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Abstract—With the advent of the multicore era, the number
of cores per computational node is increasing faster than the
amount of memory. This diminishing memory to core ratio
sometimes even prevents pure MPI applications to exploit all
cores available on each node. A possible solution is to add a
shared memory programming model like OpenMP inside the
application to share variables between OpenMP threads that
would otherwise be duplicated for each MPI task. Going to
hybrid can thus improve the overall memory consumption,
but may be a tedious task on large applications.

To allow this data sharing without the overhead of mixing
multiple programming models, we propose an MPI extension
called Hierarchical Local Storage (HLS) that allows application
developers to share common variables between MPI tasks
on the same node. HLS is designed as a set of directives
that preserve the original parallel semantics of the code and
are compatible with C, C++ and Fortran languages and the
OpenMP programming model. This new mechanism is imple-
mented inside a state-of-the-art MPI 1.3 compliant runtime
called MPC. Experiments show that the HLS mechanism can
effectively reduce memory consumption of HPC applications.
Moreover, by reducing data duplication in the shared cache
of modern multicores, the HLS mechanism can also improve
performances of memory intensive applications.

Keywords-High Performance Computing, Parallel Program-
ming Model, Memory Consumption

I. INTRODUCTION

With the advent of the multicore era, the number of cores

per processor and per computational node is increasing.

While the total amount of memory per node becomes larger,

the memory to core ratio is decreasing. This trend has

an impact on the parallel programming models used to

exploit parallelism inside scientific applications for High

Performance Computing (HPC). Many large-scale scientific

applications use MPI as parallel programming model to

exploit the performance of a whole cluster, but one drawback

of this model is the duplication of data that could be

semantically shared among multiple MPI tasks. Indeed, this

diminishing memory to core ratio sometimes even prevents

pure MPI applications to exploit all cores of each node.

One solution to tackle this issue is to add a thread-based

programming model like OpenMP inside the application to

benefit from shared memory and therefore reduce the overall

memory consumption [1], [2]. But going to hybrid may

be a tedious task on large applications. The programmer

needs to write and to manage two levels of parallelism: one

for MPI and one for OpenMP. Furthermore, the Amdahl

effect may be large if one wants to dramatically reduce the

memory footprint. To minimize data duplication, only one

MPI task per node should be created with one OpenMP

thread per core on the node. Portions of the code that are not

in OpenMP parallel regions are only executed by one core

which reduces the potential speedup. This is especially true

for MPI communications which are often outside OpenMP

parallel regions (called Master-only [1]). The adoption of the

Master-only method can be explained by its ease of use and

the lack of efficient support of the MPI_THREAD_MULTIPLE

model in MPI runtime libraries. However this method limits

the attainable speedup and may prevent the code to fully

utilize the network bandwidth of the machine. To allow

this data sharing without the overhead of mixing multiple

programming models, we propose an MPI extension called

Hierarchical Local Storage (HLS).

The HLS extension aims at reducing the memory footprint

by designing a mechanism to share common variables of

large-scale scientific applications. To manage the potential

performance loss due to a diminished locality when sharing

a common variable, one can limit the scope of the MPI

tasks sharing the same copy of the data to an element of

the memory hierarchy: e.g., NUMA or last level of cache

(figure I). When used inside a pure MPI application, the HLS

mechanism efficiently reduces the memory consumption

without changing the original code performance whereas

going to hybrid with the common master-only method

might impair performances. Moreover, when used inside a

hybrid MPI/OpenMP application, it allows the programmer

to decouple data sharing from the programming-model de-

composition, i.e. the number of MPI tasks per node and

the number of OpenMP threads per MPI task. The HLS

extension allows the programmer to have an HLS variable

with scope node while its hybrid code has one MPI task

per socket or an HLS variable with scope NUMA while its

hybrid code has only one MPI task per node.
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(b) HLS variable with cache L3 scope

Figure 1. Two different scopes for HLS variables. The node scope suppresses data duplication on the node but may degrade cache performance if the
variable is often modified. The cache L3 scope only reduces data duplication but keep original cache performance.

HLS is a set of directives to mark global variables of

the code that can be shared i.e., that may use the same

memory location for several MPI tasks. These directives

keep the original parallel semantics of the code and ignoring

them still produces a correct code. They are compatible with

the C, C++ and Fortran languages and with the OpenMP

programming model. Because sharing new memory cells

adds concurrency, we propose some extra directives to

synchronize accesses to these shared variables. We imple-

mented this new mechanism inside a state-of-the-art MPI

1.3 compliant runtime called MPC [3], [4]: the directives are

processed by a modified GCC compiler embedded inside the

MPC distribution (handling C, C++ and Fortran languages).

This compiler generates calls to the runtime library to handle

the data sharing. Experiments show that the HLS mechanism

can effectively reduce memory consumption of HPC appli-

cations. Moreover, by reducing data duplication in the shared

cache of modern multicores, the HLS mechanism can also

improve performances of memory intensive applications.

The paper is organized as follow. We start by introducing

the concept of HLS variables and the associated directives

in section II. Then we provide a formal definition of which

variables can be made HLS based on the happen-before rela-

tionship in section III. Section IV details the implementation.

Experimental results based on micro benchmarks and three

real applications are given in section V. Finally, we present

related works in section VI and conclude in section VII.

II. INFORMAL DEFINITION AND DIRECTIVES

A. Definition

HLS is a mechanism that allows for merging variables

sharing the same memory behavior, i.e. holding the same

value according to the original parallel semantics of the

application. Basically, parameters from the input set mainly

read and barely written are good candidates for HLS.

