Divide and Conquer
 Master MOSIG - Algorithms and Program Design

Marc Tchiboukdjian - Denis Trystram

13-11-2009

Course

Objectives

- Use the divide and conquer approach to design efficient algorithms.
- Analyze the cost of divide and conquer algorithms.

To Remember

Divide and conquer approach. The divide and conquer paradigm involves 3 steps :

- Divide: Break the problem into several subproblems that are similar to the original problem but smaller in size.
- Conquer: Solve the subproblems recursively.
- Combine: Combine these solutions to create a solution to the original problem.

Suppose the divide step yields a subproblems of size $1 / b$ the size of the original problem. If the cost of the divide step is $D(n)$ and the cost of the combine step if $C(n)$, the cost of the algorithm $T(n)$ solves the following recurrence:

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n \leq c \\
a T(n / b)+D(n)+C(n) \text { otherwise }
\end{array}\right.
$$

The next paragraphs show 3 methods to solve such recurrences.
Substitution method. Guess the form of the solution and use mathematical induction to find the constants and show that the solution works.

Recursion tree. Draw a recursion tree and label each node with the cost of the corresponding subproblem. Sum the costs within each level and then sum the per-level costs to determine the total cost of all levels of the recursion.

Master theorem. Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

Then $T(n)$ can be bounded as follows.

1. If $f(n)=\mathrm{O}\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$ for $k \geq 0$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=$ $\Theta(f(n))$.

Insight:

1. If $f(n)$ is polynomially smaller than $n^{\log _{b} a}$ then the cost is dominated by the cost in the leaves.
2. If $f(n)$ is within a polylog factor of $n^{\log _{b} a}$ but not smaller then the cost if $n^{\log _{b} a} \lg ^{k} n$ at each level and there are $\Theta(\lg n)$ levels.
3. If $f(n)$ is polynomially greater than $n^{\log _{b} a}$ then the cost is dominated by the cost of the root.

Example

Using the master theorem

- $T(n)=5 T(n / 2)+\Theta\left(n^{2}\right)$.

Compare $n^{\log _{2} 5}$ and n^{2}. Since $\log _{2} 5-\epsilon=2$ for some constant $\epsilon>0$, use Case 1 to get $T(n)=\Theta\left(n^{\log _{2} 5}\right)$.

- $T(n)=27 T(n / 3)+\Theta\left(n^{3} \lg n\right)$.

Compare $n^{\log _{3} 27}=n^{3}$ to $n^{3} \lg n$. Use Case 2 with $k=1$ to get $T(n)=$ $\Theta\left(n^{3} \lg ^{2} n\right)$.

- $T(n)=5 T(n / 2)+\Theta\left(n^{3}\right)$.

Compare $n^{\log _{2} 5}$ to n^{3}. Now $\log _{2} 5+\epsilon=3$ for some constant $\epsilon>0$. Check f : $a f(n / b)=5(n / 2)^{2}=5 n^{3} / 8 \leq c n^{3}$ for $c=5 / 8<1$. Use case 3 to get $T(n)=\Theta\left(n^{3}\right)$.

Merge sort

The merge sort algorithm follows the divide and conquer paradigm. It operates as follows.

- Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each. Cost is $D(n)=\Theta(1)$.
- Conquer: Sort the two subsequences recursively using merge sort. Cost is $2 T(n / 2)$.
- Combine: Merge the two sorted subsequences to produce the sorted answer. Cost is $C(n)=\Theta(n)$.

Thus, $T(n)$ solves the following recurrence.

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1
\end{array}\right.
$$

Using master theorem case 2 , we get $T(n)=\Theta(n \lg n)$.

Karatsuba multiplication

The basic step of Karatsuba's algorithm is a formula that allows us to compute the product of two large numbers x and y using 3 multiplications of smaller numbers, each with about half as many digits as x or y, plus some additions and digit shifts.

