
Eurographics Symposium on Parallel Graphics and Visualization (2010)
J. Ahrens, K. Debattista, and R. Pajarola (Editors)

Cache-Efficient Parallel Isosurface Extraction
for Shared Cache Multicores

M. Tchiboukdjian†1 and V. Danjean‡2 and B. Raffin§3

1 CNRS - CEA/DAM,DIF
2 Grenoble Universites

3 INRIA

Abstract
This paper proposes to revisit isosurface extraction algorithms taking into consideration two specific aspects
of recent multicore architectures: their intrinsic parallelism associated with the presence of multiple computing
cores and their cache hierarchy that often includes private caches as well as caches shared between all cores.
Taking advantage of these shared caches require adapting the parallelization scheme to make the core collaborate
on cache usage and not compete for it, which can impair performance. We propose to have cores working on
independent but close data sets that can all fit in the shared cache. We propose two shared cache aware parallel
isosurface algorithms, one based on marching tetrahedra, and one using a min-max tree as acceleration data
structure. We theoretically prove that in both cases the number of cache misses is the same as for the sequential
algorithm for the same cache size. The algorithms are based on the FastCOL cache-oblivious data layout for
irregular meshes. The CO layout also enables to build a very compact min-max tree that leads to a reduced
number of cache misses. Experiments confirm the interest of these shared cache aware isosurface algorithms, the
performance gain increasing as the shared cache size to core number ratio decreases.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Software]: Concurrent Programming—Parallel
Programming I.3.3 [Computer Graphics]: Picture/Image Generation—Isosurface computation I.3.6 [Computer
Graphics]: Methodology and Techniques—Graphics data structures and data types

1. Introduction

Isosurface extraction is one of the most classical filters
for scientific visualization. It has been intensively studied
and various algorithms exist with different acceleration data
structures and parallelizations.

In this paper, we focus on one specific aspect of its par-
allelization that has not been addressed so far: how to adapt
the algorithm to take advantage of the shared caches often
present on multicore processors. The goal is to propose an
algorithm that saves cache misses, thus improving perfor-
mance, compared to parallel algorithms that do not take into
account the shared cache amongst several cores.

† marc.tchiboukdjian@imag.fr
‡ vincent.danjean@imag.fr
§ bruno.raffin@imag.fr

Multicore architectures usually have their last cache level
shared between cores. For instance the L3 cache of the In-
tel Nehalem, the L2 cache of the Intel Larrabee or the L1
cache of NVIDIA Fermi processors are shared. Compared
to private caches, this shared cache architecture can bring
performance benefits if managed adequately. It allows fast
communication between cores. If some cores work on the
same data, these data are not duplicated into several caches.
A core can potentially use more than its fraction of the cache
if necessary. But this requires the algorithms to be adapted
to make the cores collaborate on cache usage. Classical par-
allelization approaches usually favor tasks working on inde-
pendent data sets to reduce communication and synchroniza-
tion overhead. It results in competition rather than collabo-
ration between cores for shared cache usage. Performance
is at most equivalent to a private cache configuration. In-
deed, [Has10] shows that this is actually worse than with pri-

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

vate caches as the LRU replacement policy performs poorly
in this context.

Many scientific visualization filters, like isosurface ex-
traction, are memory bounded. Favoring the locality of ac-
cess patterns through an adapted data layout can bring sig-
nificant performance benefits. In this paper we propose to
have cores working on independent but close (regarding the
memory layout and spatial locality) data sets that can all fit
in the shared cache. If a core needs a data that is not in its
data set, there is a good chance it will find it in the data set
loaded in the cache by one of its neighbors, thus saving cache
misses. We propose two versions of this isosurface parallel
algorithm, one based on the marching tetrahedra (MT), and
one using a min-max tree as acceleration data structure. We
theoretically prove that in both cases the number of cache
misses is the same as for the sequential algorithm using a
cache of the same size. This is like if each core would ben-
efit from a full size private cache, at the price of a few extra
synchronizations required to ensure a proper collaboration
between cores. The algorithm is based on the cache oblivious
(CO) data layout for irregular meshes proposed in [TDR10].
Not only it ensures a strong data locality, but, in opposite
to other layouts, it also provides a theoretical bound on the
number of cache misses. Our proof relies on an extension of
this result to our parallel isosurface extraction algorithms.

Experiments confirm that core collaboration for shared
cache access can bring significant performance improve-
ments despite the incurred synchronization costs. It also
show that a CO layout is not necessarily required, as other
classical layouts can lead to a high enough data locality
given the high cache to core ratio available on the tested pro-
cessors.

We also detail a compact and cache-efficient tree structure
for accelerating the MT algorithm. This tree is a min-max
tree using a decomposition of the mesh in regions adapted to
the CO mesh layout. It allows a compact storage as regions
correspond to intervals of the cell array. It also induces very
few caches misses as the active cells respect the order of the
CO layout.

The paper is organized as follow. The MT algorithm is
reviewed in section 2. The sequential CO algorithm is pre-
sented and proved in section 3 before to be extended to the
parallel context in section 4. Experiments are detailed in sec-
tion 5. Related works are discussed in section 6 before the
conclusions.

2. Marching Tetrahedra Review

We review the data access patterns associated with the MT
isosurface extraction algorithm and its tree accelerated ver-
sions.