One example are physics constants used inside numerical-

simulation applications. HLS is proposed as an extension

to the C, C++ or Fortran source code adding information

about the data visibility. The application developer gives the

information to the compiler/runtime framework about which

variables can be shared by every MPI task. These variables

should have the following features:

• Global variables

These data have to be global, whatever the way the

language exposes global variables. For example, in C

or C++, such variables will have to be outside any

functions or to have the static qualifier. In Fortran,

global variables include common variables, variables

with the save qualifier and module variables.

• Same behavior across tasks

It is possible to keep the parallel semantics if the

variables to use HLS can be shared by every instruction

flow. It means that all MPI tasks of the program

should access the same value if these accesses were

emitted at the same timestamp. A formal definition

will be given in section III. Furthermore, to avoid

adding too much synchronizations which could reduce

performances, these variables should be mainly read

and hardly written. However this is not a requirement

for the correctness of the resulting code.

If such variables respect the previous constraints, they can

be shared across MPI tasks on the same node which reduces

memory consumption without adding too much performance

overhead (this overhead will be quantified in section V).

Data placement is crucial to reach high performance on

a scientific application. Sometimes having one copy of a

variable per instruction flow (thread, process, MPI task,

OpenMP thread, . . . ) is one way to improve the locality of

memory accesses to this variable. For example, a variable

whose value is often modified benefits from being private

to each instruction flow since coherency traffic is removed

and the variable can stay in the caches. Another example

is due to non uniform memory access (NUMA) effects. If

a variable is private to each instruction flow, it can benefit

from the first touch policy and be allocated on the closest

NUMA node. Latency and bandwidth when accessing this

variable is improved since it always comes from the closest

NUMA node.

The HLS mechanism proposed in this article reduces data

duplication but may degrade performances as a side effect

since variables are no longer private to an instruction flow.

To avoid reducing data locality while still keeping memory

consumption under control, an HLS variable can be declared

with a scope corresponding to the memory hierarchy of the



int a,b ;

#pragma hls node(a)

#pragma hls numa(b)

void f() {

...

#pragma hls single(a)

{

// executed by one instruction flow per node

a = 4 ;

}

...

#pragma hls single(b)

{

// executed by one instruction flow per NUMA node

b = 2 ;

}

...

}

Listing 1. Modifying HLS variables with the pragma single

platform (figure I): e.g. node, NUMA, last level of cache,

etc. An HLS variable will be shared only by the instruction

flows sharing the specified level of the memory hierarchy.

The application developer can thus obtain the right tradeoff

between memory consumption and performance.

B. Directives

HLS is designed as directive extensions for C, C++ and

Fortran programming languages (#pragma in C and C++

or lines starting with !$ in Fortran). This solution keeps

the semantics of the original parallel code. Thus if the

directives are not parsed and recognized by the compiler,

the application behaves as if there were no extensions at all.

The HLS mechanism is divided into two directive cate-

gories. The first one marks a variable as HLS and specifies

the scope of this storage. The second category handles the

new concurrent accesses.

1) Changing Data Visibility: These new directives should

be composed of 2 elements: (i) the data scope and (ii) the

variables whose scopes have to be updated. An optional third

argument is related to the level of the corresponding scope

(e.g., the cache level if the target processor has multiple

level caches). To register variables as HLS, we adopt a

syntax close to the OpenMP attribute threadprivate [5].

The syntax is as follows:

#pragma hls scope(var1, var2, ..., varN) [level(L)]

The scope attribute represents the target data scope and may

have the following values:

• node

The variables will be shared by every MPI task running

on the same node.

• numa

There will be one copy of every variable per NUMA

node. On current Xeon architecture (Nehalem/West-

mere), one NUMA node is actually a socket. This scope

accepts the level clause including the level of the

NUMA node where this data should be duplicated.

int a,b ;

#pragma hls node(a)

#pragma hls numa(b)

void f() {

...

#pragma hls barrier(a,b)

... // no access to a and b

#pragma hls single(a) nowait

{

// executed by one instruction flow per node

// no access to b

a = 4 ;

}

... // no access to a and b

#pragma hls single(b) nowait

{

// executed by one instruction flow per NUMA node

// no access to a

b = 2 ;

}

... // no access to a and b

#pragma hls barrier(a,b)

...

}

Listing 2. Modifying HLS variables with the pragma single nowait

• cache

One copy per cache. This scope accepts the level

clause (from 1 to the last level of cache (llc)).

• core

One copy per physical core. Hyperthreaded processors

benefit from this level because there will be one copy of

each variable per physical core, allowing sharing among

hyperthreads scheduled on the same core.

The second clause needed for this extension is a list of

variables. Every element of this list should be an already

defined variable but it should not have already been accessed

(read or write). These constraints are exactly the one of the

threadprivate directive.

2) Handling Concurrent Accesses: Adapting the data

visibility has a large impact on the data concurrency. Indeed,

with the scope node, a variable will be shared by every

MPI task located on the same computational node. It means

that the write accesses have to be handled to avoid data

races. For this purpose, we propose the following new

directive (inspired from the single workshare construct in

OpenMP [5]):

#pragma hls single(var1, var2, ..., varN) [nowait]

This directive accepts a block of instructions: these instruc-

tions will be executed only by one MPI task depending

on the data visibility (HLS scope) of the variables located

inside the argument part. Notice that these variables have

to be marked as HLS and need to have the same HLS

scope. Otherwise, the compiler will generate an error. This

directive implies an implicit barrier at the beginning and

at the end, blocking every MPI task belonging to the

corresponding scope. Inspired from the OpenMP standard,

the nowait keyword allows the MPI tasks to skip the region



encapsulated by the pragma single instead of waiting for the

entered MPI task to finish the execution of the block. This

keyword removes the implicit two barriers at the beginning

and at the end of the region.

To complete this directive set, we propose an explicit

barrier:

#pragma hls barrier(var1, var2, ..., varN)

It synchronizes every MPI task belonging to the largest HLS

scope of the variables in the list (node is the largest scope

and core the smallest).

