
Hierarchical Local Storage

Marc Tchiboukdjian, Patrick Carribault, Marc Pérache

Exploiting Flexible User-Data Sharing Between MPI Tasks

Hierarchical Local Storage (HLS)

• Language extension to reduce memory consumption of
MPI programs

• User can flag with pragmas data that will be shared
among MPI tasks located on the same node
– No sharing across different nodes

⟹ no additional communications
– Take advantage of shared memory inside a node

⟹ almost no runtime overhead

• Potential memory reduction factor = #cores per node
– From one copy per rank to one copy per node
– HLS memory does not increase with the number of cores

per node

HLS Typical Use Case: Common Variables

• Common variables

– Same value across MPI ranks at each point of the
program

– Value can change over time but the update need
to be logically synchronous for all MPI ranks

– Examples: physics constants, replicated domain, …

Time

MPI ranks
Update Update Update

Formal Definition

current read
operation

MPI_Send

MPI_Recv

MPI_Recv
MPI_Send

current MPI Rank
one of the other
MPI Ranks

previous write
operation

concurrent write
operations

Example of HLS Usage

• Example of one global variable named var

– Duplicated in standard MPI environment

– Shared with HLS directive
#pragma hls node(var)

– Updated with HLS directive
#pragma hls single(var) { ... }

Control Data Sharing with HLS Scopes

• Sharing data across an entire node can:

– degrade locality of MPI programs (due to NUMA
effects, coherency cache misses, …)

– induce too much synchronizations if often updated

• HLS scopes allow the user to choose at which
logical level a variable should be shared

– Available scopes: node, numa, cache level(#), core

– Tradeoff memory consumption / runtime overhead

Example of HLS Usage with HLS Scope

• One copy per L3 cache with HLS directive

#pragma hls cache(var) level(3)

• No NUMA effects, no L3 cache coherency misses, faster

variable updates

• Does not guarantee that the variable will be in cache

HLS Pragmas

• #pragma hls scope(list_var) [level(l)]
– variables in list_var are shared among all MPI ranks in the same scope
– scope=node,numa,cache,...
– l=1,2,3,...
– restricted to global variables

• #pragma hls single(list_var) [nowait]

{
 …. /* modify vars in list_var */
}
– code in single region is executed once per scope (e.g. once per numa

node)
– variables in list_var must have the same scope
– implicit barrier before and after the single region (except with nowait)

• #pragma hls barrier(list_var)
– synchronize MPI ranks at the largest scope in list_var

What kind of memory can be shared?

Global memory

double table[<big size>];

#pragma hls node(table)

void main() {

 MPI_Init();

 #pragma hls single(table)

 {

 write_table();

 }

 compute(); /* table is read only */

 MPI_Finalize();

}

Heap-allocated memory

double *table;

#pragma hls node(table)

void main() {

 MPI_Init();

 #pragma hls single(table)

 {

 table = malloc(<bigsize>*sizeof(double));

 write_table();

 }

 compute(); /* table is read only */

 MPI_Finalize();

}

Heap-memory allocations for HLS variables must be protected inside single regions

Implementation

• Compiler part in GCC, runtime part in MPC

• MPC: MPI 1.3 and OpenMP 2.5 runtime
– developped at CEA and Exascale Computing Research

– thread-based

⟹ MPI tasks on the same node share the same address
space

• Similar to the Thread Local Storage (TLS)
mechanism

Implementation: Compiler Part

• Patched GCC shipped with MPC release
– Support of C, C++ and Fortran

• Parser
– Recognize and check validity of pragmas
– Add scope information for each variable
– Lower barrier and single pragmas

• Code generation
– emit function calls to the MPC runtime to get the address of a

variable (identified by a module and an offset)

int a;
#pragma hls node(a)
a = 3;

int *ptr_a;
ptr_a = hls_get_addr_node(mod,off);
*ptr_a = 3;

#pragma hls single(a)
{
 ...
}

if(hls_single(node_scope)){
 ...
 hls_single_done(node_scope);
}

Implementation: Runtime Part
• Using the topology, assign the correct HLS memory when

creating a MPC thread

• Implement functions single, barrier and get_addr

void *hls_get_addr_<scope>(size_t module, size_t offset){
 // allocate and initialize memory if first use
 return hls[<scope>][mod] + off;
}

