
Analysis of Algorithms

Master MOSIG - Algorithms and Program Design

Marc Tchiboukdjian - Denis Trystram

25-09-2009

Course

Objectives: Analyze the cost of an algorithm

To Remember

Correctness of an algorithm. Use a loop invariant and prove

• Initialization: it is true prior to the �rst iteration of the loop.

• Maintenance: if it is true before an iteration, it remains true before

the next iteration.

• Termination: when the loop terminates, it gives a useful property to

prove correctness.

Cost of an algorithm. Resources that the algorithm requires in function

of its input i. Most often the number of primitive operations or steps

executed T (i) or the memory used S(i).

Best-case. Worst-case. Average-case. If I is the set of all possible

inputs and |i| is the size of input i then

Tbest(n) = min
i∈I,|i|=n

T (i)

Tworst(n) = max
i∈I,|i|=n

T (i)

Taverage(n) =
∑

i∈I,|i|=n

T (i) Pr {input i occured}

Asymptotic notation. Drop lower-order terms. Ignore the constant co-

e�cient in the leading term.

f = O(g)⇔ ∃C > 0 ∃n0 > 0 ∀n > n0 f(n) ≤ Cg(n)
f = Ω(g)⇔ g = O(f)
f = Θ(g)⇔ f = O(g) and f = Ω(g)
f = o(g)⇔ ∀C > 0 ∃n0 > 0 ∀n > n0 f(n) ≤ Cg(n)
f = ω(g)⇔ g = o(f)

1

Useful properties about logarithms

logb b
a = a

logc a.b = logc a+ logc b
logb a

n = n logb a

logb a =
logc a
logc b

logb a = O(log a)

Example

Asymptotic notation

2n2 + 3n+ log n = Θ(n2)

= O(n3)
= Ω(n log n)

= o(n3)
= ω(n)

O ≤
Ω ≥
o <

ω >

Θ =

Analysis of insertion sort

Algorithm 1: Insertion sort

Input: An array A of n integers

Result: The array A is sorted

for j = 2 to n do1

key ← A[j]2

i← j − 13

while i > 0 and A[i] > key do4

A[i+ 1]← A[i]5

i← i− 16

end7

A[i+ 1]← key8

end9

Best-case: the array is already sorted.

• Always �nd that A[i] ≤ key upon the �rst time the while loop test is

run (when i = j − 1).

• The body of the for loop (lines 2-8) has cost O(1).

2

• The for loop is executed O(n) times.

• Tbest(n) = O(n).

Worst-case: the array is sorted in the reverse order.

• Always �nd that A[i] > key in while loop test.

• Have to compare key with all elements to the left of the jth position:

compare with j − 1 elements.

• The body of the for loop has cost O(j).

• Tworst(n) =
∑j=n

j=2 O(j) = O(n2).

Average-case: assume each input is equiprobable.

• Equiprobable inputs imply for each element, rank among elements so

far is equiprobable.

• When inserting element in jth position, the expected number of times

the while loop is executed is
∑k=j

k=1 k/j = O(j).

• Taverage(n) =
∑j=n

j=2 O(j) = O(n2).

Exercises

Relative asymptotic growths

Indicate, for each pair of expressions (A,B) in the table below, whether A
is O, o, Ω, ω or Θ of B. Assume that k ≥ 1, ε > 0, and c > 1 are constants.

A B O o Ω ω Θ
a. lgk n nε

b. nk cn

c.
√
n nsinn

d. 2n 2n/2

e. nlg c clgn

f. lg(n!) lg(nn)

Linear search

Consider the searching problem:

Input: An array A of n numbers and a value v.
Output: An index i such that v = A[i] or the special value NIL if v does

not appear in A.

3

Write pseudocode for linear search, which scans through the sequence,

looking for v. How many elements of the input sequence need to be checked

on the average, assuming that the element being searched for is equally likely

to be any element in the array? How about in the worst case? What are the

average-case and worst-case running times of linear search in Θ notation?

Selection sort

Consider sorting n numbers stored in array A by �rst �nding the smallest

element of A and exchanging it with the element in A[1]. Then �nd the

second smallest element of A, and exchange it with A[2]. Continue in this

manner for the �rst n− 1 elements of A.
Write pseudocode for this algorithm, which is known as selection sort.

Why does it need to run for only the �rst n - 1 elements, rather than for

all n elements? Give the best-case and worst-case running times of selection

sort in Θ notation.

4