Mesh Data Structure. A mesh data structure usually con-
sists of two multidimensional arrays: an array storing point

Figure 1: The vtkUnstructuredGrid data structure (from the
VTK Textbook [SML04]). The Points array contains point
coordinates and the Cells array contains the indices of cell
points. The Cell Types array contains the type of each cell
and provides O(1) random access to cells.

attributes (e.g. coordinates, scalar values, etc.) and an array
storing for each cell its points and attributes (e.g. type of the
cell, scalar values, etc.). When the mesh is composed of cells
of different types (using various number of points), an addi-
tional array allows random access to cells (Fig. 1). As the
cache performance for meshes having identical or not type
cells is similar, we focus on homogeneous meshes in this
paper.

MT Algorithm. For one cell of a mesh, the MT algorithm
reads the point coordinates and scalar values and computes
a linear approximation of the isosurface going through this
cell. Applied on all mesh cells sequentially, it leads to a cost
linear in the number of cells.

Tree Accelerated MT. The MT algorithm can be accel-
erated with various data structures allowing to efficiently
search for the cells intersected by the isosurface. One such
data structure is the min-max tree [WVG92]. An octree
where each node stores the minimum and maximum values
of its subtrees allows to quickly discard parts of the mesh
that do not contain any intersected cell. The search is thus
improved from O(n) to O(k+k logn/k) where n is the num-
ber of cells and k the size of the isosurface (usually k� n).
If the scalar field is spatially coherent, the performance is ac-
tually improved over this theoretical bound as large subtrees
can be pruned.

Several kinds of min-max trees can be used. Octrees, kd-
trees or more generally Binary Space Partitioning (BSP)
trees recursively decompose the mesh into regions. The idea
is that the scalar field does not vary too much in each re-

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

gion and thus the extreme of the scalar field form a small
interval, less likely to contain the isovalue. Contrary to these
geometric decompositions, the vtkSimpleTree of the VTK
library [SML04] uses a layout decomposition. The regions
consist of intervals of indices in the cell array. This tree is
faster to compute and less memory consuming as regions
are implicitly defined. However, depending on the cell lay-
out, the scalar field may vary a lot in each region as they are
not based on the geometry.

There exists an optimal data structure which is not based
on the min-max tree. The interval tree [CMPS96] stores for
each cell c the interval whose extremes are the minimum
and maximum value of the points of c. The query time is im-
proved to O(logn+k) whatever the spatial repartition of the
scalar field is. The interval tree has been made I/O-efficient
allowing a query with complexity O(logB n+k/B), where B
is the block size. This is optimal [CS97]. However this ap-
proach is not space-efficient since vertex information is du-
plicated many times. The 2-level indexing scheme based on
the meta-cells technique introduced in [CSS98, CS99] im-
proves over the interval tree in term of space usage but some
data remain duplicated. Spatially close cells are grouped into
meta-cells, which are then used in the I/O-efficient interval
tree.

The tree accelerated MT, based on the min-max tree or the
interval tree, improves performance over the regular MT at
the cost of a higher memory requirement [SHwSS00]. More-
over, if the tree structure depends on the scalar field, the tree
has to be stored for each scalar field. In this paper, we pro-
pose a min-max tree that is very compact and whose struc-
ture is the same for all scalar fields.

3. Cache-Efficient Isosurface Extraction

We now look at cache misses induced by sequential MT al-
gorithms. After a general discussion, we focus on meshes
stored according to the CO layout introduced in [TDR10]
and give a theoretical guarantee of cache performance for a
MT algorithm and a min-max tree accelerated.

3.1. Source of Cache Misses in MT

The cache misses in the MT algorithm come from accessing
the cell array, accessing the point array, and accessing the
min-max tree for the tree accelerated variant. In the regular
MT algorithm, the cell array is traversed once in order, i.e.
from low indices to high indices. Thus it induces only com-
pulsory cache misses, corresponding to a first access. The
point array is not accessed in a regular order like the cell ar-
ray. Points are accessed by following a reference from the
cell array, e.g. read coordinates of a point. This can induce
capacity misses if the same point is needed by cells far away
in the cell array. It is likely that the cache line containing
the point will be evicted from the cache between these two

Figure 2: The cache-oblivious memory model. The data are
transferred by block of B consecutive elements into a cache
of size M. Both parameters are unknown to the algorithm.

accesses. In this case, the layout does not exhibit a good tem-
poral locality. Moreover, not all data stored in a cache line
will be use before being evicted; for example when a cache
line stores data for two different points that are needed by
cells far away in the cell array. In this case the layout lacks
of spatial locality. For the tree accelerated MT, the cell array
is not necessarily accessed in order like for the regular MT,
which could lead to extra cache misses.

The number of cache misses heavily depends on the mesh
layout, i.e. how cells and points are sorted and stored in
memory. For example, a point layout can improve cache per-
formances if points corresponding to the same cell are stored
nearby. These points may share cache lines, which increases
spatial locality. Also, a cell layout can improve cache per-
formance if the cells that are accessed consecutively by the
min-max tree are stored nearby. Two consecutive active cells
could be in the same cache line, increasing spatial locality.

As a mesh often includes several scalar fields, we consider
here only optimizations of the layout that do not depend on
the scalar field value. Thus these optimizations are efficient
for all scalar fields.

3.2. Cache-Oblivious Model (CO)

We now introduce the cache-oblivious model from
[FLPR99] we rely on to theoretically measure the number
of cache misses. The memory hierarchy consists of two lev-
els, a fast memory of size M called cache and an infinite
size slow memory. The data are transferred between these
two levels in blocks of B consecutive elements (Fig. 2). The
cache performance of an algorithm is the number of block
transfers needed to complete the computation. Parameters B
and M are unknown to the algorithm to forbid tuning for
a specific architecture. A good CO algorithm, i.e. one that
performs well in the CO model, is thus expected to be cache-
efficient whatever the cache and block size are.

