Decentralized List Scheduling

Marc Tchiboukdjian Denis Trystram

Laboratoire d'Informatique de Grenoble

INRIA

g B INRIA
L G

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling

1/20

Parallel Programming

Parallel platforms

e Multicores l &)
e Manycores (GPU) -

Characteristics

e Increasing number of cores i

e Shared memory

i

Parallel Programming
Need for parallel algorithms that are
e easy to program

e efficient even on small data sets

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 2/20

Task Parallel Libraries

The new standard for parallel programming?

Cilk, Intel TBB, Microsoft TPL, KAAPI, ...

The programmer declares tasks and dependencies

Tasks can be created at runtime

Advantages:

e easier to program (less error-prone than threads)
e platform independent
e the library is in charge of load balancing

Greedy tasks scheduler

e When tasks are available, no processor is idle.
e Graham's guarantee: Cpax < % +(1— %) - Teo

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling

3/20

How to manage the tasks efficiently at runtime?

Global list of tasks

e Tasks generated by a running task are inserted in the list

e When a processor is idle, it retrieves a task from the list

Problem: concurrent accesses

e The list is accessed concurrently by several processors
e Protect the list by a lock or use a lock-free list

e Does not scale well in practice for small grain tasks

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 4/20

Efficient Tasks Management by Work Stealing

Decentralize the list

e Each processor has its own list
o If empty, it tries to steal tasks in others’ lists

e The scheduler is no longer greedy:
A processor can be idle while tasks are available in others’ lists

Previous work

e Work generation is probabilist, focus on steady state results
[Mitzenmacher 98, Berenbrink et al. 03]

e So far, only bound on Cyax is in the Cilk model
[Blumofe Leiserson 99, Arora et al. 01]

° IE[Cmax] S % + O(Too)
e Unit tasks, DAG with only one source and out-degree at most 2
= Need for a precise analysis of work stealing for P|prec, pj| Cmax

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 5/20

This Talk

Results

e Bound Cnay of work stealing for P|pj|Crax
e Almost tight analysis (independent tasks and Cilk model)

Work In Progress

e We still don't have a tight analysis of WS for P|prec, pj| Cmax

Overview

® Model and notations
@® Sketch of the analysis

@ Define a potential function
@® Compute the expected decrease of the potential in one step
© Study a probabilistic game

© Simulation results

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 6/20

Model and Notations

Platform with m synchronized and identical processors

Workload W of n independent tasks with processing times p;

e Each processor owns a list of tasks

An active processor (non-empty list) executes one unit of work

An idle processor (thief) randomly chooses another processor (victim)

e If the victim’s list is non empty, the thief steals half of the tasks
and resumes execution at the next time slot

e Otherwise, the thief tries again at the next time slot

Contention on lists:
if several thieves target the same victim a random succeed, others fail.

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 7/20

Model and Notations

Amount of work in list Q; of processor i at t w;(t) = Z p;j

JEQi(t)

Total amount of work at t w(t) = Z w;(t)
1<i<m

Total amount of work W = w(0)

Number of active processors at t a(t)

Number of idle processors at t m — a(t)

Total number of steals S = Z m — a(t)

1<t<Cmax

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 8/20

Potential Function ®: Motivation
Z 2= E————

i

Gantt chart with 25 processors and 2000 unit tasks
White: execution Grey: steal

e m- Cmax =W+S
Bound S to bound Cpax

Difficult to see any structure due to the random choices

Potential function decreasing at each successful steal

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 9/20

Potential Function ®: Definition

Definition

o)=Y (w(n -)’

1<i<m

® represents how well the load is balanced between the lists

t

PRI
) l IIWM I
]

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 10/20

Potential Function ®: Properties

o) = 3 (w(r)— DY’

1<i<m

® ® — 0 — no more steals I I I I I

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 11/20

Potential Function ®: Properties

o) = 3 (w(r)— DY’

- m
1<i<m

® ® — 0 — no more steals I I I I I

@Vi,Wi—>Wi—C:>A¢:O

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 11/20

Potential Function ®: Properties

o) = 3 (w(r)— DY’

- m
1<i<m

® ® — 0 — no more steals I I I I I

@Vi,Wi—>Wi—C:>A¢:O

© Idle processor i steals half of
the work of active processor

2

w

= A= L

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 11/20

Expected decrease of ® in one step

e Reminder: contention on the lists, only one steal succeed

e Decompose the potential decrease A® per active processor

o)) = Y (wi(r) - Y = 3wy - L)

