
Decentralized List Scheduling

Marc Tchiboukdjian Denis Trystram

Laboratoire d’Informatique de Grenoble

INRIA

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 1/20

Parallel Programming

Parallel platforms

• Multicores

• Manycores (GPU)

Characteristics

• Increasing number of cores

• Shared memory

Parallel Programming

Need for parallel algorithms that are

• easy to program

• efficient even on small data sets

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 2/20

Task Parallel Libraries

The new standard for parallel programming?

• Cilk, Intel TBB, Microsoft TPL, KAAPI, . . .

• The programmer declares tasks and dependencies

• Tasks can be created at runtime

• Advantages:
• easier to program (less error-prone than threads)
• platform independent
• the library is in charge of load balancing

Greedy tasks scheduler

• When tasks are available, no processor is idle.

• Graham’s guarantee: Cmax ≤ W
m + (1− 1

m) · T∞

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 3/20

How to manage the tasks efficiently at runtime?

Global list of tasks

• Tasks generated by a running task are inserted in the list

• When a processor is idle, it retrieves a task from the list

Problem: concurrent accesses

• The list is accessed concurrently by several processors

• Protect the list by a lock or use a lock-free list

• Does not scale well in practice for small grain tasks

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 4/20

Efficient Tasks Management by Work Stealing

Decentralize the list

• Each processor has its own list

• If empty, it tries to steal tasks in others’ lists

• The scheduler is no longer greedy:
A processor can be idle while tasks are available in others’ lists

Previous work

• Work generation is probabilist, focus on steady state results
[Mitzenmacher 98, Berenbrink et al. 03]

• So far, only bound on Cmax is in the Cilk model
[Blumofe Leiserson 99, Arora et al. 01]

• E[Cmax] ≤ W
m + O(T∞)

• Unit tasks, DAG with only one source and out-degree at most 2

=⇒ Need for a precise analysis of work stealing for P|prec , pj |Cmax

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 5/20

This Talk

Results

• Bound Cmax of work stealing for P|pj |Cmax

• Almost tight analysis (independent tasks and Cilk model)

Work In Progress

• We still don’t have a tight analysis of WS for P|prec , pj |Cmax

Overview

1 Model and notations

2 Sketch of the analysis

1 Define a potential function
2 Compute the expected decrease of the potential in one step
3 Study a probabilistic game

3 Simulation results

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 6/20

Model and Notations

• Platform with m synchronized and identical processors

• Workload W of n independent tasks with processing times pj

• Each processor owns a list of tasks

• An active processor (non-empty list) executes one unit of work

• An idle processor (thief) randomly chooses another processor (victim)

• If the victim’s list is non empty, the thief steals half of the tasks
and resumes execution at the next time slot

• Otherwise, the thief tries again at the next time slot

• Contention on lists:
if several thieves target the same victim a random succeed, others fail.

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 7/20

Model and Notations

Amount of work in list Qi of processor i at t wi (t) =
∑

j∈Qi (t)

pj

Total amount of work at t w(t) =
∑

1≤i≤m
wi (t)

Total amount of work W = w(0)

Number of active processors at t α(t)

Number of idle processors at t m − α(t)

Total number of steals S =
∑

1≤t≤Cmax

m − α(t)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 8/20

Potential Function Φ: Motivation

Gantt chart with 25 processors and 2000 unit tasks
White: execution Grey: steal

• m · Cmax = W + S

• Bound S to bound Cmax

• Difficult to see any structure due to the random choices

• Potential function decreasing at each successful steal

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 9/20

Potential Function Φ: Definition

Definition

Φ(t) =
∑

1≤i≤m

(
wi (t)− w(t)

m

)2
Φ represents how well the load is balanced between the lists

wi(t)−
w(t)

mw(t)

m

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 10/20

Potential Function Φ: Properties

Φ(t) =
∑

1≤i≤m

(
wi (t)− w(t)

m

)2
1 Φ = 0 =⇒ no more steals

2 ∀i ,wi → wi − c =⇒ ∆Φ = 0

3 Idle processor i steals half of
the work of active processor

j =⇒ ∆Φ =
w2
j

2

c

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 11/20

Potential Function Φ: Properties

Φ(t) =
∑

1≤i≤m

(
wi (t)− w(t)

m

)2
1 Φ = 0 =⇒ no more steals

2 ∀i ,wi → wi − c =⇒ ∆Φ = 0

3 Idle processor i steals half of
the work of active processor

j =⇒ ∆Φ =
w2
j

2

c

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 11/20

Potential Function Φ: Properties

Φ(t) =
∑

1≤i≤m

(
wi (t)− w(t)

m

)2
1 Φ = 0 =⇒ no more steals

2 ∀i ,wi → wi − c =⇒ ∆Φ = 0

3 Idle processor i steals half of
the work of active processor

j =⇒ ∆Φ =
w2
j

2

c

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 11/20

Expected decrease of Φ in one step

• Reminder: contention on the lists, only one steal succeed

• Decompose the potential decrease ∆Φ per active processor

Φ(t) =
∑

1≤i≤m

(
wi (t)− w(t)

m

)2
=
∑

1≤i≤m
w2
i (t)− w2(t)

m

∆Φ(t) = Φ(t)− Φ(t + 1) =
∑

active processors

δi (t)− 1

m
·∆w2(t)

• δi (t) is the decrease of
∑

w2
i (t) on active processor i

• As w(t + 1) = w(t)− α(t), we have
∆w2(t) = w2(t)− (w(t)− α(t))2 = 2α(t)w(t)− α2(t)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 12/20

Expected decrease of Φ in one step

• If processor i is not stolen, one unit of work is executed

δi (t) = w2
i (t)− w2

i (t + 1)