Let x and y be represented as n-digit strings in base 2. For $m=\lfloor n / 2\rfloor$, one can split the 2 given numbers as follows

$$
\begin{aligned}
& x=x_{1} 2^{m}+x_{0} \\
& y=y_{1} 2^{m}+y_{0}
\end{aligned}
$$

The product is then

$$
x y=\left(x_{1} 2^{m}+x_{0}\right)\left(y_{1} 2^{m}+y_{0}\right)=z_{2} 2^{2 m}+z_{1} 2^{m}+z_{0}
$$

where

$$
\begin{aligned}
z_{2} & =x_{1} y_{1} \\
z_{1} & =x_{1} y_{0}+x_{0} y_{1} \\
z_{0} & =x_{0} y_{0}
\end{aligned}
$$

These formulas require 4 multiplications of $n / 2$-digit numbers and thus the cost is

$$
T(n)=4 T(n / 2)+\Theta(n)=\Theta\left(n^{2}\right)
$$

Using these formulas

$$
\begin{aligned}
& z_{2}=x_{1} y_{1} \\
& z_{0}=x_{0} y_{0} \\
& z_{1}=\left(x_{1}+y_{0}\right)\left(y_{1}+y_{0}\right)-z_{2}-z_{0}
\end{aligned}
$$

we only have 3 multiplications and thus the cost is

$$
T(n)=3 T(n / 2)+\Theta(n)=\Theta\left(n^{\log _{2} 3}\right)=\Theta\left(n^{1.59}\right)
$$

The best know integer multiplication algorithm has $\mathrm{O}\left(n \log n 2^{\left.\mathrm{O}\left(\log ^{*} n\right)\right)}\right)$ complexity (Fürer 2007).

Strassen matrix multiplication

The naive algorithm to multiply two matrices has cost $\Theta\left(n^{3}\right)$. Using Strassen's formula that allow us to compute the product of two $n \times n$ matrices using 7 multiplications of $n / 2 \times n / 2$ matrices, we can build a divide and conquer algorithm with $\mathrm{O}\left(n^{2.81}\right)$ complexity.

$$
P=M \cdot N=\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
N_{11} & N_{12} \\
N_{21} & N_{22}
\end{array}\right)
$$

Using the formula

$$
\begin{aligned}
P_{11} & =M_{11} N_{11}+M_{12} N_{21} \\
P_{12} & =M_{11} N_{12}+M_{12} N_{22} \\
P_{21} & =M_{21} N_{11}+M_{22} N_{21} \\
P_{22} & =M_{21} N_{12}+M_{22} N_{22}
\end{aligned}
$$

we get

$$
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)
$$

Using the Strassen's formula

$$
\begin{aligned}
P_{11} & =X_{1}+X_{4}-X_{5}+X_{7} \\
P_{12} & =X_{3}+X_{5} \\
P_{21} & =X_{2}+X_{4} \\
P_{22} & =X_{1}+X_{3}-X_{2}+X_{6}
\end{aligned}
$$

where

$$
\begin{aligned}
X_{1} & =\left(M_{11}+M_{22}\right)\left(N_{11}+N_{22}\right) \\
X_{2} & =\left(M_{21}+M_{22}\right) N_{11} \\
X_{3} & =M_{11}\left(N_{12}-N_{22}\right) \\
X_{4} & =M_{22}\left(N_{21}-N_{11}\right) \\
X_{5} & =\left(M_{11}+M_{12}\right) N_{22} \\
X_{6} & =\left(M_{21}-M_{11}\right)\left(N_{11}+N_{12}\right) \\
X_{7} & =\left(M_{12}-M_{22}\right)\left(N_{21}+N_{22}\right)
\end{aligned}
$$

we get

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)=\Theta\left(n^{\log _{2}(7)}\right)=\Theta\left(n^{2.81}\right)
$$

The best known matrix multiplication algorithm has $\mathrm{O}\left(n^{2.376}\right)$ complexity (Coppersmith and Winograd 1990).

Convex hull

The convex hull of a set Q of points is the smallest convex polygon H for which each point in Q is either on the boundary of H or in its interior.

Figure 1: Convex hull
Let Q be a set of n points in the plane. To compute the convex hull of Q using a divide and conquer algorithm, we can proceed as follow.

ConvexHull (Q)

1. If $|Q| \leq 3$, then compute the convex hull by brute force in $\Theta(1)$ time and return.
2. Otherwise, partition the point set Q into two sets A and B, where A consists of half the points with the lowest x-coordinates and B consists of half of the points with the highest x-coordinates.
3. Recursively compute $H_{A}=C H(A)$ and $H_{B}=C H(B)$.
4. Merge the two hulls into a common convex hull, H, by computing the upper and lower tangents for H_{A} and H_{B} and discarding all the points lying between these two tangents.

