Cache-Efficient Parallel Isosurface Extraction for
Shared Cache Multicores

Marc Tchiboukdjian
Vincent Danjean
Bruno Raffin

g B INRIA
L G

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 1/20

Memory Issues for Visualization Filters

\, Visualization filters are often memory bounded

» Visualization filters are memory intensive

» Bottleneck: memory bandwidth/latency

Even worse on multicores

» High number of cores sharing the same memory

» Memory bandwidth and cache size do not scale

Better cache usage — speedup

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 2/20

This Talk

Speedup visualization filters by efficient use of caches

1. Cache-efficient mesh layouts

¢y Py

2. lsosurface extraction with a coherent min-max tree
- P

3. Parallel isosurface extraction for multicores

uuuuuuuuuuu

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 3/20

Layout for Regular Grids: Space-filling Curves [Pascucci 01]

Space-filling curves

» ex: Z curve, Hilbert curve, etc.
» Map 2D/3D indexes to 1D indexes

> Keep locality
close in 2D/3D => close in 1D

Z-curve
Space-filling curves to index meshes
» Elements close in the mesh are
close in memory
» Filters have often spatially coherent
Classical access patterns access patterns

= Improved cache usage

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 4/20

Layout for Unstructured Meshes: FastCOL

BSP tree

points

EENTT S s

1 N 1 1 1
1 N 1 1 1

FastCOL Algorithm (TVCG 2010)

> Recursively cut the mesh while minimizing the cut
» Store contiguously elements in the same node of the BSP tree

» Layout computation: O(nlog n)

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 5/20

Layout for Unstructured Meshes: FastCOL

The FastCOL layout guarantees a cache-efficient traversal for
spatially coherent filters whatever the cache size (cache-oblivious).

S: mesh size
B: cache line size
M: cache size

Qs.u(5) =

read mesh overhead

Sl ey

Example of layouts
(Cells close in memory have the same color)

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 6/20

Marching Tetrahedra (MT): Original vs FastCOL

L3 cache misses 1 Time (ms)

107 |
6 5.4-10° 8 4,000| 3,600 iy
4 : 2,280

2,000 | :
2 6 |
7.6-10

O [[0 ! !

Original ~ FastCOL Original ~ FastCOL

One core of a Nehalem with 8MB of L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 7/20

Isosurface Extraction with a Min-Max Tree

Min-Max Tree

> Recursively divide the mesh into regions
» Store for each region, the min and max value of the scalar field

> Isovalue & [min, max] = discard the region

If isovalue = 54, only blue intervals are examined.

[0, 100]
[0, 63] [42, 100]
[0, 55] [24,63] [42,74] [69, 100]
RN RN VRN
[0,35] [23, 55] [24,47) [39,63] [42,57] [53,74] [69, 84] [81, 100]

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 8/20

Geometric Min-Max Tree

1
1 .
mesh \\ min-maxtree

< -

[i01i11i21i3:---]

N] cells

Divide the mesh into geometric regions

> ex: octree, kd-tree, etc.

> Cells in the same geometric area often have close scalar values
Many discarded regions

» For each leaf, store the list of cells in this region
High memory usage

» Cells of the same region could be scattered in the layout
Not coherent with the layout, poor locality

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 9/20

Layout-based Min-Max Tree

mesh min-maxtree

[I,J]

| cells

Divide the mesh using the layout

» Strategy used by the vtkSimpleTree

» No need to store the list of cells in a leaf (cells [/,])
low memory usage

» Cells in the same region are contiguous in the layout
Coherent with the layout, good locality

> Cells of the same region could be scattered in the mesh

few discarded regions

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 10/20

Coherent Min-Max Tree: Combine Both

| .
mesh S~ min-maxtree
= T
~

| \ I s

Take the BSP tree used to compute the FastCOL layout

» Regions are contiguous in the layout and geometry based
Good locality, many discarded regions, low memory usage
» Low memory usage: for a 150M tets mesh (2.6GB)
Geometric min-max tree — 958MB
Layout-based and coherent min-max tree — 385MB

