
Amortized Analysis

Master MOSIG - Algorithms and Program Design

Marc Tchiboukdjian - Denis Trystram

25-11-2009

Course

Objectives

Design and analysis of data structures using amortization.

To Remember

1. Amortized analysis. The time required to perform a sequence of

data-structure operations is averaged over all the operations performed.

2. No probability involved. An amortized analysis guarantees the

average performance of each operation in the worst case.

3. Three techniques to analyze the cost: aggregate analysis, accounting

method, potential method.

4. Aggregate analysis. If for all n, a sequence of n operations takes

worst-case time T (n) in total, the amortized cost per operation is

T (n)/n.

5. Accounting method. Assign di�erent charges to di�erent opera-

tions. The amortized cost ĉi of operation i is the amount we charge.

When ĉi is more than the actual cost ci of operation i store the dif-

ference ĉi − ci on speci�c objects in the data structure as credit. Use

credit later to pay for operations s.t. ci > ĉi. Credit should never be

negative, i.e. for all sequences of n operations
∑n

i=1 ĉi ≥
∑n

i=1 ci.

6. Potential method. Think of the credit as potential stored with the

entire data structure and not on speci�c objects. Can release potential

to pay for future operations. Most �exible technique.

If Di is the data structure after ith operation and Φ : Di → R the

potential function then the amortized cost of operation i is

ĉi = ci + Φ(Di)− Φ(Di−1) = ci + ∆Φi.

If ∀i,Φ(Di) ≥ 0 and if Φ(D0) = 0 then he amortized cost is

1
n

n∑
i=1

ci =
1
n

n∑
i=1

(ĉi −∆Φi) =
1
n

n∑
i=1

ĉi +
Φ(D0)− Φ(Dn)

n
≤ 1
n

n∑
i=1

ĉi.

Thus the amortized cost is always an upper bound on the actual cost.

1

Example

Analysis of table expansion using aggregate analysis

We implement a table that can resize itself when an insertion arises and

the table is full. A common heuristic is to allocate a new table with a size

doubled. If only insertions are performed, the load factor of a table is always

at least 1/2, and thus the amount of wasted space never exceeds half the

total space.

In the following pseudocode, we assume that T is an object representing

the table. The �eld table[T] contains a pointer to the block of storage rep-

resenting the table. The �eld num[T] contains the number of items in the

table, and the �eld size[T] is the total number of slots in the table.

Initially, the table is empty: num[T] = size[T] = 0.

Algorithm 1: Table Insert

Input: The table T and the element to be inserted x
Result: T ← T ∪ x
if size[T] = 0 then1

allocate table[T] of size 12

size[T]← 13

end4

if num[T] = size[T] then5

allocate newtable of size 2× size[T]6

insert all items in table[T] into newtable7

free table[T]8

table[T]← newtable9

size[T]← 2× size[T]10

end11

insert x into table[T]12

num[T]← num[T] + 113

Amortized cost of insertion. Let ci be the cost of the ith insertion.

ci =

{
i if i− 1 is an exact power of 2

1 otherwise

Thus, the average cost over n insertions is

Taverage =
∑i=n

i=1 ci
n

≤
n+

∑j=blognc
j=0 2j

n
≤ n+ 2n

n
= O(1).

2

B-trees

De�nition. B-trees of degree t ≥ 2 are trees having the following proper-

ties:

• every node x has the following �elds

� n[x] the number of keys currently stored in node x

� the keys themselves, stored in non decreasing order so that key1[x] ≤
key2[x] ≤ . . . ≤ keyn[x][x]

� leaf [x] a boolean value that is true is x is a leaf and false is x
is an internal node

• each internal node x also contains n[x]+1 pointers c1[x], c2[x], . . . , cn[x]+1[x]
to its children.

• the keys keyi[x] separate the ranges of keys stored in each subtree: if

ki is any key stored in the subtree with root ci[x] then k1 ≤ key1[x] ≤
k2 ≤ key2[x] ≤ . . . ≤ keyn[x][x] ≤ kn[x]+1.

• every node other than the root must have at least t − 1 keys and at

most 2t− 1 keys.

Height. The height h of an n-key B-tree of degree t satis�es h ≤ logt
n+1

2 .

• we have n ≥ 1 + (t− 1)
∑h

i=1 2ti−1

• which gives th ≤ (n+ 1)/2

• taking logt on both sides gives the result.

B-trees are balanced trees (they guarantee that h = O(log n)).

Search. Simple generalization of the search in a binary tree. Cost is

O(lg t logt n) = O(log n).

Insertion. Insert the key in a leaf node. If leaf node x is full, split the

node around its median key keyt[x] into two nodes having t − 1 keys each.

The median key moves up into x's parent y. If y is also full, split again. The
need to split full nodes can propagate all the way up the tree. Cost of split

is O(t), height is h = O(logt n), at most one split by node on a leaf to root

path thus the worst case insert cost is O(t logt n).

