Cache-Oblivious Algorithms
Application to Scientific Visualization

P e Y
Lt
st N
By
N
e

o
.l
“ .’
- . El
; e
. < .’ * -
- s -
-
‘ L
. L3
&¥y G
Y A
-

! : »

Vincent Danjean, Bruno Raffin,

Marc Tchiboukdjian Jean_PQ;ILI/gEMe/DI?IFomme

MO AIlS team-project
Laboratoire d'Informatique de Grenoble

eIt = eSS

L1 G

Visualization & Massive Data Sets

1 1
rll\lllll||“|i i E

i

TERA-10

CEA supercomputer '

19t Top500 Simulation of half the
9968 Itanium2 observable universe
60 Tflops 50 TB mesh

30 TB of memory
1 PB of disk space

Technigues to Handle Massive Data Sets

« Data Compression
- Geometry compression
- Topology compression
- Attributes compression

 Cache-conscious techniques Today's topic
- Data reordering
- Computation reordering

Outline

« An algorithm is said oblivious if no program variables
dependent on hardware configuration parameters need to be
tune to reach optimal performances » [Prokopé&al]

e Cache-Aware Model

Cache-Oblivious Model

Cache-Oblivious Mesh Layout

Preliminary Experiments

Conclusion & Future Work

Memory Hierarchy

Cache

Access times 10%ns 102ns 10ns

Cache-Aware Model (CA) [Aggarwal & vitter 1988]

or external memory
out-of-core
disk access machine

W: #operations /0 model

Q: #block transfers

Cache Block transfers Disk

‘_’.

Size M _
M/B blocks Size B Infinite size

Scanning in the CA Model

Read an N-elements array: the naive algorithm is optimal

Searching in the CA Model

Searching a key in an N-nodes balanced binary tree: naive doesn’t work

N

%

l - l O(lgN)

W(N)=1.0(IgN)
Quie(N)=1.0(IgN)

Searching in the CA Mode| [Bayerand McCreight 1972]

Searching a key in an N-elements B-tree

O(B)

<
». 4

0. ’0
v, PYd
ay [3s
"Runnennsksnnhuunus®

OB

W(N)=IgB.O(log,N)
Qca(N)=1.0(logzN)

>

<

O(logzN)

Multiplying in the CA Model

NXxN matrices in row-major order: naive doesn’t work

Memory
accesses in B
are suboptimal

10

Multiplying in the CA Model

NxN matrices in blocks

G e L e e

Technique used in BLAS

11

Drawbacks of the CA Model

— Only two levels of the memory + Efficient with all levels of the
hierarchy memory hierarchy
* At least 4 levels on any modern CPU
 Even deeper with multiprocessors

— Architecture dependent + Architecture independent

» Difficult to find optimal B and M
(ATLAS)

* GPU memory hierarchy is unknown
* B and M can vary over time
* Need to recompute the layout

12

Outline

Cache-Aware Model

Cache-Oblivious Model

Cache-Oblivious Mesh Layout

Preliminary Experiments

Conclusion & Future Work

13

Cache-Oblivious Model (CO) [Frigo & al 1999]

Cache Block transfers

Optlmal replacement
strategy

-

Unknown size M Unknown size B Infinite size

14

Scanning in the CO Model

Alignement issue

Searching in the CO Model [Bender et al 2000]

Binary tree mapped in memory using a recursive layout

A ?

A v
\ |

‘ L%J O(lg B)

o

Multiplying in the CO Model

D&C matrix multiplication using a recursive layout

17

Outline

Cache-Aware Model

Cache-Oblivious Model

Cache-Oblivious Mesh Layout

Preliminary Experiments

Conclusion & Future Work

18

Cache-Oblivious Ordering of a Mesh

Cache RAM
Memory hierarchy -4—> —
BIock transfers

Access times 10%ns 102ns 10°ns
How to lay out a
mesh in . —
memory to algorithm 2
minimize cache

misses?

