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Data sets are often too massive to fit 
completely inside the computer’s internal 
memory

I/Os between internal and external memory is 
the bottleneck



Memory Hierarchy

Disk Access Model

Cache Oblivious Model
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Infinite sizeSize B

[Aggarwal and Vitter 1988]
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or external memory
out-of-core
cache-aware
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Simple: only two levels

Good when the bottleneck is between two 
specific levels

CPU Disk

Cache

RAM



Internal efficiency: work is comparable to the 
best internal memory algorithms

Spatial locality: a block should contain as 
much useful data as possible

Temporal locality: as much useful work as 
possible before the block is ejected
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Read an N-elements array: the naive algorithm is optimal

this bound is optimal
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Searching a key in an N-nodes balanced binary tree
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: naive doesn’t work
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[Bayer and McCreight 1972]Searching a key in an N-elements B-tree
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NxN matrices in row-major order
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Using the naive N3 algorithm:

Memory accesses in B are suboptimal:

: naive doesn’t work
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NxN matrices in submatrices
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B3/MCost for two sub-matrices

Total cost
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NxN matrices in submatrices
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M

on disk

M/B-way merge sort of an N-elements array

cache

Cut into M/B sublists
Recursively sort them
Merge using a heap of size M/B
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M/B-way merge sort of an N-elements array
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B and M are needed to design the algorithm

Only two levels of the hierarchy

B and M can vary
◦ e.g. multi-process scheduling

Block transfer cost is not uniform
◦ disk seek time



Cache

CPU

Disk

Unknown size M

Block transfers

Infinite sizeUnknown size B

Optimal replacement 
strategy (FIF)

[Frigo et al 1999]



Simple

Parameters are unknown (block and cache size)

Machine-independent

Efficient with all levels of the memory hierarchy



Optimal replacement

Only two levels of memory

Full associativity

Tall-cache assumption
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Alignement issue
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[Bender et al 2000]Binary tree mapped in memory using a recursive layout
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D&C matrix multiplication using a recursive layout
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Dynamically maintains N elements in order in 
a Θ(N)-sized array with gaps

Motivation: keep data in order on disk
◦ Sequential block accesses are faster
◦ Take advantage of prefetching
◦ Range query

[Bender et al 00,05]
[Itai et al 81]
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Idea: rearrange elements & gaps to 
accommodate future insertions

Objective: minimize amortized number of 
elements moved per update

1 4 5 9 13 14 21 32

1 4 5 9 12 13 14 21 32



Insertions/Deletions:
◦ amortized moves per insert
◦ amortized memory transfers

Scans of k elements
◦ memory transfers
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Θ(k) elements in an
interval of size k
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00 λρ ≤≤ d
11 λρ ≤≤ d
22 λρ ≤≤ d
33 λρ ≤≤ d

Try to insert in a leaf interval
If full, find the closest ancestor within threshold
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11 λρ ≤≤ d
22 λρ ≤≤ d
33 λρ ≤≤ d

Try to insert in a leaf interval
If full, find the closest ancestor within threshold
Rebalance elements uniformly in this interval



Search

Update

Range query

Static CO B-tree on top of the PMA [Bender et al 00]
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Optimal replacement
cache misses on a (M,B) LRU-cache is at most twice
the number of misses on a (M/2,B) ideal-cache

Only two levels of memory
LRU + cachei ⊂ cachei+1  ⇨ optimal on all levels

Full associativity
universal hash function

[Sleator & Tarjan 1985]

[Frigo et al 1999]



Matrix transposition
FFT
Search tree
Sorting
Priority queue
Graph algorithms
Computational Geometry
Mesh layouts



Scanning

Sorting

Divide and Conquer

Recursive layout



CO sorting requires the tall cache assumption
CO permuting cannot match the CA bound
Experimental comparison

Efficient with all levels of the hierarchy
Machine independent
Keep data in order on disk
◦ On disk sequential block transfers are much faster
◦ Prefetching

[Brodal and Fagerberg 03]

[Gunnels et al 07]


