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Memory Issues for Visualization Filters

\, Visualization filters are often memory bounded

» Visualization filters are memory intensive

» Bottleneck: memory bandwidth/latency

Even worse on multicores

» High number of cores sharing the same memory

» Memory bandwidth and cache size do not scale

Better cache usage — speedup
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This Talk

Speedup visualization filters by efficient use of caches

1. Cache-efficient mesh layouts
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2. lsosurface extraction with a coherent min-max tree
- P

3. Parallel isosurface extraction for multicores
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Layout for Regular Grids: Space-filling Curves [Pascucci 01]

Space-filling curves

» ex: Z curve, Hilbert curve, etc.
» Map 2D/3D indexes to 1D indexes

> Keep locality
close in 2D/3D => close in 1D

Z-curve
Space-filling curves to index meshes
» Elements close in the mesh are
close in memory
» Filters have often spatially coherent
Classical access patterns access patterns

= Improved cache usage
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Layout for Unstructured Meshes: FastCOL

BSP tree

points
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FastCOL Algorithm (TVCG 2010)

> Recursively cut the mesh while minimizing the cut
» Store contiguously elements in the same node of the BSP tree

» Layout computation: O(nlog n)
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Layout for Unstructured Meshes: FastCOL

The FastCOL layout guarantees a cache-efficient traversal for
spatially coherent filters whatever the cache size (cache-oblivious).

S: mesh size
B: cache line size
M: cache size

Qs.u(5) =

read mesh overhead

Sl ey

Example of layouts
(Cells close in memory have the same color)
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Marching Tetrahedra (MT): Original vs FastCOL
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One core of a Nehalem with 8MB of L3 cache
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Isosurface Extraction with a Min-Max Tree

Min-Max Tree

> Recursively divide the mesh into regions
» Store for each region, the min and max value of the scalar field

> Isovalue & [min, max] = discard the region

If isovalue = 54, only blue intervals are examined.

[0, 100]
[0, 63] [42, 100]
[0, 55] [24,63] [42,74] [69, 100]
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Geometric Min-Max Tree
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Divide the mesh into geometric regions

> ex: octree, kd-tree, etc.

> Cells in the same geometric area often have close scalar values
Many discarded regions

» For each leaf, store the list of cells in this region
High memory usage

» Cells of the same region could be scattered in the layout
Not coherent with the layout, poor locality
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Layout-based Min-Max Tree

mesh min-maxtree

[I,J]

| cells

Divide the mesh using the layout

» Strategy used by the vtkSimpleTree

» No need to store the list of cells in a leaf (cells [/, ])
low memory usage

» Cells in the same region are contiguous in the layout
Coherent with the layout, good locality

> Cells of the same region could be scattered in the mesh

few discarded regions
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Coherent Min-Max Tree: Combine Both

| .
mesh S~ min-maxtree
= T
~

| \ I s

Take the BSP tree used to compute the FastCOL layout

» Regions are contiguous in the layout and geometry based
Good locality, many discarded regions, low memory usage
» Low memory usage: for a 150M tets mesh (2.6GB)
Geometric min-max tree — 958MB
Layout-based and coherent min-max tree — 385MB
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Isosurface Extraction with Coherent Min-Max Tree

1 L3 cache misses 1 Time (ms)
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One core of a Nehalem with 8MB of L3 cache
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This Talk

Speedup visualization filters by efficient use of caches

1. Cache-efficient mesh layouts

¢y Py

2. lsosurface extraction with a coherent min-max tree
- P

3. Parallel isosurface extraction for multicores
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Keep Good Cache Performance in Parallel

8MB

256KB

32KB

Core 0

Nehalem (Xeon E5530)
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Keep Good Cache Performance in Parallel

8MB
256KB 256KB 256KB 256KB
32KB 32KB 32KB 32KB
Core 0 Core 1 Core 2 Core 3

Nehalem (Xeon E5530)

» Take advantage of multiple cores
» No extra cache misses

» Cores share the last cache level

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 14/20



Classical Scheme

Split Cache Strategy

» Divide n tets into p chunks

» Cores compete for shared
cache space

Performance of Split Cache

M
» Cache size: M — —
p

mesh
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Shared Cache Aware Scheme

Shared Cache Strategy
» Divide into chunks fitting in
the shared cache

» Cores work in parallel inside
a chunk

» Cores benefit from data

cached by others EEEEI

Shared Cache vs Split Cache

» Less cache misses
Proof: no more cache misses than sequential algorithm

cells

» More synchronizations
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Parallel Isosurface Extraction on Original Layout
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Nehalem quadcore with 8MB of shared L3 cache
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Parallel Isosurface Extraction on FastCOL Layout
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Split Cache vs Shared Cache: Performance Gain Evaluation

ratio of saved
cache misses
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Gain of shared cache over split cache increases
» with the number of cores
» when the cache size decreases
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Conclusion

Cache-Efficient Isosurface Extraction

» Coherent min-max tree for isosurface extraction:
fast, low memory usage, practical

=57
=
==
[eser]
=)
=l
=
=1
=7
=
=7
=
=]
=i
=]
=]

» Provable performances in sequential and parallel

Intra-Chip Parallelism

» Shared Cache > Split Cache
> cooperative vs competitive strategy
» gain increases with the number of cores
> gain increases with mesh size / cache size ratio
» Advantage of Shared Cache will likely grow in
the future (Nvidia Fermi, Intel Sandy Bridge) Sandy Bridge
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