Examples in listings 1 and 2 illustrate how to use

the pragmas single and barrier. The write operations

on the two HLS variables a and b are protected by a

pragma hls single so that the common copy is written

only once. In listing 1, synchronizations between the ex-

ecution flows are ensured by the single whereas in list-

ing 2, synchronizations are ensured by two explicit barriers

(#pragma hls barrier) before the first and after the last

single. This reduces the number of synchronizations by a

factor of 2. Notice that the two versions are not equivalent.

In the second version with explicit barriers, we cannot use

the value of variable a outside of the region encapsulated by

the #pragma hls single(a) and the same for variable b as

these variables may not have been updated yet.

C. Advantages/Restrictions

There are two main advantages for this extension.

1) Memory gain

Moving upwards the visibility of a variable remove

data duplication. This leads to a memory gain of a

factor of up to the number of cores on a computational

node.

2) Cache effects

Instead of accessing multiple memory locations hold-

ing the same value, every MPI task accesses the

same memory block and share it inside shared caches

(e.g., L3 cache on Nehalem/Westmere architecture).

This may lead to a performance improvement if those

variables are stressed. For example, one access by a

MPI task may benefit another MPI task if the first one

retrieves the correct cache lines to the shared cache.

It should be noted that this extension does not violate

the original semantics i.e., a compiler unaware of these

directives can ignore them and should generate a correct

code if the program was correct without them.

The HLS features have the following restrictions.

• Only global variables can have an HLS scope. However

an HLS global variable can point to heap-allocated

memory with a proper use of the single directive

around memory allocation/deallocation (see listing 4

and section IV-C).

#define RES (1024)

double table[RES];

#pragma hls node(table)

// there is only one copy of the

// array table per node

int main( int argc, char **argv ){

double *mesh;

unsigned int X, Y, Z, T, x, y, z, t;

int rank, size;

X = atoi( argv[1] ); Y = atoi( argv[2] );

Z = atoi( argv[3] ); T = atoi( argv[4] );

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

// allocate memory and initialize

// with random real in [0,1]

init_mesh( &mesh, X, Y, Z );

#pragma hls single(table)

{

// load table from file

// this function is only executed

// by one MPI task per node

load_table();

}

for( t = 0; t < T; ++t ){

MPI_Barrier( MPI_COMM_WORLD );

for( x = 0; x < X; ++x )

for( y = 0; y < Y; ++y )

for( z = 0; z < Z; ++z )

compute_cell( &mesh[x][y][z] );

}

free( mesh );

MPI_Finalize();

}

Listing 3. Physical constants

• The main HLS directive can be put where an OpenMP

threadprivate directive could be added (between vari-

able definition and declaration, type has to be complete,

etc.) The HLS single directive can be put where an

OpenMP single directive could be added (where a

statement could fit according to the language standard).

For more details, please see the OpenMP reference

manual [5].

• All or none MPI tasks should execute a single or barrier

directive. This is similar to MPI and OpenMP collective

operations.

D. Examples

We highlight how to use the HLS pragmas through two

examples: one involving physics constants and the other

involving matrix multiplications with a common matrix.

These examples are inspired from two real applications.

1) Mesh update with a common table: This example

illustrates how the HLS mechanism can reduce memory

consumption by sharing the same copy of a variable between

multiple MPI tasks running on a common node.



double *A, *B, *C;

#pragma hls node(B)

int main( int argc, char **argv ){

int rank, size, t, N, K, M, T;

N = atoi( argv[1] ); M = atoi( argv[2] );

K = atoi( argv[3] ); T = atoi( argv[4] );

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

MPI_Comm_size( MPI_COMM_WORLD, &size );

// allocate memory and initialize matrices A, B

// matrices A and C are distinct for each MPI task

// whereas matrix B is common to all MPI tasks and

// thus initialized only by one task per node

init_matrix( &A, N * K );

init_matrix( &C, N * M );

#pragma hls single(B)

{

init_matrix( &B, K * M );

}

MPI_Barrier( MPI_COMM_WORLD );

for( t = 0; t < T; ++t ){

cblas_dgemm( CblasRowMajor, CblasNoTrans,

CblasNoTrans, N, M, K,

1.0, A, K, B, M, 1.0, C, N );

MPI_Barrier( MPI_COMM_WORLD );

}

free( A ); free( C );

#pragma hls single(B)

{

free( B );

}

MPI_Finalize();

}

Listing 4. Matrix multiplications with a common matrix

A good candidate to become an HLS variable is an array

storing physical constants. These constants are common

to all MPI tasks of the application and are not modified

throughout the run. These tables can be as big as several

hundreds megabytes and having only one copy per node

significantly reduces memory consumption.

The code of listing 3 declares a global array table

with the #pragma hls node (lines 2-3). This array is first

initialized from a file by only one task per node thanks to

the #pragma hls single (lines 23-29). It is then used by

all MPI tasks to update a 3D mesh for T time steps (lines

31-37).

2) Matrix multiplication with a common matrix: This

example illustrates how the HLS mechanism can improve

performance by reducing shared cache misses. In this exam-

ple, at each time step, every MPI task updates its matrix by

performing a matrix multiplication with a common matrix.

Sharing the same copy of this common matrix saves space

in the last level of cache common to all cores of the same

processor. Depending on their size, all matrices (the common

one plus the private ones) may now all fit in the shared cache

and be reused from one time step to the next without any

additional cache misses.

The code of listing 4 declares 3 matrices A,B and C.

Matrix B is common to all MPI tasks and thus declared with

the HLS scope node. Each MPI task repetitively performs

the operation C ← A × B + C. The allocation and

deallocation of memory for matrix B is encapsulated in a

#pragma hls single so that it is processed only by one

MPI task per node.

