\frac{M}{B} Q\left(\frac{N}{M / B}\right)+O\left(\frac{N}{B}\right) \text { if } N>M \\
O\left(\frac{N}{B}\right)
\end{array}\right. \\
& Q(N)=O\left(\frac{N}{B} \log _{M / B} \frac{N}{B}\right)=\operatorname{sort}(N) \text { optimal }
\end{aligned}
$$

cache

Limitations of the DAM model

- B and M are needed to design the algorithm

Only two levels of the hierarchy

- B and M can vary
- e.g. multi-process scheduling
, Block transfer cost is not uniform
- disk seek time

Cache-Oblivious Model (CO)

[Frigo et al 1999]

Cache Block transfers Disk

Advantages of the CO Model

- Simple
- Parameters are unknown (block and cache size)
- Machine-independent
- Efficient with all levels of the memory hierarchy

Assumptions

Optimal replacement
Only two levels of memory

- Full associativity
- Tall-cache assumption $M=\Omega\left(B^{2}\right)$
$M=\Omega\left(B^{1+\varepsilon}\right)$

Scanning in the CO model

Alignement issue

$$
\begin{aligned}
& W(N)=N \\
& Q(N)=\lceil N / B\rceil+1
\end{aligned}
$$

Searching in the CO model

Binary tree mapped in memory using a recursive layout [Bender et al 2000]

$$
\begin{aligned}
& W(N)=O(\lg N) \\
& Q(N)=O(1) \cdot \frac{O(\lg N)}{O(\lg B)}=O\left(\log _{B} N\right)
\end{aligned}
$$

Multiplying in the CO model

D\&C matrix multiplication using a recursive layout

${ }^{-12}$	12	13	2	3	4

Multiplying in the CO model

D\&C matrix multiplication using a recursive layout

$$
\begin{aligned}
& W(N)=\left\{\begin{array}{cl}
8 W(N / 2)+O\left(N^{2}\right) & \text { if } N>1 \\
O(1) & \text { otherwise }
\end{array}\right. \\
& W(N)=O\left(N^{3}\right)
\end{aligned}
$$

$$
Q(N)=\left\{\begin{array}{cl}
8 Q(N / 2)+O\left(N^{2} / B\right) & \text { if } N^{2}>M / 3 \\
O\left(N^{2} / B\right) & \text { otherwise }
\end{array}\right.
$$

$$
Q(N)=O\left(N^{3} / B \sqrt{M}\right)
$$

Packed Memory Array

- Dynamically maintains N elements in order in a $\Theta(N)$-sized array with gaps
- Motivation: keep data in order on disk
- Sequential block accesses are faster
- Take advantage of prefetching
- Range query

1		4	5		9	13	14			21	32

Packed Memory Array

- Idea: rearrange elements \& gaps to accommodate future insertions

- Objective: minimize amortized number of elements moved per update

Packed Memory Array

- Insertions/Deletions:
- $O\left(\log ^{2} N\right)$ amortized moves per insert
- $O\left(\log ^{2} N / B\right)$ amortized memory transfers
- Scans of k elements
- $O(k / B)$ memory transfers

Packed Memory Array

- Try to insert in a leaf interval
- If full, find the closest ancestor within threshold

Packed Memory Array

- Try to insert in a leaf interval
- If full, find the closest ancestor within threshold
- Rebalance elements uniformly in this interval

Dynamic CO B-tree

Static CO B-tree on top of the PMA
[Bender et al 00]

- Search $O\left(\log _{B} N\right)$
- Update $O\left(\log _{B} N+\log ^{2} N / B\right)$
- Range query $O\left(\log _{B} N+k / B\right)$

Back to the assumptions [Frigo etal 1999]

- Optimal replacement
[Sleator \& Tarjan 1985] cache misses on a (M, B) LRU-cache is at most twice the number of misses on a ($M / 2, B$) ideal-cache
- Only two levels of memory

LRU + cache $_{i} \subset$ cache $_{i+1} \Rightarrow$ optimal on all levels

- Full associativity
universal hash function

Related Work

- Matrix transposition
- FFT
- Search tree
- Sorting
- Priority queue
- Graph algorithms
- Computational Geometry
- Mesh layouts

CO technics

- Scanning
- Sorting
, Divide and Conquer
- Recursive layout

CA vs CO?

[Brodal and Fagerberg 03]

- CO sorting requires the tall cache assumption
- CO permuting cannot match the CA bound
- Experimental comparison
[Gunnels et al 07]
+ Efficient with all levels of the hierarchy
+ Machine independent
+ Keep data in order on disk
- On disk sequential block transfers are much faster
- Prefetching