UpperTangent (H_{A}, H_{B})

1. Let a be the rightmost point of H_{A}.
2. Let b be the leftmost point of H_{B}.
3. While $a b$ is not a upper tangent for H_{A} and H_{B} do
(a) While $a b$ is not a upper tangent to H_{A} do $a=a-1$ (move a counterclockwise).
(b) While $a b$ is not a upper tangent to H_{B} do $b=b+1$ (move b clockwise).
4. Return $a b$.

Figure 2: Convex hull
The divide step takes time $\Theta(n)$ (median finding), the combine step takes time $\Theta(n)$ (find upper and lower tangent), total complexity is

$$
T(n)=2 T(n / 2)+\Theta(n)=\Theta(n \lg n)
$$

The best algorithm has complexity $\Theta(n \log h)$ where h is the number of points in the convex hull (T. Chan 1996).

Exercises

Recurrences

Solve the following recurrences.

1. $T(n)=2 T(n / 2)+n^{3}$
2. $T(n)=T(9 n / 10)+n$
3. $T(n)=16 T(n / 4)+n^{2}$
4. $T(n)=7 T(n / 3)+n^{2}$
5. $T(n)=7 T(n / 2)+n^{2}$
6. $T(n)=2 T(n / 4)+\sqrt{n}$
7. $T(n)=T(n-1)+n$
8. $T(n)=T(\sqrt{n})+1$
9. $T(n)=T(n-1)+\lg n$
10. $T(n)=2 T(n / 2)+n / \lg n$
11. $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$

Quicksort

Suppose you are given an algorithm median which can find the median of n numbers in $\Theta(n)$ time. Devise a divide and conquer sort algorithm with $\Theta(n \log n)$ complexity.

Faster integer multiplication

Consider the integer multiplication problem: find the product of two n-bit integers x and y. We have seen in the class how to use divide-and-conquer algorithm to solve this problem in time $\Theta\left(n^{\mathrm{lg}_{3}}\right)$. The key idea is to reduce a multiplication of two n-bit integers to three multiplications of two ($n / 2$)-bit integers. Now, suppose we divide each integer into three equal parts, and then apply the divide-and-conquer algorithm. Show that we can reduce a single multiplication of two n-bit integers to 5 multiplications of two ($n / 3$)bit integers. What is the time complexity of such an algorithm?

QuickHull

The divide and conquer algorithm convex hull algorithm that we have seen in class can be viewed as a sort of generalization of Merge Sort. The algorithm that we will consider can be thought of as a generalization of the QuickSort sorting procedure. The resulting algorithm is called QuickHull.

Let E be the set of points and let P and Q be the points with minimum and maximum x-coordinate. Both P and Q are on the convex hull of E. Let E^{\prime} and $E^{\prime \prime}$ be the two sets of points above and below line $P Q$. The convex hull of E is the concatenation of the convex hull of E^{\prime} and the convex hull of $E^{\prime \prime}$ if we remove one copy of the edge $P Q$ which is in both convex hulls. Let S the point of E^{\prime} furthest away from line $P Q . S$ is on the convex hull of E. All the points inside the triangle $P S Q$ are not on the convex hull. Let E_{1} the points above $P S$ and E_{2} the points above $S Q$. We can recursively compute the convex hull of E_{1} and E_{2}.

Figure 3: QuickHull
Using this idea, devise an algorithm to compute the convex hull of a set of points.

1. What is the worst case complexity of this algorithm?
2. Assume half of the points are discarded at each step (inside the triangle $P S Q$) and the remaining points are balanced between both sides (half in E_{1} and half in E_{2}). What is the complexity in this case?

Fast exponentiation

You are given a real number x and a positive integer n. Give a naive algorithm to compute x^{n}. What is the complexity (number of multiplications) of your algorithm?

Devise a divide and conquer algorithm with better complexity. Give the recurrence verified by your algorithm. Hint: If n is even, $x^{n}=\left(x^{n / 2}\right)^{2}$.

Finding the missing integer

An array A of size n contains all the integers from 0 to n except one. It would be easy to determine the missing integer in linear time by using an auxiliary array B of size $n+1$ to record which numbers appear in A. In this problem, however, we cannot access an entire integer in A with a single operation. The elements of A are represented in binary, and the only operation we can use to access them is "fetch the j th bit of $A[i]$," which takes constant time.

Show that if we use only this operation, we can still determine the missing integer in $\mathrm{O}(n)$ time.

