
Dynamic Programming

Master MOSIG - Algorithms and Program Design

Marc Tchiboukdjian - Denis Trystram
(from F. Wagner's lecture notes)

Course

Objectives: E�ciently compute a recursive formula

To Remember

Dynamic programming is achieved while following di�erent steps.

1. Write down the recursive formula corresponding to your needs. The
formula might contain some conditionals.

2. Check the computations are �nishing when using this formula (proof
by induction).

3. Compute the complexity for the raw recursive computation. Are any
function calls taking place twice ?

4. Write the function in your favorite programming language.

5. Add a table storing results and modify your program to avoid duplicate
computations.

6. Write the dependency graph of the calls. Find vectors describing these
dependencies. Follow these vectors to write a sequential program com-
puting your function.

7. Optimize your sequential program for space.

Example

Naive recursive version

We consider as example the following formula : f(x, y) = f(x − 1, y) +
f(x, y − 1) with f(0, y) = 1 and f(x, 0) = 1 which enables us to compute
elements from the pascal triangle.

Clearly the corresponding C program can be written as follows:

1

int f (int x , int y) {
int r e s u l t ;
i f ((x==0)| |(y==0)) r e s u l t = 1 ;
else r e s u l t = f (x−1, y) + f (x , y−1);
return r e s u l t ;

}

Figure 1 displays the call tree of function f for parameters 3,3. We can
clearly see that some calls are redundant and the computing cost of f is
exponential.

f(3, 3)

f(2, 3)

f(1, 3)

f(0, 3) f(1, 2)

f(2, 2)

f(1, 2)

f(0, 2) f(1, 1)

f(0, 1) f(1, 0)

f(2, 1)

f(1, 1) f(2, 0)

f(3, 2)

f(2, 2)

f(1, 2) f(2, 1)

f(3, 1)

f(2, 1) f(3, 0)

Figure 1: Call-tree for f(3, 3)

Optimized recursive version

In order to improve things we are going to remove redundant calculations by
caching temporary results. To achieve this we allocate an array (the cache)
big enough to contain all results for all di�erent inputs of the f function.
We then modify the function f in two steps : �rst we ensure that results
are stored in the cache before all return points of the function and then we
ensure that no duplicate computations take place by checking the content
of the cache at entry point of the function. Of course the cache needs to be
initialized with values which will never be mistaken with real results. In this
example we can simply initialize all cache entries with -1 since any result
will always be positive.

2

1 int cache [N] [N] ;
2 int f_optim (int x , int y) {
3 i f (cache [x] [y] != −1) return cache [x] [y] ;
4 int r e s u l t ;
5 i f ((x==0)| |(y==0)) r e s u l t = 1 ;
6 else r e s u l t = f (x−1, y) + f (x , y−1);
7 cache [x] [y] = r e s u l t ;
8 return r e s u l t ;
9 }

Figure 2: Recursive version with caching

Figure 2 shows the modi�ed f function. We can see the 2 modi�ca-
tions, line 3 and line 7. At this point, we compute the cost of execution
of our algorithm when computing f(n1, n2). Clearly this cost C is equal to∑

reached values of x

∑
reached values of y c(x, y) where c(x, y) is the cost

for computing the cache entry associated to x, y. In our case, c(x, y) = O(1)
since f contains no loop. This means that C = O(1) ×

∑
x

∑
y 1 ≤ (n1 +

1)× (n2 + 1)×O(1) = O(n1n2).

Sequential version

Current cost is rather nice but we would like to optimize a bit more by
getting rid of recursive calls. We start by making a small drawing of the
cache together with the dependencies between the di�erent results.

(0,0) x

y x = n1

y = n2

Figure 3: Dependence graph

As Figure 3 shows, dependencies follow two directions : we have vertical

3

vectors and horizontal vectors. These dependencies mean that cache[i][j]
cannot be computed before cache[i−1][j] and cache[i][j−1]. We choose as
a basis of our space the two vectors (0, 1) and (1, 0) which translates into
two nested loops, one loop on x and one loop on y. We have two possibilities
because we can choose which one is the inner-most and which one is the
outer-most loop. We choose here to iterate on y in the inner-loop.

10 int f_seq (int n1 , int n2) {
11 for (int x = 0 ; x < n1 ; x++)
12 for (int y = 0 ; y <n2 ; y++) {
13 int r e s u l t ;
14 i f ((x==0)| |(y==0)) r e s u l t = 1 ;
15 else r e s u l t = cache [x−1] [y] + cache [x] [y−1] ;
16 cache [x] [y] = r e s u l t ;
17 }
18 return cache [n1] [n2] ;
19 }

Figure 4: Sequential code

Figure 4 shows the sequential code obtained. You can see that the body
of the two nested loops is almost identical to the body of the recursive version
of Figure 2. The only di�erence is that functions calls have been replaced
by reading in the cache. Computing the cost of the sequential algorithm is
direct (O(n1n2)).