3.3. CO Mesh Layout

In [TDR10], the authors introduce a CO layout algorithm
for irregular meshes with a theoretical performance guaran-
tee. It relies on a recursive mesh partitioning using a specific

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

BSP algorithm. This algorithm cuts the mesh guaranteeing
a good tradeoff between minimizing the number of cut el-
ements and having two partitions of similar size. When ap-
plied recursively, it ensures that spatially close and strongly
connected data tend to be partitioned deeper in the BSP tree.
The CO layout is obtained by storing the data linearly in
memory from the first leaf of the BSP tree to the last one.
The data loaded in a cache block are thus contiguous leaves
of the BSP tree. It is cache-oblivious as to any block and
cache size corresponds a BSP tree depth level. This ensures
a strong locality and connectivity.

This CO layout algorithm has several benefits. Computing
the layout is fast (complexity of O(n logn)). When travers-
ing the layout the cache-complexity is guaranteed not only
for a strict layout consistent access order but also for a chunk
based access. Data can be accessed by chunks of m consec-
utive elements in the layout, to be processed (in any order)
before accessing another chunk anywhere in the layout.

Theorem 1 (Chunk traversal from [TDR10])
The CO layout guarantees that a traversal by chunks of
size m ≤ M of an N-size mesh induces less than N/B +
O(N/m1/3) cache misses where B and M are the block and
cache size, respectively.

3.4. MT Cache Performance

Using the cache-oblivious layout of the previous section,
one can guarantee that the marching tetrahedra algorithm in-
duces less that O(n/B+n/M1/3) cache misses where B and
M are the block size and the cache size. Indeed, the MT al-
gorithm processes the mesh in order and thus by chunks of
size M.

3.5. Tree Accelerated MT Cache Performance

We consider here a specific min-max tree, the one based on
the BSP tree partitioning the mesh for computing the CO
layout. We use this BSP tree because each node corresponds
to a sub part of the mesh stored sequentially in memory.
We thus get a min-max tree that is layout friendly. When
traversing the BSP tree in prefix order and examining the
mesh cells that might contain a part of the isosurface, mesh
cells are accessed sequentially. Contiguous mesh cells can
be skipped (pruned by the min-max tree), but we will never
go backward. We can expect to save cache misses. This tree
accelerated MT algorithm has been introduced in [TDR10].
Here, we also state its performance given the additional hy-
pothesis that the scalar field is spatially coherent, i.e. for re-
gions of n cells in the mesh the isosurface intersects on aver-
age at least n2/3 cells for each region. A similar hypothesis
is used in [CS99]. Using theorem 1, one can show that the
cache performance of this tree accelerated MT algorithm is
O(k/B2/3 + k/M1/3) where k is the number of active cells.

4. Parallel Cache-Efficiency

We now introduce a parallel MT algorithm that is equivalent
to the sequential one regarding cache performance.

4.1. Shared Cache Multicore

Most last generation multicores share a similar design for
the cache hierarchy. Each core has its own private caches
while the last cache level is shared between all cores. For
instance the Intel Nehalem, the AMD Phenom and the IBM
Power7 all have a shared L3 cache. Coming GPU architec-
tures also adopt this cache design. The Intel Larrabee has a
shared L2 cache. The NVIDIA Fermi has a L1 cache that
is shared for all stream processors in the same multiproces-
sors and a L2 cache that is shared across all multiprocessors.
They are many advantages of the shared cache compared to
private caches. It allows fast communication between cores.
If some cores work on the same data, these data are not du-
plicated into several caches. A core can potentially use more
than its fraction of the cache if necessary. But this requires
the algorithms to be adapted to make the cores collaborate
on cache usage. Classical parallelization approaches that are
not shared cache aware lead to competition for shared cache.
Performance, at most equivalent to a private cache configu-
ration, is actually impaired as the LRU replacement policy
performs poorly in this context [Has10].

4.2. Shared Cache Aware Parallelization

We now present a new parallelization scheme that guaran-
tees that the cache performance of the underlying sequential
application is not reduced. The idea is to have cores working
on close data so that each core has the impression to own
the totality of the shared cache. Cache misses of one core
profit to other cores as they are likely to also need these data
in a near future. But cores should not work on data that are
too close either because this could cause bad private cache
behaviors.

The parallel algorithm is based on the sequential execu-
tion order i0, i1, . . . , ip. We assume that the sequential al-
gorithm has good locality and thus data that are processed
closely in the sequential execution are also close in mem-
ory. Informally let im be the first instruction whose process-
ing would need to evict from the shared cache data needed
by instruction i0. To keep the cache performance of the se-
quential algorithm, the parallel scheme will deviate from the
sequential order at most for m instructions. That is, instruc-
tion ik can be processed only when instructions i1 to ik−m
have been completed. This way, data evicted when process-
ing ik do not affect the processing of the other instructions.
Moreover, as the cores work on instructions close in the se-
quential order, they work on close data and thus can profit of
other cores cache misses.

