A Work Stealing Scheduler for Parallel Loops on
Shared Cache Multicores

Marc Tchiboukdjian, Vincent Danjean, Thierry Gautier*,
Fabien Lementec, and Bruno Raffin

MOAIS Project, INRIA- LIG
(marc.tchiboukdjian, vincent.danjean, fabien.lementec,
bruno.raffin)@imag.fr thierry.gautier@inrialpes.fr

Abstract. Reordering instructions and data layout can bring significant
performance improvement for memory bounded applications. Parallelizing
such applications requires a careful design of the algorithm in order to
keep the locality of the sequential execution. In this paper, we aim
at finding a good parallelization of memory bounded applications on
multicore that preserves the advantage of a shared cache. We focus on
sequential applications with iteration through a sequence of memory
references. Our solution relies on a work stealing scheduler combined
with a dynamic sliding window that constrains cores sharing the same
cache to process data close in memory. This parallel algorithm induces
the same number of cache misses as the sequential algorithm at the
expense of an increased number of synchronizations. Experiments with a
memory bounded application confirm that core collaboration for shared
cache access can bring significant performance improvements despite the
incurred synchronization costs.

1 Introduction

Many applications in scientific computing are memory bounded. Favoring the
locality of access patterns through data and computation reordering can bring
significant performance benefits. When designing parallel algorithms, one must
be extra careful not to lose the locality of the sequential application, which is
the key for good performance. In most last generation multicores, the last level
of cache is shared among all cores of the chip. For instance the Intel Nehalem,
the AMD Phenom and Opteron (only for the quadcores and hexacores) and the
IBM Power?7 all have a shared L3 cache.

In this paper, we focus on one specific aspect of the parallelization of memory
bounded applications: how to adapt the scheduling to take advantage of the shared
caches of multicore processors. The goal is to propose a scheduling algorithm that
improves performance by reducing cache misses, compared to parallel algorithms
that do not take into account the shared cache amongst several cores. We propose
to have cores working on independent but close (regarding the memory layout)
data sets that can all fit in the shared cache. If a core needs a data that is not in
its data set, there is a good chance it will find it in the data set loaded in the

* Part of this work was done while the third author was visiting the ArTeCS group of
the University Complutense, Madrid, Spain.

cache by one of its neighbors, thus saving cache misses. The algorithm behaves
as if each core would benefit from a full-size private cache, at the price of a few
extra synchronizations required to ensure a proper collaboration between cores.

This paper focuses on algorithms that take an input sequence to produce an
output sequence of results. Such algorithms encompass many of the C++ Standard
Template Library (STL) functions like for_each or transform. Moreover, many
parallel libraries such as Intel TBB or the GNU STL parallel mode provide parallel
implementations of the STL. Thus providing shared cache aware parallelizations
of these algorithms can improve performance of many applications.

We provide a cache constraint that parallel algorithms should respect to
induce no more cache misses than the sequential algorithms. We present two new
algorithms respecting this cache constraint and two implementations, one based
on PThread and the other one based on work-stealing allowing efficient dynamic
load balancing. We also implement those new algorithms with the parallel library
TBB and the GNU parallel STL and compare them with our implementations.

2 Scheduling for Efficient Shared Cache Usage

2.1 Window Algorithms for Sequence Processing

We consider algorithms that take an input sequence 41, s, . .., i, (different input
elements can share some data) and a function op to be applied on all elements
of the input producing an output sequence o1, 09, ..., 0, . Notice that treating

one element may produce a different number of elements in the output sequence.
Most STL algorithms are variations over this model. The sequential algorithm
processes the sequence in order from iy to i,,. We assume that the sequential
algorithm already performs well with respect to temporal locality of data accesses.
Data processed closely in the sequential execution are also close in memory. We
focus on the case where all elements of the sequence can be processed in parallel.