Implementation: Linker Part

• Impact on performances
– At each use of an HLS variable, a function call is inserted to get

its address

• This function call can be removed at link time in some cases
– Example: linking an executable (module 0)
– Use the segment register gs to store a pointer to the HLS scopes

array (to be updated at context switch)
– Replace the function call by some assembly code (2 instructions)

Experiments on
Memory Consumption Reduction

• 3 real applications
– EulerMHD from CEA

HLS variable: large table storing gas behavior
– Gadget-2 from PRACE

HLS variable: large table storing precomputed coefficients
for Ewald summation

– Tachyon from SPEC MPI2007
HLS variable: scene description and resulting image

• Experimental Setup
– Comparaison between MPC 2.3.1 with and without HLS

and OpenMPI 1.4.3
– Runs on an Infiniband DDR cluster with 2-socket 4-core

Core2Quad nodes

EulerMHD

51 51
47

0

10

20

30

40

50

60

MPC HLS MPC OpenMPI

Time (s)

455

1375

1574

0

200

400

600

800

1000

1200

1400

1600

1800

MPC HLS MPC OpenMPI

Memory usage (MB)

128MB table is shared by 8 cores per node
Using HLS ⟹ ≈900MB memory gain

Gadget-2

1540 1540
1438

0

200

400

600

800

1000

1200

1400

1600

1800

MPC HLS MPC OpenMPI

Time (s)

703

938

1731

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MPC HLS MPC OpenMPI

Memory usage (MB)

33MB table is shared by 8 cores per node
Using HLS ⟹ ≈230MB memory gain

Tachyon

83
88 89

0

10

20

30

40

50

60

70

80

90

100

MPC HLS MPC OpenMPI

Time (s)

748

4786 4885

0

1000

2000

3000

4000

5000

6000

MPC HLS MPC OpenMPI

Memory usage (MB)

560MB scene is shared by 8 cores per node
Using HLS ⟹ ≈ 4GB memory gain

Experiments on
 Improved Shared Cache Usage

• 2 microbenchmarks
– Matrix multiplication with a common matrix
– Mesh update with common lookup table
– These two microbenchmarks are extracted from real applications

• Experimental Setup
– Comparaison between MPC 2.3.1 with and without HLS and a

sequential run (ideal case with no data duplication)
– Runs on a large NUMA node (4 sockets 8 cores Nehalem-EX)

with a 18MB of shared cache per 8 cores

• Goal: evaluate the speedup obtained by reducing data
duplication in the shared cache

50

55

60

65

70

75

80

85

90

1
0

0
2

6
0

4
2

0
5

8
0

7
4

0
9

0
0

1
0

6
0

1
2

2
0

1
3

8
0

1
5

4
0

1
7

0
0

1
8

6
0

%
 o

f
p

e
ak

matrix size

sequential
privatize
hls node
hls numa

50

55

60

65

70

75

80

85

90

1
0

0
2

6
0

4
2

0
5

8
0

7
4

0
9

0
0

1
0

6
0

1
2

2
0

1
3

8
0

1
5

4
0

1
7

0
0

1
8

6
0

%
 o

f
p

e
ak

matrix size

Matrix Multiplication with Common Matrix
without common matrix update with common matrix update

One of the matrix is shared by 8 cores accessing the same L3 cache
Using HLS ⟹ up to 1.4x speedup

Everything is duplicated
(MPI default)

Everything is shared
(Upper bound)

Mesh Update with Common Lookup Table

without table update

0

2

4

6

8

10

12

14

16

18

20

small medium large

C
yc

le
s

p
e

r
e

le
m

e
n

t

dataset size

with table update

0

5

10

15

20

25

30

35

small medium large

C
yc

le
s

p
e

r
e

le
m

e
n

t

dataset size

privatize

hls node

hls numa

sequential

The table is shared by 8 cores accessing the same L3 cache
Using HLS ⟹ up to 3x speedup

Everything is duplicated
(MPI default)

Everything is shared
(Upper bound)

Conclusion

• HLS is an extension to reduce memory
consumption of MPI applications

– Potential memory reduction factor = #cores per node

– Application porting is easy on known applications

– The patched GCC compiler and the MPC runtime are
available in the MPC 2.3.1 release at
http://mpc.sourceforge.net

• Currently working on a tool to automatically
detect common variables

Thank you for your attention