III. FORMAL DEFINITION

A. Happens-before Relationship

To give a formal definition of which variables are eligible

to use HLS, we first need to introduce the happens-before

relationship ≺ between two events a and b of a parallel

program [6]. We say that a ≺ b if a is executed before b
in all schedules compatible with the partial order defined

by the synchronizations of the parallel program. If neither

a ≺ b nor b ≺ a, we say that a happens in parallel with b,
a ‖ b.

// MPI task of rank 0

a();

MPI_Send( ..., 1, ...);

c();

// MPI task of rank 1

b();

MPI_Recv( ..., 0, ...);

d();

For example, in the MPI program above, the function call

a in the MPI task of rank 0 happens before the function call d

in the MPI task of rank 1 because a message is sent after the

execution of a on rank 0 and received before the execution

of d on rank 1. Similarly, the function call c in the MPI task

of rank 0 happens in parallel with the function calls b and

d in the MPI task of rank 1 because the MPI program does

not add any synchronization between these two events. In a

real execution, c may be executed before, at the same time

or after b. We can deduce two more precedence relations,

a ≺ c and b ≺ d, as these function calls are executed by

the same MPI task in the sequential order defined by the

program.

B. HLS Variables without Additional Synchronizations

We now formally define which variables are eligible to use

HLS. We first define when a read to a variable is coherent.

If all reads of all MPI tasks on a variable are coherent then

this variable is eligible to use HLS.

We consider a read operation r that returns the value

v(r). This read operation is coherent if the two following

conditions on write operations w to the same variable are

satisfied.

1) All write operations to the same variable that happens

in parallel with r write the same value as r, i.e.

∀w w ‖ r =⇒ v(w) = v(r).

2) All write operations w to the same variable that

happens before r and for which there is no other write



operation to the same variable in between write the

same value as r, i.e.

∀w (w ≺ r ∧ ∄w′ w ≺ w′ ≺ r) =⇒ v(w) = v(r).

It is easy to see that if one of these two conditions is not

satisfied, there exists a schedule compatible with the partial

order defined by the synchronizations of the MPI program

in which the delinquent write happens just before the read

operation that will thus return a wrong value.

Variables satisfying the conditions 1 and 2 can be shared

between MPI tasks without adding any synchronization in

the MPI program. If these conditions are not satisfied, it

may still be possible for a variable to use HLS by adding

synchronizations in the program.

C. HLS Variables with Additional Synchronizations

A necessary condition for a variable to be eligible to use

HLS is that

3) at least one write operation considered in conditions

1 and 2 writes the same value as the read operation,

i.e.

∃w {w ‖ r ∨ (w ≺ r ∧ ∄w′ w ≺ w′ ≺ r)}∧v(w) = v(r).

If this condition is not satisfied, at least one of those writes

will happen just before the read and the resulting value will

be incorrect. In this case, it may be possible to make the

variable HLS if one can add synchronizations such that one

of the writes that do not satisfy condition 3 happens before

the read operation and no other writes on the same variable

happen in between. If these new synchronizations conflict

with existing synchronizations, i.e. adding them would create

a cycle in the precedence graph defined by the happens-

before relationship, the variable cannot be made HLS.

We do not provide a generic way to add such synchro-

nizations but the pragma single allows to make a variable

eligible to use HLS in some specific cases that happens

often in MPI programs due to their SPMD nature. If each

MPI task executes the same sequence of write operations

to a variable, i.e. the same number of write operations with

values in the same order, we can encapsulate each of those

write operations with single pragmas. The single pragma

behaves as a barrier in term of synchronizations so adding

it may conflict with existing synchronizations. In the other

case, the variable is eligible to use HLS. Indeed, any read

operation on this variable will be between two pragmas

single where the value of the variable is coherent. The

only preceding write operation, for condition 2, is the one

encapsulated in the pragma single and has the same value

than the read operation. For condition 1, there is no write

operations that happens in parallel as the following write

operation is in the next single and thus a barrier is placed

between the read and the write operation.

IV. IMPLEMENTATION

The HLS mechanism requires a compiler/runtime coop-

eration. The compiler part of the implementation has been

done in the GCC compiler and supports the languages C,

C++ and Fortran. A new option, -fhls, has been added

to activate the new HLS directives. The compiler detects

and parses the pragmas, modifies the code and the visibility

of the variables accordingly, and generates calls to runtime

functions.

The runtime part of the implementation has been done in

MPC, a state of the art MPI 1.3 and OpenMP 2.5 unified

runtime [3], [4]. An interesting feature of MPC is that

MPI tasks are executed inside user-level threads instead

of processes unlike classical MPI libraries like Open MPI

or MPICH2. Thus, in MPC, MPI tasks on the same node

share by default the same address space. Therefore the

HLS functionalities are easier to implement. However, these

functionalities are still compatible with standard process-

based MPIs (see section IV-C).

A. Data Visibility

To handle the data visibility of HLS variables, the parsing

and the code generation of the compiler need to be adapted.

In the parsing step, when an HLS pragma is encountered,

the compiler checks that the corresponding variable is global

and has not been used yet and then flags the variable like

a thread local storage (TLS) variable but with a TLS type

corresponding to the desired scope: node, numa, etc.

void *hls_get_addr_node(size_t mod, size_t off);

void *hls_get_addr_numa(size_t mod, size_t off);

In the code generation step, when an HLS variable is used,

a function call according to the scope is inserted to get the

address of the variable. A variable is identified by the two

arguments: the module which corresponds to the program or

the library where the variable is declared and its offset in

the memory area. The code is transformed as follows.

int a;

#pragma hls node(a)

a = 3;
⇒

int *ptr_a;

ptr_a = hls_get_addr_node(0,0);

*ptr_a = 3;

The linker is then responsible for filling the right module

id and the offset as arguments.

