
Cache-Efficient Parallel Isosurface Extraction for
Shared Cache Multicores

Marc Tchiboukdjian
Vincent Danjean

Bruno Raffin

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 1/20

Memory Issues for Visualization Filters

Visualization filters are often memory bounded

I Visualization filters are memory intensive

I Bottleneck: memory bandwidth/latency

Even worse on multicores

I High number of cores sharing the same memory

I Memory bandwidth and cache size do not scale

Better cache usage =⇒ speedup

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 2/20

This Talk

Speedup visualization filters by efficient use of caches

1. Cache-efficient mesh layouts

=⇒

2. Isosurface extraction with a coherent min-max tree

cells

points

BSP tree

mesh

3. Parallel isosurface extraction for multicores

core 3 core 4core 2core 1

cells

cache

mesh

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 3/20

Layout for Regular Grids: Space-filling Curves [Pascucci 01]

Z-curve

Space-filling curves

I ex: Z curve, Hilbert curve, etc.

I Map 2D/3D indexes to 1D indexes

I Keep locality
close in 2D/3D ⇒ close in 1D

Classical access patterns

Space-filling curves to index meshes

I Elements close in the mesh are
close in memory

I Filters have often spatially coherent
access patterns

⇒ Improved cache usage

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 4/20

Layout for Unstructured Meshes: FastCOL

cells

points

BSP tree

mesh

FastCOL Algorithm (TVCG 2010)

I Recursively cut the mesh while minimizing the cut

I Store contiguously elements in the same node of the BSP tree

I Layout computation: O(n log n)

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 5/20

Layout for Unstructured Meshes: FastCOL

The FastCOL layout guarantees a cache-efficient traversal for
spatially coherent filters whatever the cache size (cache-oblivious).

QB,M(S) =
S

B
+ O

(S

M1/3

) S : mesh size
B: cache line size
M: cache size

read mesh overhead

=⇒ =⇒

Example of layouts
(Cells close in memory have the same color)

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 6/20

Marching Tetrahedra (MT): Original vs FastCOL

Original FastCOL
0

2

4

6

·107

5.4 · 107

7.6 · 106

L3 cache misses

Original FastCOL
0

2,000

4,000 3,600

2,280

Time (ms)

One core of a Nehalem with 8MB of L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 7/20

Isosurface Extraction with a Min-Max Tree

Min-Max Tree

I Recursively divide the mesh into regions

I Store for each region, the min and max value of the scalar field

I Isovalue 6∈ [min,max] ⇒ discard the region

If isovalue = 54, only blue intervals are examined.

[0, 100]

[0, 63]

[0, 55]

[0, 35] [23, 55]

[24, 63]

[24, 47] [39, 63]

[42, 100]

[42, 74]

[42, 57] [53, 74]

[69, 100]

[69, 84] [81, 100]

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 8/20

Geometric Min-Max Tree

Divide the mesh into geometric regions

I ex: octree, kd-tree, etc.

I Cells in the same geometric area often have close scalar values
Many discarded regions

I For each leaf, store the list of cells in this region
High memory usage

I Cells of the same region could be scattered in the layout
Not coherent with the layout, poor locality

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 9/20

Layout-based Min-Max Tree

Divide the mesh using the layout

I Strategy used by the vtkSimpleTree

I No need to store the list of cells in a leaf (cells [i , j])
low memory usage

I Cells in the same region are contiguous in the layout
Coherent with the layout, good locality

I Cells of the same region could be scattered in the mesh
few discarded regions

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 10/20

Coherent Min-Max Tree: Combine Both

Take the BSP tree used to compute the FastCOL layout

I Regions are contiguous in the layout and geometry based
Good locality, many discarded regions, low memory usage

I Low memory usage: for a 150M tets mesh (2.6GB)
Geometric min-max tree → 958MB
Layout-based and coherent min-max tree → 385MB

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 11/20

Isosurface Extraction with Coherent Min-Max Tree

Original FastCOL
0

0.5

1

1.5

2

·107

Geometric Coherent
Tree Tree

1.7 · 107

3.5 · 106

L3 cache misses

Original FastCOL
0

500

1,000

Geometric Coherent
Tree Tree

855

415

Time (ms)