= w2
i (t)− (wi (t)− 1)2

= 2wi (t)− 1

• If processor j steals half of the work of processor i

δi (t) = w2
i (t)− w2

i (t + 1)− w2
j (t + 1)

= w2
i (t)−

(wi (t)

2
− 1
)2
−
(wi (t)

2

)2
=

w2
i (t)

2
+ wi (t)− 1

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 13/20

Expected decrease of Φ in one step

• If processor i is not stolen, one unit of work is executed

δi (t) = w2
i (t)− w2

i (t + 1)

= w2
i (t)− (wi (t)− 1)2

= 2wi (t)− 1

• If processor j steals half of the work of processor i

δi (t) = w2
i (t)− w2

i (t + 1)− w2
j (t + 1)

= w2
i (t)−

(wi (t)

2
− 1
)2
−
(wi (t)

2

)2
=

w2
i (t)

2
+ wi (t)− 1

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 13/20

Expected decrease of Φ in one step

• Expected decrease on active processor i

E[δi (t)] = P
{

processor i is not stolen
}
·
(

2wi (t)− 1
)

+ P
{

processor i is stolen
}
·
(w2

i (t)

2
+ wi (t)− 1

)
• As there are m − α(t) idle processors attempting to steal,

P
{

processor i is stolen
}

= p(α(t)) = 1−
(

1− 1

m − 1

)m−α(t)
• Summing δi on all active processors, we get

E[∆Φ(t)] ≥ p(α(t))

2
· Φ(t)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 14/20

Probabilistic Game

• We have the expected decrease of the potential in one step

E[∆Φ] ≥ p(α)

2
· Φ

• Problem: we don’t know α

• An adversary chooses the sequence α(t) maximizing the
number of steals S

• At each time step t, the adversary chooses α, generating
m − α steals but reducing the potential by ∆Φ(α)

S ← S + m − α
Φ← Φ−∆Φ(α)

• The game ends when Φ ≤ 1

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 15/20

Probabilistic Game

• We have the expected decrease of the potential in one step

E[∆Φ] ≥ p(α)

2
· Φ

• Problem: we don’t know α

• An adversary chooses the sequence α(t) maximizing the
number of steals S

• At each time step t, the adversary chooses α, generating
m − α steals but reducing the potential by ∆Φ(α)

S ← S + m − α
Φ← Φ−∆Φ(α)

• The game ends when Φ ≤ 1

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 15/20

Probabilistic Game

• S(Φ): number of steals starting with a potential Φ to the end

• Dynamic Programming:

S(Φ) = max
1≤α≤m−1

{
m − α + S(Φ−∆Φ(α))

}
• Problem: ∆Φ(α) is a random variable

• Markov Decision Process:

E[S(Φ)] = max
1≤α≤m−1

{
m − α + E[S(Φ−∆Φ(α))]

}
• Backwards induction:

E[S] ≤ m − 1

1− log2(1 + 1
e)
· log2 Φ(0)

E[Cmax] ≤ W

m
+ 3.65 · log2W

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 16/20

Probabilistic Game

• S(Φ): number of steals starting with a potential Φ to the end

• Dynamic Programming:

S(Φ) = max
1≤α≤m−1

{
m − α + S(Φ−∆Φ(α))

}
• Problem: ∆Φ(α) is a random variable

• Markov Decision Process:

E[S(Φ)] = max
1≤α≤m−1

{
m − α + E[S(Φ−∆Φ(α))]

}
• Backwards induction:

E[S] ≤ m − 1

1− log2(1 + 1
e)
· log2 Φ(0)

E[Cmax] ≤ W

m
+ 3.65 · log2W

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 16/20

Results from simulation

101 102 103 104 105 106
1

1.5

2

number of processors m

co
n

st
an

t
fa

ct
or

of
lo

g
2
W

• Simulator strictly following the model

• Varying number of processors m, W unit tasks (W = 8m)

• 10000 experiments for each point

• Simulation: 2.37 vs. Our analysis: 3.65 (gap: adversary)

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 17/20

Summary of Results

Unit tasks

• Steal half of the tasks (≈ half of the work due to rounding)

• E[Cmax] ≤ W

m
+ 3.65 · log2W

• Deviation from the mean

P
{
Cmax ≥

W

m
+ 3.65 ·

(
log2W + log2

1

ε

)}
≤ ε

Weighted tasks

• Processing times are unknown

• Steal half of the tasks (6= half of the work)

• E[Cmax] ≤ W

m
+ 4.1 · pmax

pmin
· log2W

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 18/20

Summary of Results

Cilk model

• Unit tasks, online DAG, one source,
out-degree at most 2

• Execute depth-first and steal breadth-first

• Previous analysis: based on critical path
[Arora et al. 01]

• E[Cmax] ≤ W

m
+ 32 · T∞

• P
{
Cmax ≥

W

m
+ 64 ·T∞ + 16 · log2

1

ε

}
≤ ε

• Our analysis: based on load balancing

• E[Cmax] ≤ W

m
+ 3.65 · T∞

• P
{
Cmax ≥

W

m
+3.65·

(
T∞+log2

1

ε

)}
≤ ε

steal

running task
ready task
stolen task

executed task

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 19/20

Conclusion

Decentralized list scheduling with work stealing

• Introduced a new technique based on a potential function

• Analyzed weighted tasks

• Improved the bound in the Cilk model

• Precise analysis: bound on number of steals is only 50% off

Future work

• Using this technique, we were also able to analyze
modifications of the work stealing

• We believe we can extend this work to P|prec , pj |Cmax

Marc Tchiboukdjian, Denis Trystram Decentralized List Scheduling 20/20