I/O complexity. Choose t so that each node �t in one memory block.

search, insert and delete cost O(h) = O(logt n) block transfers. Com-

pared to balanced binary trees O(log n) this is a log t factor improvement.

In practice t is big, therefore most databases propose an implementation of

the B-tree (or a variation).

3

Amortized costs of splits in B-tree using the accounting method

Intuition. A leaf node (depth 0) has to be split every t insertions. Similarly

a node at depth k can handle tk+1 insertions before being split.

Charging scheme. Let x0, x1, . . . , xk be the path in the B-tree from the

leaf x0 where the element is inserted to the root xk. We charge the element
1
tk

for the node xi. Total charge is ĉi =
∑k

i=0
1
tk
≤ 2.

Proof. Let x a node in the B-tree at depth k. Suppose we have just

split the node and there is no more credit. Next split will happen after tk+1

elements being inserted in the subtree rooted at x. Credit will be tk+1 1
tk

= t.
Cost to split is t. We have just enough to pay for the split.

Conclusion. The amortized cost of splits is ĉi = O(1).

Exercises

Making binary search dynamic

Binary search of a sorted array takes logarithmic search time, but the time

to insert a new element is linear in the size of the array. We can improve the

time for insertion by keeping several sorted arrays.

Speci�cally, suppose that we wish to support search and insert on a

set of n elements. Let k = dlg(n+ 1)e, and let the binary representation of

n be nk−1, . . . , n0. We have k sorted arrays A0, . . . , Ak−1, where the length

of array Ai is 2i. Each array is either full or empty, depending on whether

ni = 1 or ni = 0, respectively. The total number of elements held in all k
arrays is therefor

∑k−1
i=0 ni2

i = n. Although each individual array is sorted,

there is no particular relationship between elements in di�erent arrays.

1. Describe how to perform the search operation for this data structure.

Analyze its worst-case running time.

2. Describe how to insert a new element into this data structure. Analyze

its worst-case and amortized running times.

3. Discuss how to implement delete.

Amortized weight-balanced trees

Consider an ordinary search tree augmented by adding to each node x the

�eld size[x] giving the number of keys stored in the subtree rooted at x. Let
α be a constant in the range 1/2 ≤ α < 1. We say that a given node x is

α-balanced if

size[left[x]] ≤ α× size[x]

4

and

size[right[x]] ≤ α× size[x].

The tree as a whole is α-balanced if every node in the tree is α-balanced.

1. A 1/2-balanced tree is, in a sense, as balanced as it can be. Given

a node x in an arbitrary binary search tree, show how to rebuild the

subtree rooted at x so that it becomes 1/2-balanced. Your algorithm
should run in time O(size[x]).
(Hint: you should use a sorted array of size size[x])

2. Show that performing a search in an n-node α-balanced binary search

tree takes O(lg n) worst-case time.

Hint: write a recurrence equation.

For the remainder of this problem, assume the constant α is strictly

greater that 1/2. Suppose that insert and delete are implemented as usual

for an n-node binary search tree, except that after every such operation, if

any node in the tree is no longer α-balanced, then the subtree rooted at the

highest such node in the tree is rebuilt so that it becomes 1/2-balanced.

3. What is the worst case cost of an insertion (including the rebalancing

cost) ?

Instead of using the worst case analysis, we shall analyze this rebuilding

scheme using the potential method. For a node x in a binary search tree T ,
we de�ne

δ(x) = |size[left[x]]− size[right[x]]| ,

and we de�ne the potential of T as

Φ(T) = k
∑

x∈T :δ(x)≥2

δ(x),

where k is a su�ciently large constant that depends on α.
Remember that if ci is the actual cost of the ith operation and Ti is the

tree after the ith operation then the amortized cost of the ith operation is

ĉi = ci + Φ(Ti)− Φ(Ti−1) = ci + ∆Φi.

4. Argue that any binary search tree has nonnegative potential and that

a 1/2-balanced tree has potential 0.

5

5. Suppose that we need to rebalance the subtree rooted at node x ∈ T .
Let m = size[x]. Show that δ(x) ≥ (2α− 1)m+ 1.

6. Let Φbefore the potential in the tree just before we rebalance the sub-

tree rooted at node x and Φafter the potential in the tree just after.

Show that Φbefore − Φafter ≥ k((2α− 1)m+ 1).
Hint: divide the potential in two parts, Φ′ which is the potential con-

tained in the subtree rooted at x and Φ′′ the remaining potential.

7. Suppose that m units of potential can pay for rebuilding an m-node

subtree. When we rebuild the subtree rooted at x, we release potential
Φbefore−Φafter. We would like to be able to pay for the rebuild oper-

ation with the potential release. How large must k be in terms of α so

that the release of potential Φbefore−Φafter can pay for the rebuild of

the subtree rooted at x?

8. Show that inserting a node into or deleting a node from an n-node
α-balanced tree costs O(lg n) amortized time.

6

