
Divide and Conquer

Master MOSIG - Algorithms and Program Design

Marc Tchiboukdjian - Denis Trystram

13-11-2009

Course

Objectives

• Use the divide and conquer approach to design e�cient algorithms.

• Analyze the cost of divide and conquer algorithms.

To Remember

Divide and conquer approach. The divide and conquer paradigm in-

volves 3 steps :

• Divide: Break the problem into several subproblems that are similar

to the original problem but smaller in size.

• Conquer: Solve the subproblems recursively.

• Combine: Combine these solutions to create a solution to the original

problem.

Suppose the divide step yields a subproblems of size 1/b the size of the

original problem. If the cost of the divide step is D(n) and the cost of the

combine step if C(n), the cost of the algorithm T (n) solves the following

recurrence:

T (n) =

{
Θ(1) if n ≤ c
aT (n/b) +D(n) + C(n) otherwise

The next paragraphs show 3 methods to solve such recurrences.

Substitution method. Guess the form of the solution and use mathe-

matical induction to �nd the constants and show that the solution works.

Recursion tree. Draw a recursion tree and label each node with the cost of

the corresponding subproblem. Sum the costs within each level and then sum

the per-level costs to determine the total cost of all levels of the recursion.

1

Master theorem. Let a ≥ 1 and b > 1 be constants, let f(n) be a func-

tion, and let T (n) be de�ned by the recurrence

T (n) = aT (n/b) + f(n)

Then T (n) can be bounded as follows.

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a lgk n) for k ≥ 0, then T (n) = Θ(nlogb a lgk+1 n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n)
for some constant c < 1 and all su�ciently large n, then T (n) =
Θ(f(n)).

Insight:

1. If f(n) is polynomially smaller than nlogb a then the cost is dominated

by the cost in the leaves.

2. If f(n) is within a polylog factor of nlogb a but not smaller then the

cost if nlogb a lgk n at each level and there are Θ(lg n) levels.

3. If f(n) is polynomially greater than nlogb a then the cost is dominated

by the cost of the root.

Example

Using the master theorem

• T (n) = 5T (n/2) + Θ(n2).
Compare nlog2 5 and n2. Since log2 5− ε = 2 for some constant ε > 0,
use Case 1 to get T (n) = Θ(nlog25).

• T (n) = 27T (n/3) + Θ(n3 lg n).
Compare nlog3 27 = n3 to n3 lg n. Use Case 2 with k = 1 to get T (n) =
Θ(n3 lg2 n).

• T (n) = 5T (n/2) + Θ(n3).
Compare nlog2 5 to n3. Now log2 5 + ε = 3 for some constant ε > 0.
Check f : af(n/b) = 5(n/2)2 = 5n3/8 ≤ cn3 for c = 5/8 < 1. Use case
3 to get T (n) = Θ(n3).

Merge sort

The merge sort algorithm follows the divide and conquer paradigm. It op-

erates as follows.

2

• Divide: Divide the n-element sequence to be sorted into two subse-

quences of n/2 elements each. Cost is D(n) = Θ(1).

• Conquer: Sort the two subsequences recursively using merge sort. Cost

is 2T (n/2).

• Combine: Merge the two sorted subsequences to produce the sorted

answer. Cost is C(n) = Θ(n).

Thus, T (n) solves the following recurrence.

T (n) =

{
Θ(1) if n = 1
2T (n/2) + Θ(n) if n > 1

Using master theorem case 2, we get T (n) = Θ(n lg n).

Karatsuba multiplication

The basic step of Karatsuba's algorithm is a formula that allows us to com-

pute the product of two large numbers x and y using 3 multiplications of

smaller numbers, each with about half as many digits as x or y, plus some

additions and digit shifts.

Let x and y be represented as n-digit strings in base 2. For m = bn/2c,
one can split the 2 given numbers as follows

x = x12m + x0

y = y12m + y0

The product is then

xy = (x12m + x0)(y12m + y0) = z222m + z12m + z0

where

z2 = x1y1

z1 = x1y0 + x0y1

z0 = x0y0

These formulas require 4 multiplications of n/2-digit numbers and thus the

cost is

T (n) = 4T (n/2) + Θ(n) = Θ(n2)

Using these formulas

z2 = x1y1

z0 = x0y0

z1 = (x1 + y0)(y1 + y0)− z2 − z0

3

we only have 3 multiplications and thus the cost is

T (n) = 3T (n/2) + Θ(n) = Θ(nlog2 3) = Θ(n1.59)

The best know integer multiplication algorithm has O(n log n2O(log∗ n))) com-

plexity (Fürer 2007).

Strassen matrix multiplication

The naive algorithm to multiply two matrices has cost Θ(n3). Using Strassen's
formula that allow us to compute the product of two n × n matrices using

7 multiplications of n/2× n/2 matrices, we can build a divide and conquer

algorithm with O(n2.81) complexity.

P = M.N =
(
M11 M12

M21 M22

)
.

