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Hierarchical Local Storage (HLS)

Language extension to reduce memory consumption of
MPI programs

User can flag with pragmas data that will be shared
among MPI tasks located on the same node

— No sharing across different nodes
— no additional communications

— Take advantage of shared memory inside a node
— almost no runtime overhead

Potential memory reduction factor = #cores per node
— From one copy per rank to one copy per node

— HLS memory does not increase with the number of cores
per node



HLS Typical Use Case: Common Variables

e Common variables

— Same value across MPI ranks at each point of the
program

— Value can change over time but the update need
to be logically synchronous for all MPI ranks

— Examples: physics constants, replicated domain, ...
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Formal Definition
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Example of HLS Usage

* Example of one global variable named var
— Duplicated in standard MPI environment

— Shared with HLS directive
#pragma hls node(var)

— Updated with HLS directive
#pragma hls single(var) { ... }
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Control Data Sharing with HLS Scopes

* Sharing data across an entire node can:

— degrade locality of MPI programs (due to NUMA
effects, coherency cache misses, ...)

— induce too much synchronizations if often updated

* HLS scopes allow the user to choose at which
logical level a variable should be shared

— Available scopes: node, numa, cache level(#), core
— Tradeoff memory consumption / runtime overhead



Example of HLS Usage with HLS Scope

One copy per L3 cache with HLS directive
#pragma hls cache(var) level(3)

No NUMA effects, no L3 cache coherency misses, faster
variable updates

Does not guarantee that the variable will be in cache
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HLS Pragmas

» f#ipragma hls scope(list_var) [level(/)]
— variables in list_var are shared among all MPI ranks in the same scope
— scope=node,numa,cache,...
- I=1,2,3,...
— restricted to global variables

e #ipragma hls single(/ist_var) [nowait]

{

.... /* modify vars in list_var */

}

— code in single region is executed once per scope (e.g. once per numa
node)

— variables in list_var must have the same scope
— implicit barrier before and after the single region (except with nowait)

* #pragma hls barrier(/ist _var)
— synchronize MPI ranks at the largest scope in list_var



What kind of memory can be shared?

Global memory Heap-allocated memory
double table[<big size>]; double *table;
##pragma hls node(table) #fpragma hls node(table)
void main() { void main() {

MPI_Init(); MPI_Init();

#pragma hls single(table) #pragma hls single(table)

{ {

write_table(); table = malloc(<bigsize>*sizeof(double));

} write_table();

compute(); /* table is read only */ }

MPI_Finalize(); compute(); /* table is read only */
} MPI_Finalize();

}

Heap-memory allocations for HLS variables must be protected inside single regions



Implementation

 Compiler part in GCC, runtime part in MPC

* MPC: MPI 1.3 and OpenMP 2.5 runtime

— developped at CEA and Exascale Computing Research
— thread-based

—> MPI tasks on the same node share the same address
space

e Similar to the Thread Local Storage (TLS)
mechanism



Implementation: Compiler Part

e Patched GCC shipped with MPC release
— Support of C, C++ and Fortran

* Parser
— Recognize and check validity of pragmas
— Add scope information for each variable
— Lower barrier and single pragmas

#pragma hls single(a) 1f(hls_single(node_scope)){
{

. m— hls_single_done(node_scope);
} }

 Code generation

— emit function calls to the MPC runtime to get the address of a
variable (identified by a module and an offset)

int a; int *ptr_a;
#pragma hls node(a) - ptr_a = hls_get_addr_node(mod,off);
a = 3; *ptr_a = 3;



Implementation: Runtime Part

* Using the topology, assign the correct HLS memory when
creating a MPC thread
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* Implement functions single, barrier and get_addr

void *hls_get_addr_<scope>(size_t module, size_t offset){
// allocate and initialize memory if first use
return hls[<scope>][mod] + off;



Implementation: Linker Part

* |Impact on performances

— At each use of an HLS variable, a function call is inserted to get
its address

 This function call can be removed at link time in some cases
— Example: linking an executable (module 0)

— Use the segment register gs to store a pointer to the HLS scopes
array (to be updated at context switch)

— Replace the function call by some assembly code (2 instructions)
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Experiments on
Memory Consumption Reduction

* 3 real applications

— EulerMHD from CEA
HLS variable: large table storing gas behavior

— Gadget-2 from PRACE
HLS variable: large table storing precomputed coefficients
for Ewald summation

— Tachyon from SPEC MP12007
HLS variable: scene description and resulting image

* Experimental Setup

— Comparaison between MPC 2.3.1 with and without HLS
and OpenMPI 1.4.3

— Runs on an Infiniband DDR cluster with 2-socket 4-core
Core2Quad nodes
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Experiments on
Improved Shared Cache Usage

* 2 microbenchmarks
— Matrix multiplication with a common matrix
— Mesh update with common lookup table
— These two microbenchmarks are extracted from real applications

* Experimental Setup

— Comparaison between MPC 2.3.1 with and without HLS and a
sequential run (ideal case with no data duplication)

— Runs on a large NUMA node (4 sockets 8 cores Nehalem-EX)
with a 18 MIB of shared cache per 8 cores

* Goal: evaluate the speedup obtained by reducing data
duplication in the shared cache



Matrix Multiplication with Common Matrix
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One of the matrix is shared by 8 cores accessing the same L3 cache
Using HLS = up to 1.4x speedup



Cycles per element

Mesh Update with Common Lookup Table
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The table is shared by 8 cores accessing the same L3 cache

Using HLS = up to 3x speedup



Conclusion

 HLS is an extension to reduce memory
consumption of MPI applications
— Potential memory reduction factor = #cores per node
— Application porting is easy on known applications

— The patched GCC compiler and the MPC runtime are
available in the MPC 2.3.1 release at
http://mpc.sourceforge.net

* Currently working on a tool to automatically
detect common variables
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