We introduce two parallel algorithms to process such a sequence in parallel.
These two algorithms are parameterized by m, the maximum distance between
the threads. In the first one, denoted static-window, the sequence is first divided
into n/m chunks of m contiguous elements. Then, each chunk is processed in
parallel by the p processors sharing the same cache. Several strategies can be
used to parallelize the processing of each chunk. The m elements could be
statically partitioned into p groups of m/p elements, one per processor, or a
work-stealing scheme can be used to dynamically balance the load. The second
parallel algorithm, denoted sliding-window, is a relaxed version of the static-
window algorithm. At the beginning of the algorithm, the first m elements of
the sequence are ready and can be processed in any order. Each time the first
element 7; not yet processed in the sequence is treated by a processor, it enables
the element iy, at the end of a window of size m. These two algorithms will
be compared with an algorithm denoted no-window that do not respect the
cache constraint. All the elements of the sequence can be processed in any order.
This algorithm induces more cache misses than the sequential algorithm and the
window algorithms, but it requires fewer synchronizations.

2.2 Cache Performance of Window Algorithms

The re-use distance captures the temporal locality of a program [1]. Let consider
a series of memory references (zy)g>0. When a reference xj access an element
for the first time, the re-use distance of xj is infinite. If the element has been
previously accessed, x =) with k' > k, the re-use distance of z; is equal to
the number of distinct elements accessed between these two references x, and
xy . Let hg denote the number of memory references with a re-use distance d.
The number of cache misses of a fully associative LRU cache of size C is equal
to Meeq = ZZ‘;C 41 hg. We can extend this definition to sequence processing
algorithms: if processing ¢, and i;s uses similar data, the re-use distance is &’ — k.
We consider now p processors sharing the same cache that process the se-
quence in parallel in distant places like the no-window algorithm. As we assumed
the sequence has good temporal locality, elements far-away in the sequence use
distinct data. In this case, the re-use distance is multiplied by p as to each access
of one processor corresponds p — 1 accesses of the others to distinct elements.
Thus, the number of cache misses is Myo-win = 23104-1 hayp = ZZC:C/;)-‘,-I hq.
The no-window algorithm induces as many cache misses as the sequential al-
gorithm with a cache p times smaller. We now restrain the processors to work
on elements at distance less than m like in the window algorithms. Let r(m)
be the maximum number of distinct memory references when processing m — 1
consecutive elements of the input sequence. In the worst case, when processing
element 1y, all elements ix41,...,%%+m—1 have already been processed accessing
at most 7(m) additional distinct elements compared to the sequential order. Thus
the re-use distance is increased by at most r(m). The number of cache misses
is Myindow < ZZO:CH ha—r(m) = Mseq + Zng—i-l—r(m) hg. As we assumed the
sequence has good temporal locality, r(m) is small compared to m and hg is small
for large d. Therefore chzc H1—r(m) hg is small and the window algorithms induce
approximately the same number of cache misses as the sequential algorithm.

2.3 PThread Parallelization of Window Algorithms

We present here the implementation of the no-window and static-window algo-
rithms using PThreads. The PThread implementation allows a fine grain control
on synchronizations with very little overhead.

For the no-window algorithm, the sequence is statically divided into p groups.
Each group is assigned to one thread bound to one processor and all threads
synchronize at the end of the computation. For the static-window algorithm, the
sequence is first divided into chunks of size m. Then each chunk is statically
divided into p groups and all threads synchronize at the end of each chunk before
starting to compute the next one. Each synchronization is implemented with a
pthread_barrier. Threads wait at the barrier and are released when all of them
have reached the barrier. Although we expect the threads in the static-window
algorithm to spend more time waiting for other threads to finish their work, the
reduction of cache misses should compensate this extra synchronization cost.
The sliding-window algorithm has not been implemented in PThread because it