Memory optimization

The last step of optimisation which can be achieved is by reducing the
amount of memory used.

Figure 5 shows a decomposition of the cache into diagonal lines (12 in this
particular example). It is clear than any cache value belonging to diagonal
di can be computed if all values of diagonal di−1 are available. Thus, if the
outer-loop we choose iterates on the diagonals and the inner loop iterates
inside each diagonal we can compute the �nal result while only storing two
diagonals in memory. Thus, memory consumption can be reduced from
O(n2) to O(n). We can see from the �gure that inner-loop vector will be
(−1, 1) while for outer loop vector it will be (1, 1).

You can �nd below the source code for this last function. We decompose
the iterations on the diagonals (on our example �rst from d0 to d7 and then
from d8 to d12) into two loops. As you can see it is very di�cult to write
such a function without a drawing of the cache guiding your work.

4

(0,0) x

y x = n1

y = n2

d0 d1 d2 d3 d4 d5 d6 d7

d8

d9

d10

d11

d12

Figure 5: Iterating on diagonals

int diagona l1 [N] ;
int diagona l2 [N] ;
int f _ h o r r i b i l i s (int n1 , int n2) {

int x , y ;
int current_cache = 0 ;
for (int d = 0 ; d <= n1 ; d++) {

y = 0 ;
for (int x = d ; x >= 0 ; x−−) {

int r e s u l t ;
i f ((x==0)| |(y==0)) r e s u l t = 1 ;

else {
i f (current_cache == 0) r e s u l t = diagona l2 [d−x−1] + diagona l2 [d−x] ;
else r e s u l t = diagona l1 [d−x−1] + diagona l1 [d−x] ;

}
i f (current_cache == 0) d iagona l1 [d−x] = r e s u l t ;
else diagona l2 [d−x] = r e s u l t ;
y++;

}
current_cache = (current_cache + 1) % 2 ;

}
for (int d = 1 ; d <= n2 ; d++) {

x = n1 ;
for (int y = d ; y <= n2 ; y++) {

int r e s u l t ;
i f ((x==0)| |(y==0)) r e s u l t = 1 ;

else {
i f (current_cache == 0) r e s u l t = diagona l2 [y−d] + diagona l2 [y−d+1] ;

5

else r e s u l t = diagona l1 [y−d] + diagona l1 [y−d+1] ;
}
i f (current_cache == 0) d iagona l1 [y−d] = r e s u l t ;
else diagona l2 [y−d] = r e s u l t ;
x−−;

}
current_cache = (current_cache + 1) % 2 ;

}
i f (current_cache == 0) return diagona l2 [0] ;
else return diagona l1 [0] ;

}

Exercises

Distance between two strings

In order to compare strings e�ciently, we de�ne a notion of distance between
two strings as the minimum number of modi�cations needed to go from string
A to string B. 3 types of modi�cations are possible:

• adding a letter at beginning of string A

• removing a letter from beginning of string A

• changing the �rst letter of string A

To each operation is associated a di�erent cost : a(l) to add the letter l,
r(l) to remove the letter l and c(l1, l2) to change l1 into l2.

We de�ne the distance function as follows:

d(lX, lY) = d(X,Y)

d(lX,mY) = min(a(m) + d(lX, Y), r(l) + d(X,mY), c(l,m) + d(X,Y))

d(ε, ε) = 0

1. write a recursive function computing d

2. optimize this recursive function by adding a cache

3. write a sequential version

4. is it possible to optimize the memory use ?

6

Floyd-Warshall All Pairs Shortest Path

We consider the problem of �nding shortest paths between all pairs of vertices
in a graph. We are given a weighted directed graph G = (V,E) using the
adjacency matrix representation and a weight function w : E → R that
maps edges to real-valued weights. We wish to �nd, for every pair of vertices
u, v ∈ V , a shortest (least-weight) path from u to v, where the weight of a
path is the sum of the weights of its constituent edges. We want the output
in tabular form: the entry in u's row and v's column should be the weight
of a shortest path from u to v. Negative-weight edges are allowed but we
assume that the input graph contains no negative weight cycles.

Assume the vertices of G are V = {1, . . . , n}. Let d
(k)
ij be the weight of

a shortest path from vertex i to vertex j for which all intermediate vertices
are in the set {1, . . . , k}. Consider a shortest path p from i to j with all
intermediate vertices in {1, . . . , k}. If k is not an intermediate vertex, then
all intermediate vertices of p are in {1, . . . , k − 1}. If k is an intermediate
vertex, p can be decomposed into two paths p1 from i to k and p2 from k to j
where all intermediate vertices of p1 are in {1, . . . , k−1} and all intermediate
vertices of p2 are in {1, . . . , k − 1}.

1. What are d
(0)
ij and d

(n)
ij ?

2. Write a recursive formula of d
(k)
ij using d(k−1).

3. Write a sequential function that compute d(n).

4. What is the running time of this algorithm?

5. How much memory do you use?

7