(
N11 N12

N21 N22

)
Using the formula

P11 = M11N11 +M12N21

P12 = M11N12 +M12N22

P21 = M21N11 +M22N21

P22 = M21N12 +M22N22

we get

T (n) = 8T (n/2) + Θ(n2) = Θ(n3)

Using the Strassen's formula

P11 = X1 +X4 −X5 +X7

P12 = X3 +X5

P21 = X2 +X4

P22 = X1 +X3 −X2 +X6

where

X1 = (M11 +M22)(N11 +N22)
X2 = (M21 +M22)N11

X3 = M11(N12 −N22)
X4 = M22(N21 −N11)
X5 = (M11 +M12)N22

X6 = (M21 −M11)(N11 +N12)
X7 = (M12 −M22)(N21 +N22)

we get

T (n) = 7T (n/2) + Θ(n2) = Θ(nlog2(7)) = Θ(n2.81)

The best known matrix multiplication algorithm has O(n2.376) complexity

(Coppersmith and Winograd 1990).

4

Convex hull

The convex hull of a set Q of points is the smallest convex polygon H for

which each point in Q is either on the boundary of H or in its interior.

Figure 1: Convex hull

Let Q be a set of n points in the plane. To compute the convex hull of

Q using a divide and conquer algorithm, we can proceed as follow.

ConvexHull(Q)

1. If |Q| ≤ 3, then compute the convex hull by brute force in Θ(1) time

and return.

2. Otherwise, partition the point set Q into two sets A and B, where A
consists of half the points with the lowest x-coordinates and B consists

of half of the points with the highest x-coordinates.

3. Recursively compute HA = CH(A) and HB = CH(B).

4. Merge the two hulls into a common convex hull, H, by computing the

upper and lower tangents for HA and HB and discarding all the points

lying between these two tangents.

UpperTangent(HA,HB)

1. Let a be the rightmost point of HA.

2. Let b be the leftmost point of HB.

3. While ab is not a upper tangent for HA and HB do

(a) While ab is not a upper tangent to HA do a = a − 1 (move a
counterclockwise).

5

(b) While ab is not a upper tangent to HB do b = b + 1 (move b
clockwise).

4. Return ab.

Figure 2: Convex hull

The divide step takes time Θ(n) (median �nding), the combine step takes

time Θ(n) (�nd upper and lower tangent), total complexity is

T (n) = 2T (n/2) + Θ(n) = Θ(n lg n)

The best algorithm has complexity Θ(n log h) where h is the number of

points in the convex hull (T. Chan 1996).

Exercises

Recurrences

Solve the following recurrences.

1. T (n) = 2T (n/2) + n3

2. T (n) = T (9n/10) + n

3. T (n) = 16T (n/4) + n2

4. T (n) = 7T (n/3) + n2

5. T (n) = 7T (n/2) + n2

6. T (n) = 2T (n/4) +
√
n

7. T (n) = T (n− 1) + n

8. T (n) = T (
√
n) + 1

6

9. T (n) = T (n− 1) + lg n

10. T (n) = 2T (n/2) + n/ lg n

11. T (n) = T (n/2) + T (n/4) + T (n/8) + n

Quicksort

Suppose you are given an algorithm median which can �nd the median of

n numbers in Θ(n) time. Devise a divide and conquer sort algorithm with

Θ(n log n) complexity.

Faster integer multiplication

Consider the integer multiplication problem: �nd the product of two n-bit
integers x and y. We have seen in the class how to use divide-and-conquer

algorithm to solve this problem in time Θ(nlg3). The key idea is to reduce a

multiplication of two n-bit integers to three multiplications of two (n/2)-bit
integers. Now, suppose we divide each integer into three equal parts, and

then apply the divide-and-conquer algorithm. Show that we can reduce a

single multiplication of two n-bit integers to 5 multiplications of two (n/3)-
bit integers. What is the time complexity of such an algorithm?

QuickHull

The divide and conquer algorithm convex hull algorithm that we have seen in

class can be viewed as a sort of generalization of Merge Sort. The algorithm

that we will consider can be thought of as a generalization of the QuickSort

sorting procedure. The resulting algorithm is called QuickHull.

Let E be the set of points and let P and Q be the points with minimum

and maximum x-coordinate. Both P and Q are on the convex hull of E. Let
E′ and E′′ be the two sets of points above and below line PQ. The convex
hull of E is the concatenation of the convex hull of E′ and the convex hull

of E′′ if we remove one copy of the edge PQ which is in both convex hulls.

Let S the point of E′ furthest away from line PQ. S is on the convex hull

of E. All the points inside the triangle PSQ are not on the convex hull. Let

E1 the points above PS and E2 the points above SQ. We can recursively

compute the convex hull of E1 and E2.

7

Figure 3: QuickHull

Using this idea, devise an algorithm to compute the convex hull of a set

of points.

1. What is the worst case complexity of this algorithm?

2. Assume half of the points are discarded at each step (inside the triangle

PSQ) and the remaining points are balanced between both sides (half

in E1 and half in E2). What is the complexity in this case?

Fast exponentiation

You are given a real number x and a positive integer n. Give a naive algo-

rithm to compute xn. What is the complexity (number of multiplications)

of your algorithm?

Devise a divide and conquer algorithm with better complexity. Give the

recurrence veri�ed by your algorithm. Hint: If n is even, xn = (xn/2)2 .

Finding the missing integer

An array A of size n contains all the integers from 0 to n except one. It would
be easy to determine the missing integer in linear time by using an auxiliary

array B of size n+ 1 to record which numbers appear in A. In this problem,

however, we cannot access an entire integer in A with a single operation.

The elements of A are represented in binary, and the only operation we can

use to access them is "fetch the jth bit of A[i]," which takes constant time.

Show that if we use only this operation, we can still determine the missing

integer in O(n) time.

8