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

4.3. Parallel MT

We now apply this parallel scheme to the MT algorithm. Let
m be the maximal size, in number of cells, such that the
corresponding region of the mesh fits entirely in the shared
cache. It corresponds to the cells of the largest subtree of
the CO layout BSP tree that fit in the last level of cache. To
process all cells in parallel, we divide the n cells into n/m
chunks of size m and then process each chunk in parallel.
Processing a new chunk is started only when the previous
one has been entirely processed. To process one chunk, we
divide the m cells into m/p groups, one for each core. From
theorem 1, we know that a chunk can be processed in any or-
der without affecting the cache performance, thus the num-
ber of cache misses of the sequential algorithm 3.4 is still
valid for this parallel algorithm.

Let compare this shared cache aware parallelization with
a standard parallelization. The trivial way to process n cells
in parallel is to divide the cells in groups of n/p, one for
each core. Let assume now that the shared cache behaves as
well as p private caches (it should be worse in practice). This
parallelization yields at best on each core the performance of
the sequential algorithm on a cache of size M/p, i.e.

O
(

n/p
B

+
n/p

(M/p)1/3

)
.

Thus, the total number of cache misses is

O
(

n
B
+ p1/3 · n

M1/3

)
.

This is a factor of p1/3 worse than the shared cache aware
parallelization, which induces the same number of cache
misses as the sequential algorithm, i.e. O(n/B+n/M1/3).

However, the shared cache aware parallelization has much
more global synchronizations, where all cores wait for the
last one to finish. There is one synchronization per chunk,
n/m compared to only 1 for the standard parallelization. We
show in the experiments that this additional cost of synchro-
nization does not impair too much the performance of the
shared cache aware parallelization.

4.4. Parallel Tree Accelerated MT

We now apply the shared cache aware parallelization to the
MT accelerated with a min-max tree. We use as a min-max
tree the BSP tree built with the layout. Let consider nodes
of the BSP tree that correspond to a region of the mesh fit-
ting in the shared cache. By theorem 1, we know that each
of these nodes can be processed in any order without af-
fecting the cache performance. Thus each node of the BSP
tree can be processed in parallel by the p processors. A new
node starts being processed only when the previous one is
terminated. The cache complexity of the sequential algo-
rithm of section 3.5 is still valid for this parallel algorithm.
The overhead is the same as for the classic parallel version,

i.e. O(p1/3). However the shared cache aware parallelization
also has more synchronizations, one per node of the BSP
tree.

5. Implementation and Experiments

5.1. Architectures and Meshes

We took 4 different meshes (Blunt fin, buckyball, liquid oxy-
gen post, plasma64 from the AIM@SHAPE Shape Repos-
itory (http://shapes.aim-at-shape.net/), pro-
cessed to generate instances of 150M cells. We used tetgen
(available at http://tetgen.berlios.de/) to refine
the meshes by adding volume constraints to each tetrahedron
(we used the command tetgen -raq). For each mesh, we
generated two finer meshes. In the first one, all tetrahedra
have approximately the same volume. In the second one, we
used a volume constraint proportional to the inverse of the
gradient of the scalar field to mimic adaptive mesh refine-
ment. It leads to a set of 8 meshes with approximately 150M
cells each.

For each mesh, 3 layouts are compared. The original lay-
out as downloaded from the web, the geometric layout where
points and cells are sorted according to x,y,z coordinates
using lexicographic order, and the CO layout generated by
FastCOL [TDR10].

The experiments were conducted on three different archi-
tectures. Two multicores (Intel Core2 E6750 @ 2.66Ghz,
dual core, private cache L1 32KB, shared cache L2 4MB
and Intel Xeon E5530 @ 2.4Ghz, quad core, private cache
L1 32KB and L2 256K, shared cache L3 8MB) with a shared
last level of cache and one multicore with only private caches
(AMD Opteron 875 @ 2.2Ghz, dual core, private cache L1
8KB, private cache L2 1MB).

We measured the execution time and the number of L1, L2
and L3 cache misses using the PAPI software [BDG∗00]. For
each experiment (architecture, layout and algorithm fixed),
the execution time and the numbers of cache misses are very
stable. Results of the experiments are the median of 10 runs.

5.2. Min-Max Tree Implementation

We first describe the data structure used to store a min-max
tree, whatever the cell layout is. Each node of the tree cor-
responds to a region of the mesh and contains the minimum
and maximum value of the scalar field in this region. Those
nodes are stored linearly in memory like a pointerless bi-
nary tree. A more efficient layout could be used, like the van
Emde Boas layout of the cache-oblivious B-tree [ABF04].
We used a simple layout as the tree is small and the tree
traversal is only a small part of the computation (less than
10%). For each leaf of the tree, we need the cells lying in
the corresponding region of the mesh. A simple way is to
store in each leaf node a list of cells, which results in a com-
plex and inefficient storage. Instead we store a permutation

c© The Eurographics Association 2010.

http://shapes.aim-at-shape.net/
http://tetgen.berlios.de/

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

π of cells indices such that to each node of the tree corre-
sponds an interval of cells. This way, each leaf contains only
two cell indices i and j. To find the cells laying in a region,
we apply the permutation to each cell indices in the interval:
π(i), . . . ,π(j). Thus the data structure contains the tree and
the permutation.

In the case of a min-max tree based on the CO layout and
its associated BSP tree (Section 3.5), the cell permutation
is simply the identity. Storing the permutation is no longer
needed, leading to a very compact data structure.

The VTK binary tree vtkSimpleTree [SML04] can be
used to accelerate a MT algorithm. It is based on a recursive
decomposition of the layout of the mesh. This tree does not
need to store a cell permutation either but the regions it de-
fines are not based on geometry and thus could map together
very distant cells. It may not be as efficient when pruning
active regions.