19

ldea

Triangles (or vertices) that are most likely to be accessed
sequentially should be stored nearby

75% loaded blocksunloaded blocks 33%

\query slice

\

20

Graph of Sequential Accesses

NG 7\%‘\\\
o G,: sequential access between triangles

\ /

L

21

Mesh Layout Problem

Minimize # of cache misses if each node touches all its neighbors

22

Example

cache (B=2,M=4)

25 cache misses

disk

23

Reqgular Meshes: Space-Filling Curves

Lebesgue curve

B=64

25% loaded blocks ,
query slice

B=16
20% loaded blocks

B=4
10% loaded blocks

unloaded block loaded block

24

Unstructured Meshes [Pascucci & al 2005]

e Heuristic algorithm based on multi-level
optimization
- slow
- high memory usage

* Good experimental results (2-5x improvement)
* But no guarantee on \
- time to compute the layout

- layout quality \ y

25

Overlap graphs [Miller & al 98]

 Planar graphs
- Egde between two nodes iff two circles touch each other

 Overlap graphs (extension in dimension d)

- Edge between two nodes iff two spheres touch each
other

 Overlap graphs contain well-shaped meshes

Separator for overlap graphs [Miller & al 98]

. Separate the mesh into two roughly equal-size pieces
utting few edges

(6iEe iy i (A EA ES T “

e Overlap gjrzliqhs (randomized linear time)
‘G1| ‘GZ _d‘|‘2 ‘G‘

E(G,G,)=0l|G|™"| :

27

Our layout

W(N)=0|NlogN|
 Recursively cut the mesh
 The order of the leaves gives the layout
4

28

Guarantee on the Quality of the Layout

G
* Each subgraph fits in - T

cache £ ——
\ cut edges) \
* Edges inside a subgraph
do not cause a cache miss / ‘ / ‘
| & Hp
* Cache misses are
bounded by the number of ﬂ
edges between two outer edges

* One can show that there
are few outer edges fits in cache

Theorem: Our layout guarantees that a traversal of an O(N)-size d-dim
mesh causes less than O(N/B+N/M') cache misses

29

Back to the Example

cache (B=2,M=4)

1 disk

116 7 42 5 8 | 3

12 cache misses (25 previously)

Outline

Cache-Aware Model

Cache-Oblivious Model

Cache-Oblivious Mesh Layout

Preliminary Experiments

Conclusion & Future Work

31

Preliminary Experiments

32

Preliminary Experiments

33

Isosurface extraction
e Marching Cube (On CPU with VTK)
e Marching Cube (On GPU with CUDA)

e Using a tree to speed up cell search
- Tree from VTK
- QOur tree (min-max tree)

2,AM points 5,
14M tetras

Volume Rendering

e Using VTK on CPU (several methods)

e QOur code in CUDA on GPU

Image plane

Volume data set

35

Outline

Cache-Aware Model

Cache-Oblivious Model

Cache-Oblivious Mesh Layout

Preliminary Experiments

Conclusion & Future Work

36

Conclusion & Future Work

e Qur algorithm
- Fast
- Quality & time guarantee
- Architecture independent

 Experimental validation
- Difficult to find big 3D unstructured meshes
- Multiresolution methods

* Visualization in parallel

- How do we keep the good cache performance ?

37

Processor oblivious algorithms

To design a single efficient algorithm
with provable performances on an arbitrary architecture

Sequential paraIIeI / parallel ™S

algorlthm “ P=100

/D
S
\

/O

Which algorithm
to choose ?

38

A processor & cache oblivious model

e Deeper memory hierarchy

 Processor + Cache -» Communications
- sharing a cache & low cost communication

39

Interaction cache / scheduling

Can be worse than
each core has a cache of half size

Cache sharing

Can be as good as
each core has a cache of full size
Memory

40

Questions?

Thank you

41

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41

