Cache-Oblivious Algorithms
Application to Scientific Visualization
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Visualization & Massive Data Sets
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19t Top500 Simulation of half the
9968 Itanium2 observable universe
60 Tflops 50 TB mesh
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Technigues to Handle Massive Data Sets

« Data Compression
- Geometry compression
- Topology compression
- Attributes compression

 Cache-conscious techniques Today's topic
- Data reordering
- Computation reordering



Outline

« An algorithm is said oblivious if no program variables
dependent on hardware configuration parameters need to be
tune to reach optimal performances » [Prokopé&al]

e Cache-Aware Model

Cache-Oblivious Model

Cache-Oblivious Mesh Layout

Preliminary Experiments

Conclusion & Future Work



Memory Hierarchy

Cache

Access times 10%ns 102ns 10ns



Cache-Aware Model (CA)  [Aggarwal & vitter 1988]

or external memory
out-of-core
disk access machine

W: #operations /0 model

Q: #block transfers

Cache Block transfers Disk

‘_’.

Size M _
M/B blocks Size B Infinite size




Scanning in the CA Model

Read an N-elements array: the naive algorithm is optimal




Searching in the CA Model

Searching a key in an N-nodes balanced binary tree: naive doesn’t work
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%

l - l O(lgN)

W(N)=1.0(IgN)
Quie(N)=1.0(IgN)




Searching in the CA Mode| [Bayerand McCreight 1972]

Searching a key in an N-elements B-tree
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Multiplying in the CA Model

NXxN matrices in row-major order: naive doesn’t work

Memory
accesses in B
are suboptimal
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Multiplying in the CA Model

NxN matrices in blocks

G e L e e

Technique used in BLAS
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Drawbacks of the CA Model

— Only two levels of the memory  + Efficient with all levels of the
hierarchy memory hierarchy
* At least 4 levels on any modern CPU
 Even deeper with multiprocessors

— Architecture dependent + Architecture independent

» Difficult to find optimal B and M
(ATLAS)

* GPU memory hierarchy is unknown
* B and M can vary over time
* Need to recompute the layout
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Cache-Oblivious Model (CO) [Frigo & al 1999]

Cache Block transfers

Optlmal replacement
strategy

-

Unknown size M Unknown size B Infinite size
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Scanning in the CO Model

Alignement issue




Searching in the CO Model [Bender et al 2000]

Binary tree mapped in memory using a recursive layout
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Multiplying in the CO Model

D&C matrix multiplication using a recursive layout
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Cache-Oblivious Ordering of a Mesh

Cache RAM
Memory hierarchy -4—> —
BIock transfers

Access times 10%ns 102ns 10°ns
How to lay out a
mesh in . —
memory to algorithm 2
minimize cache

misses?
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ldea

Triangles (or vertices) that are most likely to be accessed
sequentially should be stored nearby

75% loaded blocksunloaded blocks 33%

\query slice

\
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Graph of Sequential Accesses

NG 7\%‘\\\
o G,: sequential access between triangles
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Mesh Layout Problem

Minimize # of cache misses if each node touches all its neighbors
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Example

cache (B=2,M=4)

25 cache misses

disk
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Reqgular Meshes: Space-Filling Curves

Lebesgue curve

B=64

25% loaded blocks ,
query slice

B=16
20% loaded blocks

B=4
10% loaded blocks

unloaded block loaded block
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Unstructured Meshes [Pascucci & al 2005]

e Heuristic algorithm based on multi-level
optimization
- slow
- high memory usage

* Good experimental results (2-5x improvement)
* But no guarantee on \
- time to compute the layout

- layout quality \ y
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Overlap graphs [Miller & al 98]

 Planar graphs
- Egde between two nodes iff two circles touch each other

 Overlap graphs (extension in dimension d)

- Edge between two nodes iff two spheres touch each
other

 Overlap graphs contain well-shaped meshes




Separator for overlap graphs [Miller & al 98]

. Separate the mesh into two roughly equal-size pieces
utting few edges

(6iEe iy i (A EA ES T “

e Overlap gjrzliqhs (randomized linear time)
‘G1| ‘GZ _d‘|‘2 ‘G‘

E(G,G,)=0l|G|™"| :
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Our layout

W(N)=0|NlogN|
 Recursively cut the mesh
 The order of the leaves gives the layout
4
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Guarantee on the Quality of the Layout

G
* Each subgraph fits in - T

cache £ ——
\ cut edges) \
* Edges inside a subgraph
do not cause a cache miss / ‘ / ‘
| & Hp
* Cache misses are
bounded by the number of ﬂ
edges between two outer edges

* One can show that there
are few outer edges fits in cache

Theorem: Our layout guarantees that a traversal of an O(N)-size d-dim
mesh causes less than O(N/B+N/M') cache misses
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Back to the Example

cache (B=2,M=4)

1 disk

116 7 42 5 8 | 3

12 cache misses (25 previously)
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Preliminary Experiments
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Preliminary Experiments
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Isosurface extraction
e Marching Cube (On CPU with VTK)
e Marching Cube (On GPU with CUDA)

e Using a tree to speed up cell search
- Tree from VTK
- QOur tree (min-max tree)

2,AM points 5,
14M tetras



Volume Rendering

e Using VTK on CPU (several methods)

e QOur code in CUDA on GPU

Image plane

Volume data set
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Conclusion & Future Work

e Qur algorithm
- Fast
- Quality & time guarantee
- Architecture independent

 Experimental validation
- Difficult to find big 3D unstructured meshes
- Multiresolution methods

* Visualization in parallel

- How do we keep the good cache performance ?
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Processor oblivious algorithms

To design a single efficient algorithm
with provable performances on an arbitrary architecture

Sequential paraIIeI / parallel ™S

algorlthm “ P=100

/D
S
\

/O

Which algorithm
to choose ?
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A processor & cache oblivious model

e Deeper memory hierarchy

 Processor + Cache -» Communications
- sharing a cache & low cost communication
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Interaction cache / scheduling

Can be worse than
each core has a cache of half size

Cache sharing

Can be as good as
each core has a cache of full size
Memory
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Questions?

Thank you

41
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