typedef struct { void splitter(Work_t *victim, int count,
Inputlterator ibeg; kaapi_request_t* request) {
InputlIterator iend; int i = 0;
OutputIterator obeg; size_t size = victim->iend - victim->ibeg;
size_t osize; size_t bloc = size / (1+count);
} Work_t ; InputIterator local_end = victim->iend;
Work_t *thief;
void dowork(...) {
complete_work: if (size < gain)
while (iend != ibeg) { return;
kaapi_stealpoint(..., &splitter); while (count >0) {
for(i=0; i<grain; ++i, ++ibeg) if (kaapi_request_ok(&request[i])) {
op(ibeg, obeg, &osize); thief->iend = local_end;
kaapi_preemptpoint (..., &reducer); thief->ibeg = local_end - bloc;
thief->obeg = intermediate_buffer;
if (kaapi_preempt_next_thief(...)) thief->osize = 0;
goto complete_work ; local_end -= bloc;
} // no more work -> become a thief kaapi_request_reply_ok(thief,
&request[i]);
void reducer(Work_t *victim, Work_t *thief) { --count;
memmove (victim->obeg, thief->obeg, }
thief->osize); ++i;
victim->osize += thief->osize; }
victim->ibeg = thief->ibeg; victim->iend = local_end;
victim->iend = thief->iend; } // victim and thieves -> dowork
} // wictim -> dowork / thief -> try to steal

Fig. 1. C implementation of the adaptive no-window algorithm using the KAaap1 API.

would require a very complex code. We present in the next section a work-stealing
framework allowing to easily implement all these algorithms.

3 Work-Stealing Window Algorithms with Kaapi

In this section, we present the low level API of KAAPI [2] and detail the imple-
mentation of the windows algorithms.

3.1 Kaapi Overview

KAAPI is a programming framework for parallel computing using work-stealing.
At the initialization of a KAAPI program, the middleware creates and binds one
thread on each processor of the machine. All non-idle threads process work by
executing a sequential algorithm (dowork in fig. 1). All idle threads, the thieves,
send work requests to randomly selected victims. To allow other threads to
steal part of its work, a non-idle thread must regularly check if it received work
requests using the function kaapi_stealpoint. At the reception of count work
requests, a splitter is called and divides the work into count+1 well-balanced
pieces, one for each of the thieves and one for the victim.

When a previously stolen thread runs out of work, it can decide to preempt
its thieves with the kaapi_preempt_next_thief call. For each thief, the victim
merges part of the work processed by the thief using the reducer function and
takes back the remaining work. The preemption can reduce the overhead of storing
elements of the output sequence in an intermediate buffer when the final place of
an output element is not known in advance. To allow preemption, each thread
regularly checks for preemption requests using the function kaapi_preemptpoint.

To amortize the calls to the KAAPI library, each thread should process several
units of work between these calls. This number is called the grain of the algorithm.

In particular, a victim thread do not answer positively to a work request when it
has less than grain units of work.

Compared to classical WS implementations, tasks (Work_t) are only created
when a steal occurs which reduces the overhead of the parallel algorithm compared
to the sequential one [3]. Moreover, the steal requests are treated by the victim
and not by the thieves themselves. Although the victim has to stop working
to process these requests, synchronization costs are reduced. Indeed, instead of
using high-level synchronization functions (mutexes, etc.) or even costly atomic
assembly instructions (compare and swap, etc.), the thieves and the victim can
communicate by using standard memory writes followed by memory barriers, so
no memory bus locking is required. Additionally, the splitter function knows
the number count of thieves that are trying to steal work to the same victim.
Therefore, it permits a better balance of the workload. This feature is unique to
KAAPI when compared to other tools having a work-stealing scheduler.

3.2 Work-Stealing Algorithm for Standard (no-window) Processing

It is straightforward to implement the no-window algorithm using KAAPI. The
work owned by a thread is described in a structure by four variables: ibeg and
iend represents the range of elements to process in the input sequence, obeg is
an iterator on the output sequence and osize is the number of elements written
on the output. At the beginning of the computation, a unique thread possesses
the whole work: ibeg=0 and iend=n. Each thread processes its assigned elements
in a loop. Code of Fig. 1 shows the main points of the actual implementation.

3.3 Work-Stealing Window Algorithms

The static-window algorithm is very similar to the no-window algorithm of the
previous section. The first thread owning the total work has a specific status,
it is the master of the window. Only the master thread has knowledge of the
remaining work outside the m-size window. When all elements of a window have
been processed, the master enables the processing of the new window by updating
its input iterators ibeg = iend and iend += m. This way, when idle threads
request work to the master thread, the stolen work is close in the input sequence.
Moreover, all threads always work on elements at distance at most m.

