
Programming Homework:
The Knapsack Problem

M1 MOSIG: Algorithms and Program Design

November 23, 2009

1 Problem Definition

Given a set of items, each with a weight and a value, determine the number
of each item to include in a collection so that the total weight is less than a
given limit and the total value is as large as possible. It derives its name from
the problem faced by someone who is constrained by a fixed-size knapsack
and must fill it with the most useful items.
In the following, we have n items, 1 through n. Each item j has a value pj

and a weight wj. We assume that all values and weights are nonnegative.
The maximum weight that we can carry in the bag is W . We want to find a
subset I of items such that the total value in the bag is as large as possible

max
I

∑
i∈I

pi (1)

subject to the constraint that all items must fit in the bag∑
i∈I

wi ≤ W. (2)

2 Library provided

2.1 Generate instances

We provide you a C program from David Pisinger to generate instances of
the knapsack problem.

1

To compile the code use:
gcc -O3 -march=native -o generator generator.c.
To run the code use:
generator n r type i S

where

n: number of items

r: range of coefficients pi and wi

type: corresponds to various types of instances, we will use type 2

i: instance number (i ∈ [1, . . . , S])

S: number of instances

The output will be written to the file test.in.
For example, to generate 100 instances with n = 10 items, each of them
having a weigth w and a profit p between 1 and 20, you can use the following
shell script.

for i in ‘seq 1 100‘

do

./generator 10 20 2 $i 100

mv test.in instance_10_20_$i

done

This script will generate 100 files from instance_10_20_1 to instance_10_20_100.

2.2 Read an instance

The previous script will generate instance 65 in file instance_10_20_65:

10

1 5 5

2 16 14

3 10 8

4 3 5

5 14 14

6 3 3

7 15 15

2

8 15 13

9 17 19

10 17 16

72

On the first line we have the number of items n = 10, then one item per line
with i the item number, p the profit and w the weight. Finally the last line
contains the capacity of the bag W = 72.
The provided C program read_instance.c reads an instance from such a
file, prints the instance and frees the allocated memory.
You can compile and run it with the commands

gcc -O3 -march=native -o read_instance read_instance.c -lrt

./read_instance instance_10_20_65

2.3 Measure the running time of your implementation

The read_instance.c file uses macros provided in timer.h to measure the
running time of the function print instance .
To measure the running time of your algorithm, you need to include the file
timer.h and put the macros BEGIN MAIN and END MAIN at the begin-
ning and end of your main program. You can then time each of your algo-
rithms by calling the corresponding function inside the two macros BEGIN EXPERIMENT
and END EXPERIMENT.
Here is the main function of read_instance.c.

int main (int argc , char∗∗ argv) {
BEGIN MAIN

i f (argc != 2) {
p r i n t f (” . / r e a d i n s t a n c e i n s t a n c e f i l e \n”) ;
return 0 ;

}
i n s t a n c e t i n s t anc e ;
r e a d i n s t a n c e (argv [1] , &in s t ance) ;

BEGIN EXPERIMENT
p r i n t i n s t a n c e (&in s t ance) ;

END EXPERIMENT
f r e e i n s t a n c e (&in s t ance) ;

END MAIN

3

return 0 ;
}

3 Questions

3.1 Brute-force algorithm

Implement an algorithm BruteForce that tries all possible subsets of items,
check if the subset fits in the bag using equation 2 and report the best possible
subset, the one that maximizes equation 1.

Question 1 What is the worst case complexity of BruteForce in Θ nota-
tion?

3.2 Greedy algorithm

Implement an algorithm Greedy that sorts the items in decreasing order of
value per unit of weight pi/wi and inserts items in that order in the bag if
they fit. If an item does not fit, try the next one until there are no more
items or the bag is full.

Question 2 What is the worst case complexity of Greedy?

Question 3 Does algorithm Greedy always give the best solution? If yes,
provide a proof, if not give an instance of the problem where algorithm Greedy

does not yield the optimal solution.

3.3 Experimental comparison

Question 4 For each algorithm, draw the graph of the experimental running
time of your algorithm (using the macros discribed in section 2.3) with vary-
ing instance sizes. Carefully explain what are your measures, which instances
do you use, etc.

Question 5 When does algorithm Greedy outperform algorithm BruteForce?

Question 6 What is the maximum size of an instance you can solve under
30 seconds for each algorithm?

Question 7 Which algorithm would you recommend in practice and why?

4

3.4 Using Dynamic Programming

Question 8 Give a recursive algorithm RecDP to compute the value of the
optimal solution using dynamic programming. What is the running time of
your algorithm? How much space do you use? Make sure to describe the
recursive formulation you use.

Question 9 Give a sequential algorithm SeqDP to compute the value of the
optimal solution using dynamic programming. What is the running time of
your algorithm? How much space do you use?

Question 10 How can you recover a solution yielding the optimal value?
Can you recover a solution without using additional storage space?

Implement both algorithms RecDP and SeqDP.

Question 11 How does RecDP and SeqDP compare to BruteFroce and Greedy

in practice? What is the maximum size of an instance you can solve under
30 seconds with your fastest dynamic programming algorithm?

Question 12 Does the RecDP algorithm always use all the space in the array
caching intermediate solutions? To check that, you can initialized all cells of
the array with −1 and count at the end of the algorithm how much cells
remained at −1. What does this mean in term of number of subproblems
evaluated by RecDP compared to SeqDP?

Question 13 Using the previous question, try to come up with a family of
instances where RecDP is a lot faster than SeqDP.

5

