A Fast Cache-Oblivious Mesh Layout
with Theoretical Guarantees

Vincent Danjean, Bruno Raffin,
Marc Tchiboukdjian

INETIFUT MATIONAL
e N NE EM CENTRE NATIONAL G REN 0 BLE '
AHTORMATIOUE EX DE L4 RECHERCHE

st

swavromamousE F Ned soonnpone UNIVERSITES
INRIA LI G

Visualization & Massive Data Sets

4750 AR

i) A

TERA-10

CEA supercomputer

19 Top500 Simulation of half the
9968 Itaniumz2 observable universe
60 Tflops 50 TB mesh

30 TB of memory
1 PB of disk space

Cache-Efficient Ordering of a Mesh

Cache RAM

Memory hierarchy -<—>
BIock transfers

Access times 10%ns 102ns 10%ns

How to lay out a

mesh in memory
to minimize cache
misses?

algorithm

Qutline

e Cache-aware and cache-oblivious models
example: matrix multiplication

e Previous work on mesh layouts
e QOur algorithm

e Experiments

Cache-Aware Model (CA) [Aggarwal & Vitter 1988]

or external memory
out-of-core
W: #operations disk access machine
/0 model

Q: #block transfers

Cache Block transfers Disk

‘_’.

Size M _
M/B blocks Size B Infinite size

Multiplying in the CA Model

NXN matrices in row-major order: naive algorithm doesn’t work

Memory accesses
in B are suboptimal

Wnaive(N) — O(NB)
Qnaive(N) — O(N 3)

Multiplying in the CA Model

NxN matrices in submatrices

Technique used in BLAS

Qnaive(N) = O(N 3)

[L e e T

7

Drawbacks of the CA Model

— Only two levels of the memory hierarchy + Efficient with all levels of

« At least 4 levels on any modern CPU the memory hierarchy
e Even deeper with multiprocessors computers

— Architecture dependent + Architecture independent
e Difficult to find optimal B and M (ATLAS)
e GPU memory hierarchy is complex
e B and M can vary over time
e Need to recompute the layout

Cache-Oblivious Model (CO) [Frigo & al 1999]

Cache Block transfers Disk

A —-
- Optlmal replacement
strategy

Unknown size M Unknown size B Infinite size

Multiplying in the CO Model

D&C matrix multiplication using a recursive layout

Qnaive(N) = O(N 3)

Outline

e Cache-aware and cache-oblivious models
example: matrix multiplication

e The mesh layout problem and previous work
e Qur algorithm

e Experiments

11

How to lay out a mesh efficiently in memory?

algorithm

12

ldea

Triangles (or vertices) that are most likely to be accessed sequentially

should be stored nearby

Ioaded blocks unloaded blocks

75%

13

Graph of Sequential Accesses

G,: sequential access between triangles

14

Graph of Sequential Accesses
//

RN

G,: sequential access between triangles

15

Graph of Sequential Accesses

G,: sequential access between triangles

16

Mesh Layout Problem

Minimize # of cache misses if each node touches all its neighbors

17

Example

cache (B=2,M=4)

25 cache misses

disk

18

Regular Meshes: Space-Filling Curves

§ guery slice

Lebesgue curve

=

19

Regular Meshes: Space-Filling Curves

Lebesgue curve

B=64
25% loaded blocks

/

guery slice

\

unloaded block

loaded block

20

Regular Meshes: Space-Filling Curves

Lebesgue curve

B=64

25% loaded blocks _
query slice

B=16
20% loaded blocks

/ \

unloaded block loaded block

21

Regular Meshes: Space-Filling Curves

Lebesgue curve

B=64
25% loaded blocks

B=16 A \

20% loaded blocks

\ query slice

B=4
10% loaded blocks

unloaded block loaded block

22

Unstructured Meshes [Pascucci & al SIGGRAPH 2005, OpenCCL]

e Heuristic algorithm based on multi-level optimization

— slow
— high memory usage

e Good experimental results (2-5x improvement)

e But no guarantee on
— time to compute the layout a\
— layout quality \ p

23

Outline

e Cache-aware and cache-oblivious models
example: matrix multiplication

e The mesh layout problem and previous work
e Qur algorithm

e Experiments

24

Overlap graphs [Miller & al 98]

e Generalize planar graphs

e Contain well-shaped meshes

circles d-dim spheres
25

Separator for overlap graphs [Miller & al 98]

e Separate the mesh into two roughly equal-size pieces cutting few edges
e Planar graphs [Lipton-Tarjan]

G,||G,| < 2 G

Gllel<3lel E@G.6)</86

e OQOverlap graphs (randomized linear time)

d+1
d+2‘G‘
8

G.}[Go <

E(G,,G,) = O(\G\l_%) 3 5

26

Our layout

e Recursively cut the mesh

27

Our layout

e Recursively cut the mesh

28

Our layout

e Recursively cut the mesh

29

Our layout

e Recursively cut the mesh

30

Our layout

- Recursively cut the mesh W(N)=O(N logN)
 The order of the leaves gives the layout