The BSP tree associated with the CO layout is both based
on the layout and on the geometry. It is compact, can effi-
ciently discard inactive regions and induces a mesh traversal
with few cache misses.

We compare our min-max tree to the compact interval
tree of [WJV07]. To our knowledge, it is the most compact
implementation of the I/O efficient interval tree for isosur-
face extraction. To index a 25M cells mesh decomposed into
9x9x9 metacells, they need between 200MB and 250MB, a
factor 2 improvement over the standard I/O efficient inter-
val tree of [CS97]. In comparison, for a mesh of 150M cells,
a min-max tree using our permutation based storage needs
579MB, only 3 times bigger for a 6 times bigger mesh. With
the CO layout the permutation is not stored and the tree only
requires 6MB, which is several orders of magnitude smaller
than trees reported in the literature. The smallest tree re-
ported in [SHwSS00], the branch-on-need octree, requires
roughly 100MB for a 16M cell mesh. In the experiments we
used 2x2x2 metacells (8 cells per leaf) leading to a space
requirement of 958MB for the standard min-max tree and
385MB for the CO version, 36% and 14%, respectively, of
the size of the considered 150M cells mesh (one scalar field).

5.3. Sequential Performance

Table 1 shows the sequential performance of the MT algo-
rithm and the tree accelerated MT algorithm on various lay-
outs and architectures.

For the MT algorithm, the geometric layout outperforms
both in time and cache misses the original layout. The cache
oblivious layout shows the best performance with an im-
provement of a factor between 1.5 and 2 over the original
layout on all architectures.

For each layout, the tree accelerated MT algorithm is al-
ways faster than the regular MT algorithm. However, for the
tree accelerated MT algorithm, the geometric layout does not

improve performance over the original layout. The geomet-
ric and the original layout use the same kd-tree so the differ-
ence is not due to a smallest number of active cells but only
to a better cache behavior. As both the layout and the kd-tree
are based on the geometry, it is possible that the tree accel-
erated algorithm accesses the mesh less efficiently. The CO
layout with the adapted min-max tree shows the best perfor-
mance with very few cache misses. The reduction in cache
misses over the original layout with the kd-tree is between 3
and 5. This is impressive as the tree accelerated algorithm al-
ready induces few cache misses. This results in time speedup
of 2.

5.4. Parallel MT Implementation

We present here the implementation of the two parallel MT
algorithms. The standard parallelization that acts as if the
shared cache was split into p private caches is denoted split
cache, while the shared cache aware parallelization is called
shared cache. We used pthread to parallelize all algo-
rithms as this allows a fine grain control on synchronizations
and to reduce parallelism overhead over high level parallel
libraries like OpenMP.

For the split cache parallel MT algorithm, the array of
cells is statically divided into p groups. Each group is as-
signed to one thread and all threads synchronize at the end
of the computation.

For the shared cache version, the array of cells is first
divided into chunks as large as possible but that can fit in
the shared cache. Then each chunk is statically divided into
p groups and all threads synchronize at the end of each
chunk before starting to compute the next one. Each syn-
chronization is implemented with a pthread_barrier.
Threads wait at the barrier and are released when all of them
have reached the barrier. Compared to the split cache ver-
sion where there is only one synchronization at the end of
the computation, this version has n/m synchronizations, one
per chunk. So we expect the threads to spend more time
waiting for other threads to finish their work. Nevertheless,
the shared cache version keeps all threads working on data
close in mesh space and thus in memory, which should re-
sult in less cache misses. We show in the next section that
the shared cache version outperforms the split cache version.
The reduction of cache misses more than counterbalance the
augmentation of waiting times due to an increased number
of synchronizations.

5.5. Parallel MT Performance

Table 2 (top) compares the performance of the two parallel
MT algorithms on a multicore with only private caches and
two multicores with a shared last level of cache. Both algo-
rithms execute the same number of instructions. The very
good speedups on the Opteron suggest that the work load is
well balanced. We also examined the number of instructions

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

Table 1: Sequential performance of the MT algorithm and the tree accelerated MT (TA) on Opteron, Core2 and Nehalem. Only
one core is used. For the original and geometric layout, the min-max tree is a kd-tree. For the CO layout the associated BSP
tree is used. Times are in ms. Cache misses for all levels of caches (L1, L2 and L3) are in millions.

Opteron Core2 Nehalem

Time L1 L2 Time L1 L2 Time L2 L3
M

T

Original 10800 155.2 48.2 2940 190.2 59.4 3600 190.2 54.0
Geometric 6200 122.8 25.9 2120 141.6 49.8 2600 216.4 53.2

CO 5250 45.5 14.7 1935 47.8 41.2 2280 91.5 7.6

TA

Original 1650 16.8 13.0 970 29.3 21.3 855 23.8 16.8
Geometric 2890 25.9 22.0 1385 52.6 40.4 1300 44.4 23.8

CO 690 5.0 4.0 565 5.4 4.4 415 8.2 3.5

executed by each thread and they are very close. Thus the
performance difference observed between both algorithms
is mainly based on the cache behavior.

Both algorithms scale very well on the Opteron. We ob-
tain a speedup close to 2 for the original and geometric lay-
outs. The CO layout shows a super linear speedup due to
a very low number of cache misses for the parallel algo-
rithms, 2 times less cache misses than the sequential algo-
rithm. However we are not able to explain such a reduction
of cache misses. The two parallel schemes perform equally
well with a very close number of cache misses for both levels
of cache L1 and L2. This was expected as there is no shared
level of cache.

