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Visualization & Massive Data Sets

CEA supercomputer
19th Top500
9968 Itanium2
60 Tflops
30 TB of memory
1 PB of disk space

Simulation of half the 
observable universe
50 TB mesh

TERA-10

We need good I/O performance to visualize such data sets
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Cache-Efficient Ordering of a Mesh

Memory hierarchy

algorithm

How to lay out a 
mesh in memory 
to minimize cache 
misses?



Outline

• Cache-aware and cache-oblivious models
example: matrix multiplication

• Previous work on mesh layouts

• Our algorithm

• Experiments
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Cache-Aware Model (CA)

W: #operations

Q: #block transfers

or external memory
out-of-core
disk access machine
I/O model

[Aggarwal & Vitter 1988]
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Multiplying in the CA Model
NxN matrices in row-major order
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Memory accesses 
in B are suboptimal

: naive algorithm doesn’t work
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Multiplying in the CA Model
NxN matrices in submatrices

Technique used in BLAS
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Drawbacks of the CA Model
– Only two levels of the memory hierarchy

• At least 4 levels on any modern CPU
• Even deeper with multiprocessors computers

– Architecture dependent
• Difficult to find optimal B and M (ATLAS)
• GPU memory hierarchy is complex
• B and M can vary over time
• Need to recompute the layout

+ Efficient with all levels of 
the memory hierarchy

+ Architecture independent
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Cache-Oblivious Model (CO) [Frigo & al 1999]
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Multiplying in the CO Model
D&C matrix multiplication using a recursive layout
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How to lay out a mesh efficiently in memory?

algorithm
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Idea

query slice

loaded blocks unloaded blocks75% 33%

Triangles (or vertices) that are most likely to be accessed sequentially 
should be stored nearby
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Graph of Sequential Accesses

G1: sequential access between triangles
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Graph of Sequential Accesses

G1: sequential access between triangles

G2: sequential access between vertices
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Graph of Sequential Accesses

G1: sequential access between triangles

G2: sequential access between vertices

G3: both
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Mesh Layout Problem

52 31 4 6 7 8
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Minimize # of cache misses if each node touches all its neighbors
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Example

cache (B=2,M=4)
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Regular Meshes: Space-Filling Curves

query slice

Lebesgue curve
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Regular Meshes: Space-Filling Curves

query slice

loaded blockunloaded block

Lebesgue curve

B=64
25% loaded blocks
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Regular Meshes: Space-Filling Curves

query slice

loaded blockunloaded block

Lebesgue curve

B=16
20% loaded blocks

B=64
25% loaded blocks
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Regular Meshes: Space-Filling Curves

query slice

loaded blockunloaded block

Lebesgue curve

B=16
20% loaded blocks

B=4
10% loaded blocks

B=64
25% loaded blocks
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Unstructured Meshes

• Heuristic algorithm based on multi-level optimization
– slow
– high memory usage

• Good experimental results (2-5x improvement)

• But no guarantee on
– time to compute the layout
– layout quality

[Pascucci & al SIGGRAPH 2005, OpenCCL]
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Overlap graphs

• Generalize planar graphs

• Contain well-shaped meshes

[Miller & al 98]

circles d-dim spheres
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• Separate the mesh into two roughly equal-size pieces cutting few edges

• Planar graphs [Lipton-Tarjan]

• Overlap graphs (randomized linear time)

Separator for overlap graphs [Miller & al 98]
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Our layout

• Recursively cut the mesh
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Our layout

• Recursively cut the mesh
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Our layout

• Recursively cut the mesh
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Our layout

• Recursively cut the mesh
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Our layout

• Recursively cut the mesh
• The order of the leaves gives the layout
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Guarantee on the Quality of the Layout

fits in cache

• Each subgraph fits in cache

• Edges inside a subgraph do 
not cause a cache miss

• Cache misses are bounded by 
the number of edges between 
two subgraphs (outer edges)

• One can show that there are 
few outer edges

Theorem:
Our layout guarantees that a traversal of an O(N)-size d-dim 
mesh causes less than O(N/B+N/M1/d) cache misses
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Back to the Example

cache (B=2,M=4)
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12 cache misses (25 previously)52 31 46 7 8
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Experiments

Opteron 875 2,2Ghz
L1 = 64K
L2 = 1024K
Cache lines = 64B
32G of RAM

Plasma Reactor Skull Neptune

Type Structured AMR Unstructured Unstructured

#Vertices 274k 84k 37k 2M

#Cells 1.3M tetra 78k hexa 156k tetra 4M tri

Size 47MB 8 MB 6 MB 169 MB
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Layout Computation

Our Layout OpenCCL*

Time (s) Memory (MB) Time (s) Memory (MB)

Plasma 107 124 282 6,843

Reactor 8.8 15 27.6 458

Skull 10.6 16 26.9 814

Neptune 410 269 843 20,500

At least twice as fast using 30 times less memory

* www.cs.unc.edu/~geom/COL/OpenCCL/
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Layout Quality

Original Layout Our Layout OpenCCL

Time (s) (Dev.) Time (s) (Dev.) Time (s) (Dev.)

Plasma 32.4 (0.25) 33.4 (0.22) 32.5 (0.22)

Reactor 3.3 (0.05) 3.4 (0.09) 3.3 (0.10)

Skull 5.1 (0.04) 4.96 (0.02) 4.95 (0.02)

Neptune 121 (2.5) 110 (1.3) 110 (1.0)

3%
9%

• VTK 5
• a cut plane is moved through the whole mesh
• experiment is repeated 30 times



Cdf of edge lengths
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Correlation Edge Lengths / Cache Misses

64
K

12
8K

32
K

skull

Simulation (valgrind) of the number of 
cache misses with varying L1 cache sizes
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Conclusion & Future Work
• Our algorithm

– Fast  O(N log N)
– Quality & time guarantees
– Architecture independent

• Better validation
– Big 3D unstructured meshes
– Find the factor 2 improvement of Pascucci SIGGRAPH05

• Improve the layout
– What if only part of the mesh is accessed?
– Parallelism

SMT/HT (L1)

Multicore (L2/L3) 

NUMA/SMP (RAM)

Cluster (Small network)

Grid (Large Network)
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Questions?

Thank you