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 11/20

Isosurface Extraction with Coherent Min-Max Tree

1 L3 cache misses 1 Time (ms)
10"
2017107 | 1,000 g5 i
1.5+ 8
1) 500 - 415 |
05| 3.5-10° |
0 | | O | |
Original FastCOL Original ~ FastCOL
Geometric Coherent Geometric Coherent
Tree Tree Tree Tree

One core of a Nehalem with 8MB of L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 12/20

This Talk

Speedup visualization filters by efficient use of caches

1. Cache-efficient mesh layouts

¢y Py

2. lsosurface extraction with a coherent min-max tree
- P

3. Parallel isosurface extraction for multicores

uuuuuuuuuuu

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 13/20

Keep Good Cache Performance in Parallel

8MB

256KB

32KB

Core 0

Nehalem (Xeon E5530)

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 14/20

Keep Good Cache Performance in Parallel

8MB
256KB 256KB 256KB 256KB
32KB 32KB 32KB 32KB
Core 0 Core 1 Core 2 Core 3

Nehalem (Xeon E5530)

» Take advantage of multiple cores
» No extra cache misses

» Cores share the last cache level

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 14/20

Classical Scheme

Split Cache Strategy

» Divide n tets into p chunks

» Cores compete for shared
cache space

Performance of Split Cache

M
» Cache size: M — —
p

mesh

cells

=2 =3 =3 =3

core 1 core 2 core3 core 4

oss 2 i o1/3 S
» Cache misses: B —i—;,"‘.p O()

overhead

M1/3

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores

15/20

Shared Cache Aware Scheme

Shared Cache Strategy
» Divide into chunks fitting in
the shared cache

» Cores work in parallel inside
a chunk

» Cores benefit from data

cached by others EEEEI

Shared Cache vs Split Cache

» Less cache misses
Proof: no more cache misses than sequential algorithm

cells

» More synchronizations

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 16/20

Parallel Isosurface Extraction on Original Layout

MT

Min-Max Tree

80
60
40
20

20

10

[L3 cache misses

| 70 |
| 54 55 |
T T T
Seq Split Shared
| | |
168 79 167 |
T T T
Seq Split Shared

O = N W b

o, N W N

[1Speedup
|
3.36
2.83 |
T T
Split Shared
| |
2.59 285
T T
Split Shared

Nehalem quadcore with 8MB of shared L3 cache
Marc Tchiboukdjian, V. Danjean, B. Raffin

Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores

17/20

Parallel Isosurface Extraction on FastCOL Layout

10
MT

Min-Max Tree 2

[L3 cache misses

B 8.9 8.7
7.6
T T T
Seq Split Shared
| | |
35 3.7 34
T T T
Seq Split Shared

Nehalem quadcore with 8MB of shared L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin

O = N W b

o, N W N

[1Speedup
| |
31 3.06
T T
Split Shared
| |
2.08 218 |
T T
Split Shared

Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores

18/20

Split Cache vs Shared Cache: Performance Gain Evaluation

ratio of saved
cache misses

3.0 4.0

2.0

ratio of saved cache misses

1.0

—— Original
— FastCO

— 2cores
L --- 4cores

Marc Tchiboukdjian, V. Danjean, B. Raffin

1IMB 4MB

8MB

cache size

ZeeE 1,\9% «— split cache

1.8

1.6

ratio of saved cache misses
1.2 14

‘. —— FastCOL (16 cores)
FastCOL (32 cores)

[

128KB 256KB

cache size

32kB

Gain of shared cache over split cache increases
» with the number of cores
» when the cache size decreases

Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores

ZeeE Ix.>m «— shared cache

19/20

Conclusion

Cache-Efficient Isosurface Extraction

» Coherent min-max tree for isosurface extraction:
fast, low memory usage, practical

=57
=
==
[eser]
=)
=l
=
=1
=7
=
=7
=
=]
=i
=]
=]

» Provable performances in sequential and parallel

Intra-Chip Parallelism

» Shared Cache > Split Cache
> cooperative vs competitive strategy
» gain increases with the number of cores
> gain increases with mesh size / cache size ratio
» Advantage of Shared Cache will likely grow in
the future (Nvidia Fermi, Intel Sandy Bridge) Sandy Bridge

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 20/20

	Introduction
	Cache-Oblivious Mesh Layout
	Isosurface Extraction
	Parallel
	Conclusion