For the Core2 and Nehalem processors, the parallel al-
gorithms do not scale as well as on the Opteron (2 threads
run on the Core2 and 4 on the Nehalem). Indeed, the par-
allel algorithms do not have more cache than the sequential
algorithm. Similarly to the Opteron, the number of private
cache misses are very close for the two parallel schemes.
As expected, the split cache version induces more cache
misses than the sequential algorithm on the shared cache.
The shared cache version keeps a number of cache misses
very close to the one of the sequential version and thus is
faster than the split cache version almost all the time for the
original and geometric layout. Performances are similar for
the CO layout due to the very low number of cache misses of
the sequential algorithm (behavior analyzed in section 5.8) .

5.6. Parallel Min-Max Tree Implementation

In our implementation of the parallel min-max tree algo-
rithm, only the generation of triangles is performed in par-
allel and not the tree traversal to select active cells. As the
active cells selection phase represents only 7% of the se-
quential time, we expect the algorithms to still scale well.
In the split cache version, the active leaves are statically di-
vided into p groups, one per thread. Each thread processes
its group of cells and all of them synchronize at the end. In
the shared cache version, the min-max tree is first divided

into nodes that correspond to regions of the mesh that fit in
cache. Then actives leaves of each region are distributed to
the threads and processed in parallel. Threads synchronize at
the end of each region using a pthread_barrier before
starting processing the next region. Like for the MT algo-
rithm, the shared cache aware version uses more synchro-
nizations to stay close to the sequential order but it leads to
less cache misses compared to the split cache version.

5.7. Parallel Min-Max Tree Performance

Table 2 (bottom) compares the performance of the two paral-
lel tree accelerated MTs. The behavior of the tree accelerated
version is similar to the regular MT. Both schemes perform
equally well on Opteron and the shared cache version per-
forms better on the Core2 and the Nehalem. However in this
case, the shared cache version still offers some improvement
over the split cache version with the CO layout.

5.8. Measure of Locality

To better analyze the properties of the different layouts, we
analytically relate the performance improvements to the bet-
ter data locality in memory. We call “edge length” the mem-
ory gap between two vertices of the same edge in the vertex
array loaded in memory. If a mesh has shorter edges, more
of them will fit in cache and a better performance should be
observed. Figure 3 shows that the CO layout favors smaller
edge lengths than the two other layouts.

We now estimate the number of cache misses using an
edge length based metric. Let N be the size of a mesh (in
bytes), E the set of all edges of the mesh, B the cache line
size and M the cache size, we estimate the number of cache
misses by:

CMseq ≈
N
B
+ ∑

e∈E
1λe>M

where λe is the length of the edge e. We count the number of
cache misses for a linear full read of the data arrays and we
add one cache miss per edge whose length is bigger than the
cache size M.

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

Table 2: Performance comparisons on three different processors, for three different layouts original (Ori.), geometric (Geo.)
and cache-oblivious (CO) of the sequential MT algorithm, the split cache and shared cache parallel MT algorithms (top), or the
tree accelerated sequential MT algorithm, the split cache and shared cache tree accelerated parallel MT algorithms (bottom).
Hyperthreading is disabled on Intel processors. The parallel algorithms are executed with 2 threads on the Opteron and Core2
processors, and with 4 threads on the Nehalem. Cache misses are in millions. Speedups are relative to the sequential algorithm
on the same layout (Seq. speedup) or relative to the sequential algorithm on the original layout (Orig. speedup).

Opteron Core2 Nehalem

Speedup Cache Misses Speedup Cache Misses Speedup Cache Misses
Seq. Orig. L1 L2 Seq. Orig. L1 L2 Seq. Orig. L2 L3

M
T

O
ri

g.

Sequential 1.00 155.2 48.2 1.00 190.2 59.4 1.00 190.2 54.0
Split Cache 2.07 155.2 42.1 1.43 189.9 75.0 2.83 190.1 70.0
Shared Cache 1.99 155.3 44.0 1.72 188.3 57.8 3.36 191.1 55.2

G
eo

. Sequential 1.00 1.74 122.8 25.9 1.00 1.39 141.6 49.8 1.00 1.38 216.4 53.2
Split Cache 1.98 3.45 122.8 21.1 1.59 2.21 140.9 59.0 3.02 4.19 217.8 68.5
Shared Cache 1.98 3.45 122.8 21.4 1.78 2.47 140.2 48.6 3.31 4.59 220.2 56.9

C
O

Sequential 1.00 2.06 45.5 14.7 1.00 1.52 47.8 41.2 1.00 1.58 91.5 7.6
Split Cache 2.69 5.53 45.5 7.0 1.74 2.65 47.6 41.3 3.10 4.90 92.3 8.9
Shared Cache 2.56 5.27 45.6 6.6 1.71 2.60 47.6 41.1 3.06 4.83 93.5 8.7

Tr
ee

A
cc

el
er

at
ed

M
T

O
ri

g.

