
XKaapi: A Runtime System for Data-Flow Task Programming
on Heterogeneous Architectures

Thierry Gautier†, João V. F. Lima∗‡, Nicolas Maillard‡, Bruno Raffin†
∗ Grenoble University, France
† INRIA, Grenoble, France

‡ Federal University of Rio Grande do Sul (UFRGS), Brazil
thierry.gautier@inrialpes.fr, Joao.Lima@imag.fr, nicolas@inf.ufrgs.br, Bruno.Raffin@inria.fr

Abstract—Most recent HPC platforms have heterogeneous
nodes composed of multi-core CPUs and accelerators, like
GPUs. Programming such nodes is typically based on a com-
bination of OpenMP and CUDA/OpenCL codes; scheduling
relies on a static partitioning and cost model.

We present the XKaapi runtime system for data-flow
task programming on multi-CPU and multi-GPU architec-
tures, which supports a data-flow task model and a locality-
aware work stealing scheduler. XKaapi enables task multi-
implementation on CPU or GPU and multi-level parallelism
with different grain sizes. We show performance results on
two dense linear algebra kernels, matrix product (GEMM)
and Cholesky factorization (POTRF), to evaluate XKaapi on a
heterogeneous architecture composed of two hexa-core CPUs
and eight NVIDIA Fermi GPUs.

Our conclusion is two-fold. First, fine grained parallelism
and online scheduling achieve performance results as good
as static strategies, and in most cases outperform them. This
is due to an improved work stealing strategy that includes
locality information; a very light implementation of the tasks
in XKaapi; and an optimized search for ready tasks.

Next, the multi-level parallelism on multiple CPUs and
GPUs enabled by XKaapi led to a highly efficient Cholesky
factorization. Using eight NVIDIA Fermi GPUs and four CPUs,
we measure up to 2.43 TFlop/s on double precision matrix
product and 1.79 TFlop/s on Cholesky factorization; and
respectively 5.09 TFlop/s and 3.92 TFlop/s in single precision.

Keywords-High Performance Computing; Data-Flow task
model; Heterogeneous architectures; Locality Aware Work
Stealing; Dense Linear Algebra;

I. INTRODUCTION

With the recent evolution of processor design, future
generations of processors will contain hundreds of cores.
To increase the performance per watt ratio, the cores will
certainly be non-symmetric with few highly powerful cores
and numerous, but simpler, cores. The success of these
machines will rely on the ability to schedule the workload
at runtime, even for small problem instances.

Several libraries [1], [2] or languages such as Cilk [3],
X10, Fortress, Chapel or OpenMP are designed to improve
productivity. They encourage programmers to express all the
potential parallelism in an application at fine grain, while
delegating to the runtime, possibly with the help of a com-
piler, the extraction of parallelism for the target multiproces-

sor. A parallel construct, such as for each (Cilk cilk_for,
X10 for_each, OpenMP #pragma omp for), enables
to identify potential concurrent instruction sets, an approach
commonly used in numerical applications. Still, these soft-
wares provide instructions to express task parallelism, such
as cilk_spawn (Cilk), async (X10) or #pragma task
(OpenMP). All these software runtimes rely on schedulers
using variations of the work stealing algorithm [4], [5]. The
main drawback of a for each construct is the addition of
strong synchronization points to enforce the completion of a
set of independent tasks, and the associated memory update,
before a new task set can be executed. This synchronization
points restrict the overall parallelism. This happens for
instance in classical block matrix factorizations (Cholesky,
LU, QR) where parallelism between tasks across the outer
iterations exists [6].

On the other hand, the data-flow model simplifies pro-
gramming by unfolding parallelism based on data-flow de-
pendencies between tasks. Runtime systems with support
for data-flow programming are nowadays de facto standard
for parallel linear algebra libraries on multi-cores [6], [7],
[8]. Besides, they can automatically move data between
address spaces, such as on multi-CPU or multi-GPU archi-
tectures [9], [10], [11], [12] or clusters [13], [14], [15].

In the context of multi-CPU and multi-GPU heteroge-
neous architectures, a runtime system needs to offer a
programming model that considers heterogeneity in terms
of computing power and disjoint address spaces. Multi-
core processors are more suitable to memory-bound or
comparison oriented computations, whereas GPUs sustain
performance on highly parallel, compute-bound, problems.
Moreover, data transfers over different address spaces must
be avoided in order to guarantee scalability and efficient
work load balancing. A data-flow model is suitable to
heterogeneous architectures since it describes all necessary
data transfers, but processing heterogeneity still depends on
both programming and scheduling.

The data-flow softwares cited above attain significant
performance results on heterogeneous architectures, but rely
on restricted programming models and a static partitioning
scheduling. Since their programming models only consider

one level of parallelism, without the capacity to adapt the
computation to the resource, their scheduling algorithms
handle statically defined work partitions and cost models.
The HEFT heuristic used in StarPU [11] relies on a cost
model to predict performance based on the expected task
execution time on each type of target hardware resource.
The uncertainties related to the estimations, in particular
when communication costs are high, may impact the overall
performance [16].