The sliding-window algorithm is a little bit more complex. In addition to
the previous iterators, the master also maintains ilast an iterator on the first
element after the stolen work in the input sequence (see Fig. 2). When the master
does not receive any work request, then iend == ilast == ibeg+m. When the
master receives work requests, it can choose to give work on both sides of the
stolen work. Distributing work in the interval [ibeg,iend] corresponds to the
previous algorithm. The master thread can also choose to distribute work close
to the end of the window, in the interval [ilast,ibeg+m].

4 Experiments

We base our experiments on a common scientific visualization filter: extracting
an isosurface in an unstructured mesh using the marching tetrahedra (MT)
algorithm [4].

ibeg iend ilast

I
Processed Elements Master Work Stolen Work Remaining Elements 1
I
I

m-size window

Fig. 2. Decomposition of the input sequence in the sliding-window algorithm.

107
\ \
61 | | -1 1,040
9o}
% 1,020 @
o= — — 2}
5| | U E
<}
§ - -1 1,000 g
o =
3 a4l N I 1980
\ - \ \ - \ L ‘ ‘ 1960
910 915 920 925 22 26 210 ol

window size m grain size
Fig. 3. (Left) Number of L3 cache misses for the PThread implementation of the
static-window algorithm —e— for various window sizes compared to the sequential
algorithm —#— and the no-window —— algorithm. (Right) Parallel time for the KAaAPI
implementation of the static-window algorithm —¢— with various grain sizes. (Both)
All parallel algorithms use the 4 cores of the Nehalem processor.

We first calibrate the grain for the work-stealing implementation and the win-
dow size m for the window algorithms. Then, we compare the KAAPI framework
with other parallel libraries on a central part of the MT algorithm which can be
written as a for_each. Finally we compare the no-window, static-window and
sliding-window algorithms implementing the whole MT.

All the measures reported are averaged over 20 runs and are very stable. The
numbers of cache misses are obtained with PAPI [5]. Only last level cache misses
are reported as the lower level cache misses are the same for all algorithms. Two
different multicores are used, a quadcore Intel Xeon Nehalem E5540 at 2.4Ghz
with a shared 8MB L3 cache and a dualcore AMD Opteron 875 at 2.2Ghz with
two 1MB Lo private caches. If the window algorithms reduce the number of cache
misses on the Nehalem but not on the Opteron, one can conclude that this is
due to the shared cache.

4.1 Calibrating the Window Algorithms

Fig. 3(left) shows the number of L3 cache misses for the static-window algorithm
compared to the sequential algorithm and the no-window algorithm. The static-
window algorithm is very close to the sequential algorithm for window sizes less
than 22°. Tt does not exactly match the sequential performance due to additional
reduce operations for managing the output sequence in parallel. With bigger
windows, L3 misses increase and tend to the mo-window algorithm. For the
remaining experiments, we set m = 219.

Time (ms) Nehalem Opteron
Algorithms #Cores STL GNU TBB Kaaprt STL GNU TBB KaarI
1 3,987 4,095 3,975 4,013 9,352 9,154 10,514 9,400

no-window 4 1,158 1,106 1,069 2,514 2,680 2,431
taticwindow 1 3,990 4,098 3,981 4,016 9,353 9,208 10,271 9,411
) 4 1,033 966 937 2,613 2,776 2,598

Table 1. Performance of the no-window and static-window algorithms on a for_each
with various parallel libraries. GNU is the GNU parallel library. Time are in ms.

Fig. 3(right) shows the parallel time of the static-window algorithm with the
KAAPI implementation for various grain sizes. Performance does not vary much,
less than 10% on the tested grains. For small grains, the overhead of the KAAPI
library becomes significant. For bigger grains, the load balancing is less efficient.
For the remaining experiments, we choose a grain size of 128. We can notice that
the KAAPI library allows very fine grain parallelism: processing 128 elements
takes approximately 3us on the Nehalem processor.

