
A Fast Cache-Oblivious Mesh Layout
with Theoretical Guarantees

Vincent Danjean, Bruno Raffin,
Marc Tchiboukdjian

2

Visualization & Massive Data Sets

CEA supercomputer
19th Top500
9968 Itanium2
60 Tflops
30 TB of memory
1 PB of disk space

Simulation of half the
observable universe
50 TB mesh

TERA-10

We need good I/O performance to visualize such data sets

3

Cache-Efficient Ordering of a Mesh

Memory hierarchy

algorithm

How to lay out a
mesh in memory
to minimize cache
misses?

Outline

• Cache-aware and cache-oblivious models
example: matrix multiplication

• Previous work on mesh layouts

• Our algorithm

• Experiments

4

5

Cache-Aware Model (CA)

W: #operations

Q: #block transfers

or external memory
out-of-core
disk access machine
I/O model

[Aggarwal & Vitter 1988]

6

Multiplying in the CA Model
NxN matrices in row-major order

)()(

)()(
3

3

NONQ

NONW

naive

naive

=

=

Memory accesses
in B are suboptimal

: naive algorithm doesn’t work

7

Multiplying in the CA Model
NxN matrices in submatrices

Technique used in BLAS

()3)(NONQnaive =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

MB
NONQCA

3

)(

8

Drawbacks of the CA Model
– Only two levels of the memory hierarchy

• At least 4 levels on any modern CPU
• Even deeper with multiprocessors computers

– Architecture dependent
• Difficult to find optimal B and M (ATLAS)
• GPU memory hierarchy is complex
• B and M can vary over time
• Need to recompute the layout

+ Efficient with all levels of
the memory hierarchy

+ Architecture independent

9

Cache-Oblivious Model (CO) [Frigo & al 1999]

10

Multiplying in the CO Model
D&C matrix multiplication using a recursive layout

()3)(NONQnaive =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

MB
NONQCA

3

)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

MB
NONQCO

3

)(

Outline

• Cache-aware and cache-oblivious models
example: matrix multiplication

• The mesh layout problem and previous work

• Our algorithm

• Experiments

11

12

How to lay out a mesh efficiently in memory?

algorithm

13

Idea

query slice

loaded blocks unloaded blocks75% 33%

Triangles (or vertices) that are most likely to be accessed sequentially
should be stored nearby

14

Graph of Sequential Accesses

G1: sequential access between triangles

15

Graph of Sequential Accesses

G1: sequential access between triangles

G2: sequential access between vertices

16

Graph of Sequential Accesses

G1: sequential access between triangles

G2: sequential access between vertices

G3: both

17

Mesh Layout Problem

52 31 4 6 7 8

5

2

3

1

4

6

7

8

Minimize # of cache misses if each node touches all its neighbors

18

Example

cache (B=2,M=4)

21

3 4

5 6

7 8

5

2

3

1

4

6

7

8

52 31 4 6 7 8

disk

25 cache misses

19

Regular Meshes: Space-Filling Curves

query slice

Lebesgue curve

20

Regular Meshes: Space-Filling Curves

query slice

loaded blockunloaded block

Lebesgue curve

B=64
25% loaded blocks

21

Regular Meshes: Space-Filling Curves

query slice

loaded blockunloaded block

Lebesgue curve

B=16
20% loaded blocks

B=64
25% loaded blocks

22

Regular Meshes: Space-Filling Curves

query slice

loaded blockunloaded block

Lebesgue curve

B=16
20% loaded blocks

B=4
10% loaded blocks

B=64
25% loaded blocks

23

Unstructured Meshes

• Heuristic algorithm based on multi-level optimization
– slow
– high memory usage

• Good experimental results (2-5x improvement)

• But no guarantee on
– time to compute the layout
– layout quality

[Pascucci & al SIGGRAPH 2005, OpenCCL]

Outline

• Cache-aware and cache-oblivious models
example: matrix multiplication

• The mesh layout problem and previous work

• Our algorithm

• Experiments

24

25

Overlap graphs

• Generalize planar graphs

• Contain well-shaped meshes

[Miller & al 98]

circles d-dim spheres

26

• Separate the mesh into two roughly equal-size pieces cutting few edges

• Planar graphs [Lipton-Tarjan]