The MPC runtime needs to allocate memory for the

HLS variables and to implement the hls_get_addr_<scope>

functions. Each MPI task maintains a private array of

pointers, one for each scope, pointing to an array storing

information on the currently loaded modules (figure 2). This

array is handled like regular TLS variables [7]. Two MPI

tasks on the same scope, e.g. two MPI tasks on the same

node or two MPI tasks on the same NUMA node, point to

the same module array and thus share variables with this

scope. When a MPI task wants to migrate, it first needs to

check that it has encountered the same number of single

and barrier directives as the destination. If it is the case, the



Node Numa Core Node Numa CoreScopes

MPI Rank 0

Modules

Offset 2

Memory

MPI Rank 1

Offset 4

Offset 3Offset 1

Node NUMA Node 1NUMA Node 0

Figure 2. Memory layout of HLS structures. Each MPI task has its own array of scopes. For the scope node, two MPI tasks on the same node share
the structures and thus share variables with scope node. If they are on two different NUMA nodes, each has its own structure for the numa scope with
different variables.

task can migrate and then use the destination HLS variables

by updating its private array of points. HLS variables are

linked to the architecture, therefore they do not move. In

MPC, each MPI task is pinned to a core by default. A task

can only migrate is specified by the application programmer

using the call MPC_Move [3].

Memory for a module is allocated and initialized at the

first call to the get address function hls_get_addr_<scope>.

It is then straightforward to get the address of a variable

void *hls_get_addr_<scope>(size_t mod, size_t off){

// allocate and initialize memory if first use

return hls[<scope>][mod] + off;

}

To handle concurrency when allocating and initializing

memory for a module or adding a new module in the module

array, a lock is associated to each module and each module

array.

B. Synchronizations

The HLS directives specify tthreee kinds of synchroniza-

tions: barrier, single and single nowait.

For the pragma barrier, the compiler parses all variables

in the list, checks if all of them are HLS variables and in

this case generates a function call to the runtime with, as

argument, the largest scope of all variables in the list. The

core scope is the smallest and the node scope the largest. For

example, if the list contains a variable with scope node, the

barrier will synchronize all MPI tasks running on the same

node. For all scopes except numa and node we implement

a simple flat algorithm with a counter and a lock. For the

larger scopes, we implement a shared-cache aware barrier:

all MPI tasks in the same llc scope synchronize first and

only one of them goes to the next scope. This way, locks and

counters stay in the shared cache and all synchronizations

at the llc scope happen in parallel.

The pragma single behaves as if there were a barrier be-

fore and after the execution of the encapsulated code block.

To reduce the overhead of this pragma, it is implemented in

a single modified barrier. The barrier algorithm is similar to

the pragma barrier except the last MPI task entering the

barrier executes the code block before releasing the others

tasks waiting on the barrier. To do so, we need to modify

the code at compile time. We add an if condition around the

code block driven by a call to the runtime implementing the

first part of the barrier hls_single(). Every MPI task waits

inside this function except for the last one for which the

function returns true. This last task executes the code block

and then releases the other MPI tasks thanks to a call to the

function hls_single_done() added at the end of the code

block. Then hls_single() returns false and the other MPI

tasks do not execute the code block. The following example

illustrates how the code is modified.

int a;

#pragma hls node(a)

#pragma hls single(a)

{

f(&a);

}

⇒

if(hls_single(node)){

f(&a);

hls_single_done(node);

}

The pragma single nowait is handled similarly except

there is no need for a barrier before or after. The code

block is encapsulated in an if condition driven by a call

to the runtime that returns true only for one task. In this

case, it is the first MPI task entering the single nowait

that executes it. The following example illustrates how the

code is modified.

int a;

#pragma hls node(a)

#pragma hls

single(a) nowait

{

f(&a);

}

⇒
if(hls_single_nowait(node)){

f(&a);

}

To ensure that the code inside the pragma single nowait

is executed only once, a counter is associated to each scope.

Each MPI task maintains counters equal to the number of

such pragmas encountered for each scope. When entering



a single nowait, a MPI task increments its counter and

if this counter is ahead of the counter associated with the

scope, the scope counter is incremented too and the MPI

task executes the code encapsulated in the single.

C. Implementation Details for Process-Based MPIs

In process-based MPI implementations, MPI tasks are

UNIX processes and have different address spaces. To be

able to share variables and use shared-memory synchroniza-

tion algorithms, all HLS variables and the corresponding

structures must be allocated in a memory segment shared

by all processes of the same node. Additionally this shared

memory segment should start with the same virtual address

for all processes on the node. This can be achieved using the

mmap primitive which allows to allocate memory at a spec-

ified virtual address. This technique is used to implement

the isomalloc of PM2 [8]. The rest of the implementation

is similar to the case of thread-based MPIs except for the

handling of heap-allocated memory. When a HLS variable is

holding a pointer to heap allocated memory like for example

the code of listing 4, one must ensure that this memory has

been allocated in the shared memory segment. A possible

solution is to overload dynamic memory allocations (for

example with the LD_PRELOAD mechanism) and allocate

memory in the shared memory segment when the call is

inside a single directive.

V. EXPERIMENTAL RESULTS

The experimental results are split into two parts. In the

first part, we show that, although performance improvement

is not the main focus of the HLS mechanism, there is still

some gain due to a reduced consumption of shared cache

space. In the second part, we present the main contribution

of the HLS mechanism: memory consumption reduction.

A. Cache Footprint Reduction

Modern multicore processors often have a last level cache

that is shared among all the cores. In a pure MPI execution

with one MPI task per core, MPI tasks compete against

each other for shared cache space. The fact that the cache is

shared does not improve performance as MPI tasks do not

share data. The HLS mechanism can lower pressure on the

shared cache space by reducing the number of copies of the

same data from one per core to one per shared cache. With

the growing number of cores per processor, this can reduce

the shared cache consumption of HLS data by a factor of 8
or more.