- m -
1<i<m 1<i<m

MO =d()—0(t+T) = 3 () — = Aw(r)

active processors
o 0;(t) is the decrease of 3" w?(t) on active processor i

o As w(t+1) = w(t) — at), we have
Aw?(t) = w2(t) — (w(t) — at))? = 2a(t)w(t) — a?(t)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling

12/20

Expected decrease of ® in one step

e If processor i is not stolen, one unit of work is executed

0i(t) = wi(t) — wi(t +1)

= wi(t) — (wi(t) - 1)
= 2W,'(t) -1

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 13/20

Expected decrease of ® in one step

e If processor i is not stolen, one unit of work is executed

0i(t) = wi(t) — wi(t +1)

= wi(t) — (wi(t) - 1)°
= 2W,'(t) -1
e If processor j steals half of the work of processor i
6i(t) = wA(t) — w?(t +1) — Wj2(t +1)
oo (wilt) N2 wi(t)2
= wilt) (2 1) (2)
wi(t)

:iT—I—W;(t)—].

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 13/20

Expected decrease of ® in one step

e Expected decrease on active processor i

E[o;(t)] = P{processor i is not stolen} . <2W,'(t) - 1)

wi (t)
2

+ P{processor iis stolen} . (+ wi(t) — 1)

e As there are m — «(t) idle processors attempting to steal,

P{processor iis stolen} =pla(t) =1— (1 _ ﬁ)m*a(t)

e Summing §; on all active processors, we get

E[Ad(t)] > ”(0‘2“)) L o(t)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 14/20

Probabilistic Game

e We have the expected decrease of the potential in one step
E[A®] > ”(2‘1) .

e Problem: we don’'t know «

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 15/20

Probabilistic Game

We have the expected decrease of the potential in one step
MA¢]2pg0-¢

Problem: we don't know «

An adversary chooses the sequence a(t) maximizing the
number of steals S

At each time step t, the adversary chooses «, generating
m — « steals but reducing the potential by Ad(«)

S5«S+m—a
®— & — Ad(a)

The game ends when ¢ <1

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 15/20

Probabilistic Game

e S(®): number of steals starting with a potential ¢ to the end
e Dynamic Programming:

S(®) = max {m —a+S(® - Acb(a))}

1<a<m-1

e Problem: A®(«) is a random variable

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 16/20

Probabilistic Game

S(®): number of steals starting with a potential to the end

Dynamic Programming;:

S(®) = max {m —a+S(® - Acb(a))}

1<a<m-1

Problem: A®(«) is a random variable
Markov Decision Process:

E[S(®)] = 1§g1§a$71{m — a+E[S(® - A(D(a))]}

Backwards induction:

m —

EIS] < — log, ®(0)

log,(1 + %)
w

E[Cmax] < —+ 3.65 - |Og2 W
m

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 16/20

Results from simulation

§ LI s A O o A e
[9\]

a0

o

5 2f :
-

[e]

+—

8

“— [-
S 15

c

@

-

(%]

c

8 1#\\\\\ R Y A A NN

10t 102 10® 10* 105 10°
number of processors m

Simulator strictly following the model
e Varying number of processors m, W unit tasks (W = 8m)

10000 experiments for each point
Simulation: 2.37 vs. Our analysis: 3.65 (gap: adversary)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 17/20

Summary of Results

Unit tasks
e Steal half of the tasks (= half of the work due to rounding)
o E[Cnax] < % + 3.65 - log, W
e Deviation from the mean

P{Cmax > % +3.65- (Iog2 W + log, %)} <e

Weighted tasks

e Processing times are unknown
e Steal half of the tasks (# half of the work)

w
o E[Cmax] < —+ 4.1 Prmax . |0g2 w
m

min

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 18/20

Summary of Results

Cilk model

e Unit tasks, online DAG, one source,
out-degree at most 2

steal

e Execute depth-first and steal breadth-first

e Previous analysis: based on critical path
[Arora et al. 01]

w
o E[Cnax] < - +32- Ty

w 1
. P{Cmax >~ 464 Too +16- log; 7} <e
€
e Our analysis: based on load balancing

W running task
© E[Cra] < — +3.65- T

stolen task

W 1
o IED{Cmax > ;—&—3.65- (Too+log2 E)} <e executed task

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 19/20

Conclusion

Decentralized list scheduling with work stealing

Introduced a new technique based on a potential function

Analyzed weighted tasks

Improved the bound in the Cilk model

Precise analysis: bound on number of steals is only 50% off

Future work

e Using this technique, we were also able to analyze
modifications of the work stealing

e We believe we can extend this work to P|prec, pj|Cmax

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling

20/20