• Overlap graphs (randomized linear time)

Separator for overlap graphs [Miller & al 98]

G
d
dGG

2
1, 21 +

+
≤

⎟
⎠
⎞⎜

⎝
⎛= − dGOGGE

11
21),(

G1

G2

GGG
3
2, 21 ≤ GGGE 8),(21 ≤

2

3

1

4

6

7

8

5

27

Our layout

• Recursively cut the mesh

2

3

1

6

7

8

5

4

28

Our layout

• Recursively cut the mesh

2

3

1

6

7

8

5

4

29

Our layout

• Recursively cut the mesh

2

3

1

6

7

8

5

4

30

Our layout

• Recursively cut the mesh

2

3

1

6

7

8

5

4

31

Our layout

• Recursively cut the mesh
• The order of the leaves gives the layout

()NNOW(N) log=

2

3

1

6

7

8

5

4

52 31 46 7 8

32

Guarantee on the Quality of the Layout

fits in cache

• Each subgraph fits in cache

• Edges inside a subgraph do
not cause a cache miss

• Cache misses are bounded by
the number of edges between
two subgraphs (outer edges)

• One can show that there are
few outer edges

Theorem:
Our layout guarantees that a traversal of an O(N)-size d-dim
mesh causes less than O(N/B+N/M1/d) cache misses

33

Back to the Example

cache (B=2,M=4)

61

7 4

2 5

8 3

5

2

3

1

4

6

7

8

disk

12 cache misses (25 previously)52 31 46 7 8

Outline

• Cache-aware and cache-oblivious models
example: matrix multiplication

• The mesh layout problem and previous work

• Our algorithm

• Experiments

34

35

Experiments

Opteron 875 2,2Ghz
L1 = 64K
L2 = 1024K
Cache lines = 64B
32G of RAM

Plasma Reactor Skull Neptune

Type Structured AMR Unstructured Unstructured

#Vertices 274k 84k 37k 2M

#Cells 1.3M tetra 78k hexa 156k tetra 4M tri

Size 47MB 8 MB 6 MB 169 MB

36

Layout Computation

Our Layout OpenCCL*

Time (s) Memory (MB) Time (s) Memory (MB)

Plasma 107 124 282 6,843

Reactor 8.8 15 27.6 458

Skull 10.6 16 26.9 814

Neptune 410 269 843 20,500

At least twice as fast using 30 times less memory

* www.cs.unc.edu/~geom/COL/OpenCCL/

37

Layout Quality

Original Layout Our Layout OpenCCL

Time (s) (Dev.) Time (s) (Dev.) Time (s) (Dev.)

Plasma 32.4 (0.25) 33.4 (0.22) 32.5 (0.22)

Reactor 3.3 (0.05) 3.4 (0.09) 3.3 (0.10)

Skull 5.1 (0.04) 4.96 (0.02) 4.95 (0.02)

Neptune 121 (2.5) 110 (1.3) 110 (1.0)

3%
9%

• VTK 5
• a cut plane is moved through the whole mesh
• experiment is repeated 30 times

Cdf of edge lengths

38reactor neptune

L1

L2

51
2K

10
24

K

10
24

K 20
48

K

64
K

12
8K

80% 81%

90%

95%

99.5%

98%

99.7%

99%

64
K

12
8K

39

Correlation Edge Lengths / Cache Misses

64
K

12
8K

32
K

skull

Simulation (valgrind) of the number of
cache misses with varying L1 cache sizes

40

Conclusion & Future Work
• Our algorithm

– Fast O(N log N)
– Quality & time guarantees
– Architecture independent

• Better validation
– Big 3D unstructured meshes
– Find the factor 2 improvement of Pascucci SIGGRAPH05

• Improve the layout
– What if only part of the mesh is accessed?
– Parallelism

SMT/HT (L1)

Multicore (L2/L3)

NUMA/SMP (RAM)

Cluster (Small network)

Grid (Large Network)

41

Questions?

Thank you