To highlight this phenomenon, we used a node with 4
Nehalem-EX processors (Intel Xeon X7550 @2.00Ghz).

Each processor have 8 cores sharing a last level cache

of 18MB. Note that, on this node, there is one proces-

sor per NUMA node thus the hls numa scope and the

hls cache level(llc) scope are identical. In the following,

we used the scopes hls node and hls numa.

Parallel efficiency
without update with update

mesh size small medium large small medium large

without HLS 37% 39% 40% 30% 37% 40%
HLS node 94% 93% 99% 65% 87% 95%
HLS numa 94% 93% 99% 88% 92% 97%

Table I
PERFORMANCE IMPROVEMENT DUE TO CACHE FOOTPRINT REDUCTION

ON THE MESH UPDATE BENCHMARK ON 4 NEHALEM-EX PROCESSORS.

In those experiments, we use the two examples presented

in section II-D: mesh update with a common table and

matrix multiplication with a common matrix.

1) Mesh update benchmark: In this benchmark (cf. sec-

tion II-D1) each MPI task owns a 3D sub-domain of variable

size: 50×50×50 for the small setting, 100×100×100 for the

medium setting and 200 × 200 × 200 for the large setting.

A mesh cell is represented by a floating point in double

precision resulting in a sub-domain size of roughly 1MB,

8MB and 60MB respectively. At each time step, each mesh

cell is updated using a value interpolated in a common 2D

table of size 1000 × 1000. The table has a size of roughly

8MB. To mimic an irregular access pattern, this table is

accessed uniformly at random.

In a regular MPI program, this table will be duplicated 8
times per processor and thus all these copies cannot fit in

the 18MB shared cache. In the HLS version, this table will

not be duplicated and thus can fit in the shared cache. If the

table stays in the last level of cache between time iterations,

access times to the table should be reduced except for the

first iteration.

To emphasize the difference between the scopes node and

numa, two versions of the benchmark have been developed.

In the no-update version, the values in the table are initial-

ized once and do not change over time. In the update version,

the table is modified at each time step. This modification

is encapsulated in a pragma hls single. In the no-update

version, we do not expect to see a big difference between

scopes node and numa since the table should stay in the

shared cache between iterations. In the update version the

table is modified between each time step and thus with the

node scope the table will be invalidated in all shared caches

except the one of the core doing the modification. With the

numa scope, one core per shared cache is modifying the table

and thus all copies stay valid between time iterations.

Table I compares the parallel efficiency (the ratio between

the speedup and the ideal speedup) of the regular MPI

program (without HLS), the MPI program with HLS scope

node and the MPI program with HLS scope numa. This is a

weak scaling study, the sequential program only computes

one sub-domain. The parallel efficiency is computed as

tpar/tseq. We expect the efficiency to be lower than 1 since

the sequential program can fully utilize the last level of cache

and the memory bandwidth of the processor whereas the

parallel program shares these resources between 8 cores.
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Figure 3. Performance improvement due to cache footprint reduction on the matrix multiplication benchmark on 4 Nehalem-EX.

Informally, an efficiency close to 1 indicates that there is

no contention on the shared resources. The regular MPI

program without HLS has a relatively low efficiency be-

tween 30 − 40% since its working set cannot fit in the

last level of cache due to the duplication of the common

table. The two HLS versions greatly improve the parallel

efficiency of the MPI program with efficiencies close to

100%. As expected, the numa scope behaves better than

the node scope on the update version which confirms the

interest of having different scopes. The efficiency of the

node scope on the small setting of the update version is

lower since the working set of the sequential program can

fit entirely in cache in this case (less than 9MB). The cache

misses induced by the invalidation of the table during its

update significantly reduce the performances.

2) Matrix multiplication benchmark: In this benchmark,

each MPI task repetitively performs a matrix multiplication

C ← A × B + C where the matrix B is common to

all MPI tasks. Similarly to the mesh update benchmark,

we expect to see a performance gain by using the HLS

mechanism on the common matrix thanks to a reduced

pressure on the shared resources. Again, two versions have

been implemented. In the update version, the matrix B is

modified after each time step. In contrary to the previous

benchmark, the access pattern to the HLS variable is regular.

We use the MKL implementation of the BLAS to compute

the matrix multiplication.

Figure 3 compares the performance of the sequential

program, the regular MPI program (without HLS), the MPI

program with HLS scope node and the MPI program with

HLS scope numa. This is a weak scaling study, the sequen-

tial program computes the same matrix multiplication as one

MPI task of the parallel program. Since the sequential pro-

gram does not share the last level of cache and the memory

bandwidth, it shows the best performances. For both versions

(no-update and update), the performance of the regular MPI

program is significantly lower than the sequential program

except for very small matrix sizes where all matrices A, B
and C fit in cache simultaneously. The two HLS programs

show performances closer to the sequential program. For

small matrix sizes, the HLS programs and the sequential

program have the same performances. Performances start to

fall off later for the HLS program than the regular MPI

program since the smaller working set (matrix B is not

duplicated) of the HLS program can fit in cache longer.

The gap between the regular MPI program and the HLS

programs is maximal when the regular MPI program starts

to go off cache and the gap reduces with growing matrix

sizes. Interestingly, even for working sets significantly larger

than the last level of cache, HLS programs still have a

performance improvement. We checked this phenomenon

for matrices up to size 4000. We conjecture that the HLS

programs are less impacted by the memory bandwidth since

MPI tasks access the same part of matrix B approximately

at the same time and that the shared cache can capture this

inter MPI tasks locality even for working sets larger than

the cache. For the update version, the HLS scope numa

program performs better than the HLS scope node for small

matrix sizes when the matrix B can stay in cache across

time iterations. Indeed, in the HLS scope node program, the

update of matrix B invalidates the cached version loaded by

the previous time iteration.