One core of a Nehalem with 8MB of L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 12/20

This Talk

Speedup visualization filters by efficient use of caches

1. Cache-efficient mesh layouts

=⇒

2. Isosurface extraction with a coherent min-max tree

cells

points

BSP tree

mesh

3. Parallel isosurface extraction for multicores

core 3 core 4core 2core 1

cells

cache

mesh

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 13/20

Keep Good Cache Performance in Parallel

8MB

256KB 256KB256KB256KB

32KB 32KB32KB32KB

Core 0 Core 3Core 2Core 1

Nehalem (Xeon E5530)

I Take advantage of multiple cores

I No extra cache misses

I Cores share the last cache level

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 14/20

Keep Good Cache Performance in Parallel

8MB

256KB256KB256KB256KB

32KB 32KB 32KB32KB

Core 0 Core 2 Core 3Core 1

Nehalem (Xeon E5530)

I Take advantage of multiple cores

I No extra cache misses

I Cores share the last cache level

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 14/20

Classical Scheme

Split Cache Strategy

I Divide n tets into p chunks

I Cores compete for shared
cache space

core 3 core 4core 2core 1

cells

cache

mesh

Performance of Split Cache

I Cache size: M → M

p

I Cache misses:
S

B
+ p1/3 · O

(S

M1/3

)
overhead

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 15/20

Shared Cache Aware Scheme

Shared Cache Strategy

I Divide into chunks fitting in
the shared cache

I Cores work in parallel inside
a chunk

I Cores benefit from data
cached by others

cells

cache

mesh

Shared Cache vs Split Cache
I Less cache misses

Proof: no more cache misses than sequential algorithm

I More synchronizations

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 16/20

Parallel Isosurface Extraction on Original Layout

MT

Seq Split Shared
0

20

40

60

80
54

70

55

L3 cache misses

Split Shared
0

1

2

3

4
2.83

3.36

Speedup

Min-Max Tree

Seq Split Shared
0

10

20 16.8 17.9 16.7

Split Shared
0

1

2

3

4

2.59 2.85

Nehalem quadcore with 8MB of shared L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 17/20

Parallel Isosurface Extraction on FastCOL Layout

MT

Seq Split Shared
0

5

10
7.6

8.9 8.7

L3 cache misses

Split Shared
0

1

2

3

4
3.1 3.06

Speedup

Min-Max Tree

Seq Split Shared
0

2

4 3.5 3.7 3.4

Split Shared
0

1

2

3

4

2.08 2.18

Nehalem quadcore with 8MB of shared L3 cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 18/20

Split Cache vs Shared Cache: Performance Gain Evaluation

i j

∣∣j − i ∣∣
≈

∑
e∈E 1λe>M∑
e∈E 1λe>

M
p

1.
0

2.
0

3.
0

4.
0

cache size

ra
tio

 o
f s

av
ed

 c
ac

he
 m

is
se

s

1MB 4MB 8MB

Original 2 cores
FastCOL 4 cores

1.
0

1.
2

1.
4

1.
6

1.
8

cache size
ra

tio
 o

f s
av

ed
 c

ac
he

 m
is

se
s

32KB 128KB 256KB

FastCOL (16 cores)
FastCOL (32 cores)

OFermi

Gain of shared cache over split cache increases
I with the number of cores
I when the cache size decreases

ratio of saved
cache misses

shared cache

split cache

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 19/20

Conclusion

Cache-Efficient Isosurface Extraction

I Coherent min-max tree for isosurface extraction:
fast, low memory usage, practical

I Provable performances in sequential and parallel

Intra-Chip Parallelism

I Shared Cache > Split Cache
I cooperative vs competitive strategy
I gain increases with the number of cores
I gain increases with mesh size / cache size ratio

I Advantage of Shared Cache will likely grow in
the future (Nvidia Fermi, Intel Sandy Bridge)

Fermi SP

Sandy Bridge

Marc Tchiboukdjian, V. Danjean, B. Raffin Cache-Efficient Parallel Isosurface Extraction for Shared Cache Multicores 20/20

	Introduction
	Cache-Oblivious Mesh Layout
	Isosurface Extraction
	Parallel
	Conclusion