4.2 Comparison of Parallel Libraries on for_each

Table 1 compares KAAPI with the GNU parallel library (from gce 4.3) (denoted
GNU) and Intel TBB (v2.1) on a for_each used to implement a central sub-part
of the MT algorithm. The GNU parallel library uses the best scheduler (parallel
balanced). TBB uses the auto partitioner with a grain size of 128. TBB is faster
than GNU on Nehalem and it is the other way around on Opteron. KAAPI shows
the best performance on both processors. This can be explained by the cost of
the synchronization primitives used: POSIX locks for GNU, compare and swap
for TBB and atomic writes followed by memory barriers for KAAPI.

4.3 Performance of the Window Algorithms

We now compare the performance of the window algorithms. Table 1 shows
that the static-window algorithm improves over the no-window algorithm for all
libraries on the Nehalem processor. However, on the Opteron with only private
caches, performances are in favor of the no-window algorithm. This was expected
as the Opteron has only private caches and the no-window algorithm has less
synchronizations. We can conclude that the difference observed on Nehalem is
indeed due to the shared cache.

Fig. 4(left) presents speedup of all algorithms and ratio of cache misses
compared to the sequential algorithm. The no-window versions induces 50% more
cache misses whereas the window versions only 13% more. The window versions
are all faster compared to the no-window versions. Work stealing implementations
with KAAPI improves over the static partitioning of the PThread implementations.
The sliding-window shows the best performance. Fig. 4(right) focus on the
comparison of the sliding-window and static-window algorithms. Due to additional
parallelism, the number of steal operations are greatly reduced in the sliding-
window algorithm (up to 2.5 time less) leading to a 5% additional gain.

4 | | 10%,\ T T T]

5% i ._—'\'\ﬂ\'_’.\._' |
0% L. \ \ !]
25 [T T T T]
2 - -
1.5 B
1 | | | |
No Static No Static Sliding 912 ol4 916 918
PThread Kaapr1 window size m

Fig. 4. (Left) Speedup HEE and ratio of increased cache misses] over the sequen-
tial algorithm for the no-window, static-window and sliding-window algorithms with
PThread and KAAPI implementations. (Right) Speedup —e— and ratio of saved steal
operations —#— for the sliding-window algorithm over the static-window algorithm with
the KAAPI implementation. (Both) All algorithms run on the 4 cores of the Nehalem.

5 Conclusions

Previous experimental approaches have shown the interest of efficient cache
sharing usage, on a recent benchmark [6] and on data mining applications [7].

Many parallel schemes have been proposed to achieve good load balancing
for isosurface extraction [8]. However, none of these techniques take into account
the shared cache of multicore processors. Optimization of sequential locality for
mesh applications has been studied through mesh layout optimization [9].

The algorithms for parallel sequence processing proposed in this paper focus
on exploiting the shared cache of last generation multicores. Experiments confirm
that these techniques increase performances by 10% to 30%.

References

1. Cascaval, C., Padua, D.A.: Estimating cache misses and locality using stack distances.
In: Proc. of ICS. (2003)

2. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO. (2007)

3. Traoré, D., Roch, J.L., Maillard, N., Gautier, T., Bernard, J.: Deque-free work-
optimal parallel stl algorithms. In: Euro-Par. (2008)

4. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, An Object-
Oriented Approach To 3D Graphics, 3rd ed. Kitware Inc. (2004)

5. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. The International Journal
of High Performance Computing Applications 14 (2000)

6. Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern CMP matter to the
performance of contemporary multithreaded programs? In: PPoPP. (2010)

7. Jaleel, A., Mattina, M., Jacob, B.: Last level cache (LLC) performance of data
mining workloads on a CMP. In: HPCA. (2006)

8. Zhang, H., Newman, T.S., Zhang, X.: Case study of multithreaded in-core isosurface
extraction algorithms. In: EGPGV. (2004)

9. Tchiboukdjian, M., Danjean, V., Raffin, B.: Binary mesh partitioning for cache-
efficient visualization. TVCG 16(5) (sept.-oct. 2010) 815 —828