Since these two benchmarks are inspired from two real

applications, we also measured the performance gains of

making HLS these common variables in the original appli-

cations. However, the improvements were slim since it only

affects a small part of all operations of a time iteration.

B. Memory Footprint Reduction

In this section, we present the main purpose of the HLS

mechanism: memory consumption reduction. We use three

applications: EulerMHD [9], Gadget-2 [10], which has been

selected as a PRACE application [11] and Tachyon [12],

which is part of the SPEC MPI2007 benchmark. These

applications run on an Infiniband cluster with up to 92 nodes

equipped with 2 Intel Core2 quadcore (Intel Xeon E5462

@2.80Ghz) for a total of 8 cores per node. We can thus

expect a memory reduction of a factor 8 for HLS scope



# cores MPI time (s) avg. mem. (MB) max. mem. (MB)

MPC HLS 145 651 672
256 MPC 146 1570 1590

Open MPI 135 1715 1786

MPC HLS 73 490 550
512 MPC 73 1417 1466

Open MPI 68 1573 1732

MPC HLS 51 455 531
736 MPC 51 1375 1448

Open MPI 47 1574 1796

Table II
EXECUTIOIN TIME AND MEMORY CONSUMPTION FOR EULERMHD

# cores MPI time (s) avg. mem. (MB) max. mem. (MB)

MPC HLS 1540 703 747
256 MPC 1540 938 988

Open MPI 1438 1731 1742

Table III
EXECUTION TIME AND MEMORY CONSUMPTION FOR GADGET-2

node variables. We compare the execution time and the

memory consumption of the applications run with MPC,

MPC with the HLS mechanism enabled and Open MPI [13].

The memory consumption of the application plus the MPI

runtime is measured every 0.1s on each node. With these

applications, the memory consumption is stable after a start-

up phase thus only the average over time is reported. This

measure is then averaged on all nodes, the maximum on all

nodes is also presented.

1) EulerMHD: EulerMHD is a pure MPI code that

solves both the Euler and the ideal magnetohydrodynamics

(MHD) equations at high order on a two dimensional

Cartesian mesh. In these experiments, we use a mesh of

size 4096× 4096. The equation of state of the gas is stored

in a two dimensional table. This table allows to calculate

the pressure of the gas from the density and the internal

energy. This table is constant over all MPI tasks and can

thus use HLS. We added in the original code one pragma to

declare this table HLS with scope node and one pragma

single around its initialization. As this table consumes

approximately 128MB of memory, we can expect a memory

gain of 7× 128 = 896MB per node. Table II compares the

memory consumption of EulerMHD with MPC, MPC with

the HLS mechanism enabled and Open MPI. One can remark

that the MPC runtime consumes between 100 and 300MB

less memory than Open MPI and this gap grows with the

number of cores. This can be explained by a less aggressive

policy on communication buffers. Moreover, we observe

the expected memory gain (around 900MB) when the HLS

mechanism is enabled. The overhead of the HLS mechanism

on the execution time (due to address computation functions

and additional synchronizations) is negligible.

2) Gadget-2: Gadget-2 is a pure MPI code for cosmolog-

ical N-body smoothed particle hydrodynamic simulations.

When using periodic boundary conditions, the force and

the potential need to be corrected due to the infinite num-

# cores MPI time (s) avg. mem. (MB) max. mem. (MB)

MPC HLS 83 748 931
736 MPC 88 4786 4975

Open MPI 89 4885 5118

Table IV
EXECUTION TIME AND MEMORY CONSUMPTION FOR TACHYON

ber of particles. These corrections are obtained by Ewald

summation and computed by trilinear interpolation from a

precomputed table. This table is constant over all MPI tasks

and can thus use HLS. We added in the original code one

pragma to declare this table HLS with scope node and one

pragma single around its initialization. This table has a size

of approximately 33MB. On an 8-core node, the memory

gain should be around 7×33 ≈ 230MB. Table III compares

the memory consumption of Gadget-2 with MPC, MPC with

the HLS mechanism enabled and Open MPI. Conclusions

are similar to the EulerMHD application. MPC consumes

less memory than Open MPI. We well observe the expected

memory gain. The overhead of the HLS mechanism on the

execution time is still negligible.

3) Tachyon: Tachyon is a ray tracing application which

supports two parallelism models: pure MPI and hybrid MPI

plus threads. We only use here the pure MPI version. Work

is decomposed by giving an identical number of rays to

each MPI task. The largest data structures used are the

scene and the resulting image. The scene mainly contains a

number of objects with their associated textures. The image

is an array of RGB pixels whose size corresponds to the

resolution. The scene is replicated across all MPI tasks

since it is hard to predict what part of the scene a ray will

access when bouncing between objects. The image is also

duplicated for code simplicity reasons. The whole image is

only used by MPI task 0 when receiving all parts of the

image computed by the other tasks. The other MPI tasks

only need a small part of the image to store the color of

the rays they computed. As the scene is not modified during

rendering, it can use HLS. Moreover, the image can also use

HLS since subparts accessed by different MPI tasks do not

overlap. This is not true on the node containing task 0. Pixels

computed by other tasks on this node are stored at the same

place where they will be received by task 0 since the image

is shared. This does not prevent us from making the image

HLS. Indeed, as MPC is a thread-based MPI, point to point

communications on the same node are realized with memcpy

and if the source and the destination are identical, which

is the case here, this copy is not realized. Thus, sharing the

image between MPI tasks on the same node remove the need

for intra-node communications.

In order to make these variables HLS, we slightly modi-

fied the original source code since the structure containing

the scene and the image also contains data that should stay

private to each MPI task: buffers for MPI communications

and the MPI rank. We split the structure in two parts and



the part holding the scene and the image was declared HLS

with a pragma. We also added some pragmas single during

scene creation before the rendering phase.