Sequential 1.00 16.8 13.1 1.00 29.3 21.3 1.00 23.8 16.8
Split Cache 1.55 16.6 13.1 1.42 28.9 22.1 2.59 22.9 17.9
Shared Cache 1.54 16.6 13.1 1.60 29.1 21.1 2.85 22.8 16.7

G
eo

. Sequential 1.00 0.57 25.9 22.0 1.00 0.70 52.6 40.4 1.00 0.66 44.4 23.8
Split Cache 1.68 0.96 25.8 22.0 1.56 1.09 52.5 41.6 2.89 1.90 43.8 25.9
Shared Cache 1.64 0.93 25.6 22.0 1.73 1.21 52.5 40.2 3.02 1.99 43.9 24.6

C
O

Sequential 1.00 2.39 5.0 4.4 1.00 1.72 5.4 4.4 1.00 2.06 8.2 3.5
Split Cache 1.31 3.14 4.5 3.8 1.43 2.46 5.1 5.1 2.08 4.28 7.3 3.7
Shared Cache 1.33 3.17 4.5 3.7 1.53 2.62 5.3 3.6 2.18 4.50 7.3 3.4

For the split cache version, we could think of each core
having a private cache of size M/p instead of a shared cache
of size M, which gives an expected number of cache misses
of

CMsplit ≈
N
B
+ ∑

e∈E
1λe>M/p

As the shared cache version has the same cache performance
as the sequential algorithm, we have

CMshared− N
B

CMsplit− N
B
≈ ∑e∈E 1λe>M

∑e∈E 1λe>M/p

Let check this formula for Core2 (Table 2). In our exper-
iments, we measured that a linear read of the mesh induces
37.6 millions of L2 cache misses so we have N/B = 37.6.
On the original layout, the experiments give

CMshared− N
B

CMsplit− N
B

=
75.0−37.6
57.8−37.6

≈ 1.85 ,

which is close to the value of 1.90 found with the edge length
metric. A similar calculation using the experiments and the
geometric layout gives 1.95, with an edge length metric of

1.95. On Nehalem we measured 2.45 for the original layout
and 2.00 for the geometric layout, close to the edge length
metric values of 2.30 and 2.35. For the CO layout, both
the measured cache misses and the edge length values are
close to 1. This is consistent with the split cache and shared
cache algorithms inducing approximately the same number
of cache misses.

This reasoning allows to extrapolate the gain in cache
misses of the shared cache parallelization over the split
cache parallelization for various cache sizes. Figure 4
presents expected gain for all three layouts on various shared
cache sizes. One can remark 3 things. The more cache is
available, the less speedup is to be expected. The more cores
share the same cache, the more speedup is to be expected. If
the sequential application has already very few cache misses,
then it performs well under both parallelization schemes
(CO case). However the shared cache approach has still an
interest for well optimized layouts if the cache is small and
shared by a lot of cores. The L1 cache of the Fermi architec-
ture can hold 48KB of data and is shared amongst 32 pro-
cessing units. Using the same edge length prediction, the
shared cache scheme should reduce the number of cache

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

misses by 66% compared to the split cache scheme for the
CO layout.

6. Related Work

There is another method for efficient isosurface extraction
not studied in this article: the seed set and propagation algo-
rithm [BPS96] that proposes to find cells intersected by the
isosurface using a graph search on the topology of the mesh.
We believe such an approach can benefit for our shared cache
scheme. There is also an entirely different approach, not
based on marching tetrahedra but on ray tracing [WFM∗05].
We plan to further study the impact on the shared cache on
ray tracing applications.

Many parallel schemes have been proposed to achieve
good load balancing for isosurface extraction [ZNZ04].
Those techniques could be coupled with our shared cache
scheme to efficiently balance the load inside a chunk. How-
ever those techniques only take into account the number
of instructions and not the cache misses. To overcome this
problem, we plan to use a work stealing load balancing
scheme.

The closest work is the out-of-core parallel interval tree
of [WJV07]. Authors provide a provably efficient load bal-
ancing scheme. However the technique is cache aware.
Moreover, they focus on distributed processors that do not
share caches.

Other layouts exist for efficient mesh traversal. Space fill-
ing curves have been used for regular meshes in [PF01].
For unstructured meshes, OpenCCL [YLPM05] provides
an heuristic for building efficient layouts but without any
performance guarantee. Using the algorithm of OpenCCL,
[YM06] proposes an efficient layout for both a mesh and
a bounding volume hierarchy tree. This is similar to our

0.
0

0.
4

0.
8

cache size

%
 o

f e
dg

es
 fi

tti
ng

 in
 c

ac
he

1MB 4MB 8MB

Ori.
Geo.
CO

Figure 3: Cumulative distribution function of edge lengths
for various layouts applied to the 150M plasma mesh (the
other meshes produce similar graphs).

adapted min-max tree as both trees are tailored to efficiently
access the mesh.

To our knowledge, the first work on shared cache
is [BG04, CGK∗07] that presents a scheduler that follows
as much as possible the sequential execution order. How-
ever, threads working on too close data can impair the per-
formance of private caches. By using a suitable chunk size,
our shared cache algorithm benefits from the shared level of
cache while still using private caches efficiently.

7. Conclusion

This paper focused on cache efficiency for isosurface extrac-
tion. We theoretically guarantee the performance of the se-
quential MT algorithm relying on the CO layout introduced
in [TDR10], as well as a tree accelerated version taking ad-
vantage of the BSP tree built to compute the layout. Then, we
consider a parallelization scheme that takes into account that
caches may be shared on multicore processors. We prove
that this parallelization leads to the same number of cache
misses than the sequential algorithm, less than a traditional
parallelization assuming caches are all privates. Experiments
confirm the benefits of shared cache aware approaches and
of CO based algorithms. We expect these techniques to be
even more effective on architectures with small caches like
the Fermi GPU. Future work will try to combine shared
cache aware access patterns with advanced load balancing
schemes.

