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Hierarchical Local Storage (HLS) 

• Language extension to reduce memory consumption of 
MPI programs 
 

• User can flag with pragmas data that will be shared 
among MPI tasks located on the same node 
– No sharing across different nodes 

⟹ no additional communications 
– Take advantage of shared memory inside a node 

⟹ almost no runtime overhead 
 

• Potential memory reduction factor = #cores per node 
– From one copy per rank to one copy per node 
– HLS memory does not increase with the number of cores 

per node 

 



HLS Typical Use Case: Common Variables 

• Common variables 

– Same value across MPI ranks at each point of the 
program 

– Value can change over time but the update need 
to be logically synchronous for all MPI ranks 

– Examples: physics constants, replicated domain, … 
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Example of HLS Usage 

• Example of one global variable named var 

– Duplicated in standard MPI environment 

– Shared with HLS directive 
#pragma hls node(var) 

– Updated with HLS directive 
#pragma hls single(var) { ... } 

 

 



Control Data Sharing with HLS Scopes 

• Sharing data across an entire node can: 

– degrade locality of MPI programs (due to NUMA 
effects, coherency cache misses, …) 

– induce too much synchronizations if often updated 

 

• HLS scopes allow the user to choose at which 
logical level a variable should be shared 

– Available scopes: node, numa, cache level(#), core 

– Tradeoff memory consumption / runtime overhead 



Example of HLS Usage with HLS Scope 

• One copy per L3 cache with HLS directive 

#pragma hls cache(var) level(3) 

• No NUMA effects, no L3 cache coherency misses, faster 

variable updates 

• Does not guarantee that the variable will be in cache 



HLS Pragmas 

• #pragma hls scope(list_var) [level(l)] 
– variables in list_var are shared among all MPI ranks in the same scope 
– scope=node,numa,cache,... 
– l=1,2,3,... 
– restricted to global variables 

 
• #pragma hls single(list_var) [nowait] 

{ 
   …. /* modify vars in list_var */ 
} 
– code in single region is executed once per scope (e.g. once per numa 

node) 
– variables in list_var must have the same scope 
– implicit barrier before and after the single region (except with nowait) 

 

• #pragma hls barrier(list_var) 
– synchronize MPI ranks at the largest scope in list_var 

 
 
 
 
 



What kind of memory can be shared? 

Global memory 

double table[<big size>]; 

#pragma hls node(table) 

 

void main() { 

     MPI_Init(); 

     #pragma hls single(table) 

     { 

          write_table(); 

     } 

     compute();  /* table is read only */ 

     MPI_Finalize(); 

} 

 

Heap-allocated memory 

double *table; 

#pragma hls node(table) 

 

void main() { 

     MPI_Init(); 

     #pragma hls single(table) 

     { 

          table = malloc(<bigsize>*sizeof(double)); 

          write_table(); 

      } 

      compute();  /* table is read only */ 

      MPI_Finalize(); 

} 

Heap-memory allocations for HLS variables must be protected inside single regions 



Implementation 

• Compiler part in GCC, runtime part in MPC 

 

• MPC: MPI 1.3 and OpenMP 2.5 runtime 
– developped at CEA and Exascale Computing Research 

– thread-based  

⟹ MPI tasks on the same node share the same address 
space 

 

• Similar to the Thread Local Storage (TLS) 
mechanism 

 



Implementation: Compiler Part 

• Patched GCC shipped with MPC release 
– Support of C, C++ and Fortran 

• Parser 
– Recognize and check validity of pragmas 
– Add scope information for each variable 
– Lower barrier and single pragmas 

 
 
 
 

• Code generation 
– emit function calls to the MPC runtime to get the address of a 

variable (identified by a module and an offset) 
 
 
 
 
 

 

int a; 
#pragma hls node(a) 
a = 3; 

int *ptr_a; 
ptr_a = hls_get_addr_node(mod,off); 
*ptr_a = 3; 

#pragma hls single(a) 
{ 
   ... 
} 

if(hls_single(node_scope)){ 
   ... 
   hls_single_done(node_scope); 
} 



Implementation: Runtime Part 
• Using the topology, assign the correct HLS memory when 

creating a MPC thread 

 

 

 

 

 

 

 

• Implement functions single, barrier and get_addr 

void *hls_get_addr_<scope>(size_t module, size_t offset){ 
    // allocate and initialize memory if first use 
    return hls[<scope>][mod] + off; 
} 



Implementation: Linker Part 

• Impact on performances 
– At each use of an HLS variable, a function call is inserted to get 

its address 
 

• This function call can be removed at link time in some cases 
– Example: linking an executable (module 0) 
– Use the segment register gs to store a pointer to the HLS scopes 

array (to be updated at context switch) 
– Replace the function call by some assembly code (2 instructions) 

 
 
 
 
 
 
 

 
 



Experiments on 
Memory Consumption Reduction 

• 3 real applications 
– EulerMHD from CEA 

HLS variable: large table storing gas behavior 
– Gadget-2 from PRACE 

HLS variable: large table storing precomputed coefficients 
for Ewald summation 

– Tachyon from SPEC MPI2007 
HLS variable: scene description and resulting image 

 

• Experimental Setup 
– Comparaison between MPC 2.3.1 with and without HLS 

and OpenMPI 1.4.3 
– Runs on an Infiniband DDR cluster with 2-socket 4-core  

Core2Quad nodes 
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128MB table is shared by 8 cores per node  
Using HLS  ⟹  ≈900MB memory gain 



Gadget-2 
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Tachyon 
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560MB scene is shared by 8 cores per node  
Using HLS  ⟹  ≈ 4GB memory gain 



Experiments on 
 Improved Shared Cache Usage 

• 2 microbenchmarks 
– Matrix multiplication with a common matrix 
– Mesh update with common lookup table 
– These two microbenchmarks are extracted from real applications 
 

• Experimental Setup 
– Comparaison between MPC 2.3.1 with and without HLS and a 

sequential run (ideal case with no data duplication) 
– Runs on a large NUMA node (4 sockets 8 cores Nehalem-EX) 

with a 18MB of shared cache per 8 cores 
 

• Goal: evaluate the speedup obtained by reducing data 
duplication in the shared cache 
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matrix size 
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matrix size 

Matrix Multiplication with Common Matrix 
without common matrix update with common matrix update 

One of the matrix is shared by 8 cores accessing the same L3 cache 
Using HLS  ⟹  up to 1.4x speedup 

Everything is duplicated 
(MPI default) 

Everything is shared 
(Upper bound) 



Mesh Update with Common Lookup Table 

without table update 
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Conclusion 

• HLS is an extension to reduce memory 
consumption of MPI applications 

– Potential memory reduction factor = #cores per node 

– Application porting is easy on known applications 

– The patched GCC compiler and the MPC runtime are 
available in the MPC 2.3.1 release at 
http://mpc.sourceforge.net 

 

• Currently working on a tool to automatically 
detect common variables 

 

 



Thank you for your attention 