31

Guarantee on the Quality of the Layout

Theorem:
Our layout guarantees that a traversal of an O(N)-size d-dim
mesh causes less than O(N/B+N/M'd) cache misses

G
« Each subgraph fits in cache - T
— —
cut edg

» Edges inside a subgraph do \ es
not cause a cache miss

e Cache misses are bounded by ‘
the number of edges between
ﬂ outer edges

ui

2

two subgraphs (outer edges)

e One can show that there are W
few outer edges \ J

fits in cache 32

Back to the Example

cache (B=2,M=4)

l disk

1.6 7,4 2|5 8 3 12 cache misses (25 previously)

33

Outline

e Cache-aware and cache-oblivious models
example: matrix multiplication

e The mesh layout problem and previous work
e Qur algorithm

e EXxperiments

34

Experiments 5;3\
Plasma Reactor Skull Neptune
Type Structured AMR Unstructured | Unstructured
#Vertices 274K 84k 37k 2M
#Cells 1.3M tetra 78k hexa 156Kk tetra AM tri
Size 47/MB 8 MB 6 MB 169 MB

Opteron 875 2,2Ghz

L1 = 64K
L2 = 1024K

Cache lines = 64B

32G of RAM

35

Layout Computation

Our Layout OpenCCL*
Time (s) Memory (MB) | Time (s) Memory (MB)
Plasma 107 124 282 6,843
Reactor 8.8 15 27.6 458
Skull 10.6 16 26.9 814
Neptune 410 269 843 20,500

* www.cs.unc.edu/~geom/COL/OpenCCL/

B\ Q ! R
% ’ j

36

Layout Quality

e VIK5

e a cut plane is moved through the whole mesh

e experiment is repeated 30 times

Original Layout Our Layout OpenCCL

Time (s) (Dev.) Time (s) (Dev.) Time (s) (Dev.)
Plasma 32.4 (0.25) 33.4 (0.22) 32.5 (0.22)
Reactor 3.3 (0.05) 3.4 (0.09) 3.3 (0.10)
Skull 5.1 (0.04) 4.96 (0.02) 4.95 (0.02)

vepune| 12128 | moady | weao |

37

Cdf of edge lengths

99.7%

99.5%

. i . . 00k SE'0 060 580 080
ol 60 20 L0 90
(xJug
(xJug
—i (Q\|
— —l
= AN EEEEEESNESESESESSSSESNESSESESSENESSENEEEEE
g
o~
f=1
g
. N EEEEEEEEEEEEEEEEEEEEEEEEEEEEESR
ABCT |
IIIllllllllllllllllllllllllllllll
g
1
HEE EEE NN EEEEEEEEENEEEEEEEEEEEER w
=3
-
I I I I T I I I T T
o 80 20 L0 0 0 $60 060 580 080
(xjug (wug

200000

38

150000

100000

50000

20000 30000 40000 50000 60000

10000

Original mesh
CCL layout
Our layout

S
©)
-
(&)
qv]
(D)
| -

Fnix)

Correlation Edge Lengths / Cache Misses

cdf of edge lengths

= | . x
o | : : I © —— Original mesh
= . - § T CCL layout
© . . B O Our layout
I= [E _

. . 2

u - [
5 - : 8 24 o

n : © @ {.,\

u] = ©w 1, O
w] - A y
=S n - — — '&

: : 5~ P
o : : b % | ig\

. . E < =R o
= | - . N —— Original mesh 2 _ ‘\\\ \\
= Ve . X T 00 ---- CCL layout \\ o

(Q\| . < s\l | — our layout [:“‘) o ———————p 8
2 om « O i + T T e
| — — I | & — | | |
0 5000 10000 15000 20000 8 16 30 64 128

cache size (KB)

Simulation (valgrind) of the number of
cache misses with varying L1 cache sizes

39

Conclusion & Future Work

e Qur algorithm
— Fast O(N log N)
— Quality & time guarantees
— Architecture independent

e Better validation
— Big 3D unstructured meshes
— Find the factor 2 improvement of Pascucci SIGGRAPHO5

e Improve the layout
— What if only part of the mesh is accessed?
— Parallelism

T [== Depth-first Layout (DFL)
w— Cache-obliious Layout (COL)

Collision query time(sec)
L)

L L L
0 10 20 a0 g0 70

4D
Simulation step
Figure 11: Performance of Collision Detection: Average query times for collision
Figure 9: Dynamic Simulation: Dragons consisting of 800K triangles are dropping on detection between the Lucy model and the dragon model with COL and DFL are shown. 40
the Lucy model consisting of 28M triangles. We obtain 2 times improvement by using We obtain 2 times improvement in the query time on average.

COL on average.

Questions?

Thank you

41