We used a scene containing a high number of objects and

textures for a total memory usage of 377MB. The resolution

is 4000 × 4000 which consumes 183MB of memory. The

total memory consumption due to the scene is 560MB. On

an 8-core node, the memory gain should be around 7×560 =
3920MB. We computed around 5000 frames.

Table IV compares the memory consumption of Tachyon

with MPC, MPC with the HLS mechanism enabled and

Open MPI. Conclusions are again similar. MPC consumes

less memory than Open MPI and we well observe the

expected memory gain. However we also observed in this

case an improved execution time due to a reduction of intra

node communications on the node containing the MPI task

of rank 0. Although this reduction only concerns one node,

it still improves the execution time since this is the most

loaded node: task 0 needs to receive messages from all the

other MPI tasks.

VI. RELATED WORK

For regular process-based MPI runtimes where each MPI

task is a process, one can share memory manually between

MPI tasks by creating a shared memory segment and allocat-

ing variables inside this memory area. This is a complex task

which involves a significant rewrite of user code to declare,

allocate and access data shared using this technique. A

recent proposal in the MPI Forum simplifies the creation of

shared memory segments between MPI tasks. It extends the

one-sided communications with shared memory windows

that can be accessed with regular load and store operations

instead of calls to MPI_Put and MPI_Get for MPI tasks on

the same node [14]. The mechanism we propose allows for

further simplifying and automating this process for MPI

application developers. It requires less code modification,

the scope of a variable can be easily chosen and a variable

can be efficiently updated thanks to the single directive.

However it is less flexible since it is tailored to the common

case of variables that could be shared by all MPI tasks of

the application.

Sharing memory between MPI tasks using a shared mem-

ory segment is also used by MPI runtime developers to

efficiently implement the MPI API. This technique enables

process based MPI runtimes to use memcpy to implement

point to point communications e.g., through buffers or

message queues allocated in the shared address space [15].

Collective operations can also be optimized using shared

memory algorithms [16], [17].

The HLS mechanism proposes to share variables that

were previously private to each execution flow. The reverse

operation is called variable privatization. In multithreaded

applications, global variables are shared by default and

can be privatized using the thread local storage (TLS)

mechanism [7]. In OpenMP, global variables can be priva-

tized using the threadprivate construct [5]. This directive

is often implemented using the TLS mechanism [18]. In

thread-based MPI implementations such as MPC [3] or

AMPI [19], global variables are by default shared between

all MPI tasks on the same node. To be compliant with

the MPI standard, these variables need to be privatized.

In AMPI, global variables in Fortran are privatized with

a set of source-to-source tools based on the Photran [20]

plugins. Global variables are packed together in a module

and functions are modified to accept this new module

as a parameter if needed. In MPC, global variables are

privatized using the TLS mechanism. These two different

approaches to privatize global variables in thread-based MPI

have been compared [21]. For hybrid MPI plus OpenMP

code running on a thread-based MPI, it may not be possible

to share variables between OpenMP threads if they have

been privatized per MPI task. Indeed, if both the OpenMP

implementation and the MPI implementation use the TLS

mechanism to privatize variables, variables shared between

OpenMP threads and private per MPI tasks cannot be

distinguished from variables private per OpenMP thread and

per MPI tasks. To deal with this problem, an extension to

the TLS mechanism is proposed to handle two levels of

variables with different privacy attribute: one for MPI and

the other for OpenMP [22]. The implementation of the HLS

mechanism is based on this extended TLS technique and thus

it is compatible with hybrid MPI/OpenMP applications.

Another approach to reduce data duplication of HPC

applications is the SBLLmalloc [23] library which auto-

matically merges identical virtual operating system pages of

MPI tasks on the same node to the same physical page [23].

SBLLmalloc periodically checks for identical pages, merges

them and marks them as read only. When a write occurs,

a fault handler unmerges the pages. This technique is fully

automatic and does not require the application developer

to mark identical data. However, it incurs overhead when

scanning for identical pages to be merged and when handling

fault to duplicate previously shared pages that have been

modified. Moreover it only works at the granularity of a

page. Finally, merging pages to the same NUMA node could

reduce performances when bandwidth or latency is crucial to

the application performance. Our approach does not suffer

from this problem since the user can specify if data can be

shared across the node or only inside a NUMA node.

Distributed Shared Memory (DSM) systems allow exe-

cution flows on different nodes to share the same view of

memory [24]. HLS variables are distinct from a DSM as

variables are shared only locally on the same node. MPI

tasks on different nodes may see distinct values of the

same HLS variable as no coherency is kept across nodes.

Moreover, contrary to DSM systems, accessing an HLS

variable has very little overhead since it does not cause a

network communication: all data are kept on all nodes.



VII. CONCLUSION AND FUTURE WORK

This article presents HLS, an extension to the MPI parallel

programming model that enable to share common variables

between MPI tasks on the same node to reduce memory

consumption of HPC applications. HLS is a set of directives

that preserves the original parallel semantics of the code

and is compatible with C, C++ and Fortran languages and

the OpenMP programming model. This new mechanism is

implemented inside a state-of-the-art MPI 1.3 compliant

runtime called MPC [3], [4]. Experiments show that the HLS

mechanism can effectively reduce memory consumption of

HPC applications. Moreover, by reducing data duplication

in the shared cache of modern multicores, the HLS mech-

anism can also improve performances of memory intensive

applications.

A possible extension to this work is to automatically

detect variables that can use HLS. One could retrieve during

one execution of the code, all memory accesses to global

variables augmented with the synchronizations induced by

the MPI calls. Efficient algorithms based on the formal

definition given in section III could then be used to detect

variables that can use HLS without additional synchroniza-

tions and to detect where to add synchronizations for the

others.
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