1
2

3
4

cache size

ra
tio

 o
f s

av
ed

 c
ac

he
 m

is
se

s

1MB 4MB 8MB

Ori.
Geo.
CO

Figure 4: Gain in cache misses of shared cache over split
cache for the 150M plasma mesh. Solid lines assume a cache
shared between 2 cores, dashed lines assume a cache shared
between 4 cores.

c© The Eurographics Association 2010.

M. Tchiboukdjian & V. Danjean & B. Raffin / Cache-Efficient Parallel Isosurface Extraction

References

[ABF04] ARGE L., BRODAL G., FAGERBERG R.: Cache oblivi-
ous data structures. Handbook on Data Structures and Applica-
tions (2004). 5

[BDG∗00] BROWNE S., DONGARRA J., GARNER N., HO G.,
MUCCI P.: A portable programming interface for performance
evaluation on modern processors. The International Journal of
High Performance Computing Applications 14 (2000), 189–204.
5

[BG04] BLELLOCH G. E., GIBBONS P. B.: Effectively sharing
a cache among threads. In Proceedings of SPAA ’04 (2004),
pp. 235–244. 9

[BPS96] BAJAJ C. L., PASCUCCI V., SCHIKORE D. R.: Fast
isocontouring for improved interactivity. In Proceedings of VVS
’96 (1996), p. 39. 9

[CGK∗07] CHEN S., GIBBONS P. B., KOZUCH M., ILEIOS
LIASKOVITIS V., AILAMAKI A., BLELLOCH G. E., FALSAFI
B., FIX L., HARDAVELLAS N., MOWRY T. C., WILKERSON
C.: Scheduling threads for constructive cache sharing on cmps.
In Proceedings of SPAA ’07 (2007), pp. 105–115. 9

[CMPS96] CIGNONI P., MONTANI C., PUPPO E., SCOPIGNO
R.: Optimal isosurface extraction from irregular volume data.
In Proceedings of VVS ’96 (1996), pp. 31–38. 3

[CS97] CHIANG Y.-J., SILVA C.: I/O optimal isosurface extrac-
tion. In Proceedings of Visualization ’97 (1997), pp. 293–300. 3,
6

[CS99] CHIANG Y.-J., SILVA C. T.: External memory techniques
for isosurface extraction in scientific visualization. In External
memory algorithms (Boston, MA, USA, 1999), American Math-
ematical Society, pp. 247–277. 3, 4

[CSS98] CHIANG Y.-J., SILVA C., SCHROEDER W.: Interactive
out-of-core isosurface extraction. In Proceedings of Visualization
’98 (1998), pp. 167–174. 3

[FLPR99] FRIGO M., LEISERSON C. E., PROKOP H., RA-
MACHANDRAN S.: Cache-Oblivious Algorithms. In Proceed-
ings of the 40th Annual Symposium on Foundations of Computer
Science (1999), p. 285. 3

[Has10] HASSIDIM A.: Cache replacement policies for multicore
processors. In Proceedings of Innovations in Computer Science
(2010). 1, 4

[PF01] PASCUCCI V., FRANK R.: Global Static Indexing for
Real-Time Exploration of Very Large Regular Grids. In Pro-
ceedings of Supercomputing ’01 (2001), pp. 45–45. 9

[SHwSS00] SUTTON P. M., HANSEN C. D., WEI SHEN H.,
SCHIKORE D.: A case study of isosurface extraction algo-
rithm performance. In Data Visualization 2000 (2000), Springer,
pp. 259–268. 3, 6

[SML04] SCHROEDER W., MARTIN K., LORENSEN B.: The Vi-
sualization Toolkit, An Object-Oriented Approach To 3D Graph-
ics, 3rd ed. Kitware Inc., 2004. 2, 3, 6

[TDR10] TCHIBOUKDJIAN M., DANJEAN V., RAFFIN B.: Bi-
nary mesh partitioning for cache-efficient visualization. IEEE
Transactions on Visualization and Computer Graphics 99,
PrePrints (2010). http://moais.imag.fr/membres/
marc.tchiboukdjian/pub/tvcg10.pdf. 2, 3, 4, 5, 9

[WFM∗05] WALD I., FRIEDRICH H., MARMITT G.,
SLUSALLEK P., SEIDEL H.-P.: Faster isosurface ray trac-
ing using implicit kd-trees. IEEE Transactions on Visualization
and Computer Graphics 11 (2005), 562–572. 9

[WJV07] WANG Q., JAJA J., VARSHNEY A.: An efficient and

scalable parallel algorithm for out-of-core isosurface extraction
and rendering. J. Parallel Distrib. Comput. 67, 5 (2007), 592–
603. 6, 9

[WVG92] WILHELMS J., VAN GELDER A.: Octrees for faster
isosurface generation. ACM Trans. Graph. 11, 3 (1992), 201–
227. 2

[YLPM05] YOON S.-E., LINDSTROM P., PASCUCCI V.,
MANOCHA D.: Cache-oblivious mesh layouts. In ACM SIG-
GRAPH (2005), pp. 886–893. 9

[YM06] YOON S.-E., MANOCHA D.: Cache-Efficient Layouts
of Bounding Volume Hierarchies. Computer Graphics Forum
25, 3 (2006), 507–516. 9

[ZNZ04] ZHANG H., NEWMAN T. S., ZHANG X.: Case study
of multithreaded in-core isosurface extraction algorithms. In
EGPGV (2004), pp. 83–92. 9

c© The Eurographics Association 2010.

http://moais.imag.fr/membres/marc.tchiboukdjian/pub/tvcg10.pdf
http://moais.imag.fr/membres/marc.tchiboukdjian/pub/tvcg10.pdf

