
Elementary Graph Algorithms

Master MOSIG - Algorithms and Program Design

Marc Tchiboukdjian - Denis Trystram

2-10-2009

Course

Objectives:

• Understand adjacency list and adjacency matrix.

• Understand breadth �rst search and depth �rst search and

when to use them.

• Analyze globally the cost of an algorithm and not loop by

loop.

To Remember

Graph. G = (V,E) with V a set of vertices and E a set of edges. We

usually denote the number of vertices by n and the number of edges by m.

The degree dv of a node v is its number of neighbors. The following formula
links degrees and number of edges:∑

v∈V

dv = 2m

.

(a) Undirected graph (b) Directed graph

Figure 1: Examples of graphs.

Adjacency matrix. A an n by n matrix where A[i, j] = 1 i� (i, j) is an

edge. Space complexity is Θ(n2).

Adjacency list. Adj is an array of n lists. List Adj[u] contains all vertices
v s.t. (u, v) is an edge. Space complexity is Θ(n+m).

1



(a) Undirected graph (b) Directed graph

Figure 2: Adjacency matrices for graphs of �g. 1.

(a) Undirected graph (b) Directed graph

Figure 3: Adjacency lists for graphs of �g. 1.

Adjacency list vs. adjacency matrix. Usually, adjacency list is better

and consumes much less memory.

Breadth �rst search. BFS sends a wave out from a source vertex s. It

�rst hits all vertices 1 edge from s, then hits all vertices 2 edges from s, etc.
It uses a FIFO queue Q to maintain the wavefront. v ∈ Q i� the wave has

hit v but has not come out of v yet. BFS outputs d[v], the distance (smallest

number of edges) from s to v, for all v and π[v], the predecessor of node v in
a shortest path from s to v. The complexity is Θ(n+m). The operations of
enqueuing and dequeuing take Θ(1) time, so the total time devoted to queue

operations is Θ(n). Because the adjacency list of each vertex is scanned only

when the vertex is dequeued, each adjacency list is scanned at most once.

Since the sum of the lengths of all the adjacency lists is Θ(m), the total time

spent in scanning adjacency lists is Θ(m). BFS runs in time linear in the

size of the adjacency-list representation of G.

2



(a) Pseudo code for BFS (b) Pseudo code for DFS

Depth �rst search. DFS explores deeper in the graph whenever possible.

Edges are explored out of the most recently discovered vertex v that still has
unexplored edges. When all of v's edges have been explored, backtrack to

the vertex from which v was discovered. Every vertex has a color, white

if undiscovered, gray if discovered but no �nished, black if �nished. DFS

outputs 2 timestamps on each vertex, d[v] the discovery time and f [v] the
�nishing time. The complexity is Θ(n + m). Procedure DFS takes time

Θ(n) exclusive of the time to execute the calls to DFS-VISIT. The proce-

dure DFS-VISIT is called exactly once for each vertex v, since DFS-VISIT
is invoked only on white vertices and the �rst thing it does is paint the vertex

gray. During an execution of DFS-VISIT(v), the for loop on lines is exe-

cuted degree(v) times. So the total cost of executing all calls to DFS-VISIT

is Θ(m).

Parenthesis theorem for BFS. For all u, v exactly one of the following

holds:

• d[u] < f [u] < d[v] < f [v] or d[v] < f [v] < d[u] < f [u] and neither of u
and v is a descendant of the other in the depth-�rst forest.

• d[u] < d[v] < f [v] < f [u] and v is a descendant of u in a depth-�rst

tree.

• d[v] < d[u] < f [u] < f [v] and u is a descendant of v in a depth-�rst

tree.

d[u] < d[v] < f [u] < f [v] cannot happen.

3



Classi�cation of edges for BFS.

• Tree edges: in the depth-�rst forest.

• Back edges: (u, v) where u is a descendant of v in a depth-�rst tree.

• Forward edges: (u, v) where v is a descendant of u in a depth-�rst

tree but not a tree edge.

• Cross edges: any other edge.

Example

Directed Acyclic Graph

A directed acyclic graph (DAG) is a directed graph with no cycles. How to

check e�ciently if a graph is a DAG, i.e. contains no cycles? A graph is

acyclic if a DFS yields no back edges.

Proof. Suppose that there is a back edge (u, v). Then, vertex v is an ancestor
of vertex u in the depth-�rst forest. There is thus a path from v to u in G,
and the back edge (u, v) completes a cycle.

Suppose now that G contains a cycle c. We show that a depth-�rst search

of G yields a back edge. Let v be the �rst vertex to be discovered in c, and
let (u, v) be the preceding edge in c. At time d[v], the vertices of c form a

path of unexplored vertices from v to u, thus vertex u becomes a descendant

of v in the depth-�rst forest. Therefore, (u, v) is a back edge.

So we can detect a cycle in a graph in Θ(n+m).

Topological Sort

A topological sort of a dag G is a linear ordering of all its vertices such that

if G contains an edge (u, v), then u appears before v in the ordering.

To perform topological sort, call DFS and output each vertex in order

of decreasing �nish times.

Proof. To prove the correctness of this algorithm, it su�ces to show that for

any two distinct vertices u and v, if there is an edge in G from u to v, then
f [v] < f [u]. Consider any edge (u, v) explored by DFS(G). When this edge

is explored, v cannot be gray, since then v would be an ancestor of u and

(u, v) would be a back edge (and thus we would have a cycle in an acyclic

graph). Therefore, v must be either white or black. If v is white, it becomes

a descendant of u, and so f [v] < f [u]. If v is black, it has already been

�nished, so that f [v] has already been set. Because we are still exploring

from u, we have yet to assign a timestamp to f [u], and so once we do, we

will have f [v] < f [u] as well. Thus, for any edge (u, v) in the dag, we have

f [v] < f [u], proving the correctness of the algorithm.

4



Exercises

BFS with adjacency matrix representation

What is the running time of BFS if its input graph is represented by an

adjacency matrix and the algorithm is modi�ed to handle this form of input?

Iterative version of depth �rst search

Rewrite DFS with a stack to eliminate recursion.

Rivalry

There are two types of professional wrestlers: "good guys" and "bad guys."

Between any pair of professional wrestlers, there may or may not be a rivalry.

Suppose we have n professional wrestlers and we have a list of r pairs of

wrestlers for which there are rivalries. Give an Θ(n+ r)-time algorithm that

determines whether it is possible to designate some of the wrestlers as good

guys and the remainder as bad guys such that each rivalry is between a good

guy and a bad guy. If is it possible to perform such a designation, your

algorithm should produce it.

Another algorithm for topological sort

Another way to perform topological sorting on a directed acyclic graph is to

repeatedly �nd a vertex of in-degree 0, output it, and remove it and all of

its outgoing edges from the graph. Explain how to implement this idea so

that it runs in time Θ(n+m). What happens to this algorithm if the graph

has cycles?

5