In this paper, we introduce XKaapi, a runtime system for
data-flow task programming on heterogeneous architectures.
XKaapi combines a C++ interface for data-flow program-
ming (Section II) and a work stealing based scheduler to
support multi-CPU and multi-GPU architectures (Section
III). The main contributions we propose are:

• A locality-aware work stealing algorithm based on
heuristics to manage data locality and tackle the cache-
unfriendly problem of classic work stealing [17], which
is critical on multi-GPU systems;

• A fully asynchronous task execution strategy on GPUs
to overlap data transfers with GPU kernel executions;

• Low overhead tasks that permit to efficiently handle a
high degree of parallelism;

• Lazy computation of dependencies to throw the over-
head on the critical path rather than on the work;

We evaluate the XKaapi runtime with two dense linear
algebra algorithms in double precision: matrix product and
Cholesky factorization (Section IV). First, our experiments
evaluate our asynchronous task execution strategy on a
single-GPU. Second, we measure the performance of our
locality-aware work stealing based on two heuristics. Our
experiments show that XKaapi achieves a speedup of about
7.7 for matrix product and 6 for Cholesky factorization when
using eight GPUs and four CPUs over one GPU and one
CPU. In terms of raw performance, with matrices of size
40960 × 40960, we attain about 2.43 TFlop/s on double
precision parallel matrix product (5.09 TFlop/s on single
precision), and 1.79 TFlop/s on double precision Cholesky
factorization (3.92 TFlop/s on single precision).

XKaapi results on the Cholesky factorization can be
compared to the best performance obtained on a similar
platform, of roughly 760 GFlop/s obtained on a system made
of twelve CPUs and three GPUs [15]. Our parallel Cholesky
achieves more than 800 GFlop/s on nine CPUs and three
GPUs.

II. DATA-FLOW TASK PROGRAMMING WITH XKAAPI

The XKaapi1 task model [18], as in Cilk [3], Intel
TBB [1], OpenMP-3.0, StarSs [10] or OmpSs [14], enables
non-blocking task creation: the caller creates the task and
proceeds with the program execution. The semantic remains
sequential such as XKaapi’s predecessors Athapascan [13]

1http://kaapi.gforge.inria.fr

and KAAPI [18] (which was further specialized for multi-
CPU/multi-GPU iterative applications [9]). Still, in this pa-
per, we introduce a general scheduling algorithm for multi-
CPU/multi-GPU systems that enforces a locality-aware work
stealing (Section III).

XKaapi has several APIs (C, Fortran, C++) to program
heterogeneous parallel architectures. In this paper, code
fragments rely on the C++ API.

A. Data-Flow Task Definition and Creation

A XKaapi program is a sequential code complemented
with annotations or runtime calls to create tasks. Parallelism
is explicit, while the detection of synchronizations is im-
plicit [18]: the dependencies between tasks and the memory
transfers are automatically managed by the runtime.

A task is a function call that returns no value except
through its effective parameters. Tasks are created by calling
the template function ka::Spawn.

The code fragment of Figure 1 illustrates how to pro-
gram a Cholesky factorization using the C++ API. The
ka::Spawn<Task> creates a task of type Task. Each
parameter rk,rm,rn corresponds to a range of indexes,
and a construction such as A(rm,rk) represents the sub-
matrix of elements A(i,j) where i,j are in the range
rm,rk. The data type range_2d is an abstraction to view
a memory region as a 2D array.

The right side of Figure 1 illustrates the definition of a task
signature (TaskSYRK) that includes the task parameters and
their access modes (read R and/or write W and/or concurrent
write CW). An implementation for CPU is given by the
specialization of the TaskBodyCPU template class.

B. Execution by Work Stealing

The runtime creates a system thread for each computa-
tional resource to be used. On multi-CPU, a resource is a
core. A thread creates tasks and pushes them on its own
work queue, which is represented as a stack. The enqueue
operation is very fast, typically about ten cycles on the last
x86/64 processors [2]. Alike Cilk and OmpSs [14], a running
XKaapi task can create children tasks. This is not the case
for the other data-flow programming software previously
mentioned [10], [11], [19]. Once a task ends, the thread
executes its children following a First-in First-out (FIFO)
order by popping tasks from its own work queue.

Thanks to Cilk [3], [4], the work stealing technique has
become popular and is often considered when it comes to
dynamically balance the work load among processing units.
The work stealing principle can be synthesized as follows.
An idle thread, called a thief, initiates a steal request to a
random selected victim. On reply, the thief receives a copy of
one ready task, leaving the original task marked as stolen.
Coherency between a thief and its victim is ensured by a
Dijsktra-like protocol, as in Cilk [3]. To find a ready task,
a thief thread iterates through the victim’s queue from the

http://kaapi.gforge.inria.fr

/∗ left looking Cholesky factorization ∗/
for (k=0; k < N; k+= blocksize) {

ka :: Spawn<TaskPOTRF>()(A(rk,rk));
for (m=k+blocksize; m < N; m+= blocksize)

ka :: Spawn<TaskTRSM>()(A(rk,rk), A(rm,rk));
for (m=k+blocksize; m < N; m+= blocksize) {

ka :: Spawn<TaskSYRK>()(A(rm,rk), A(rm,rm));
for (n=k+blocksize; n < m; n+= blocksize)

ka :: Spawn<TaskGEMM>()(A(rm,rk), A(rn,rk),
A(rm,rn));

} }

/∗ Signature defines task parameters ∗/
struct TaskSYRK: public ka::Task<2>::Signature<

ka :: R<ka::range2d<double> >,
ka :: RW<ka::range2d<double> > >{};

template<> struct TaskBodyCPU<TaskSYRK> {
void operator (ka :: range2d r<double> A,

ka :: range2d rw<double> C)
{ cblas dsyrk (A→dim(0), A→dim(1), A→ptr(), A→ld(),

C→ptr(), C→ld());
} };

Figure 1. Example of a XKaapi C++ Cholesky factorization (left part). On the right: example of a XKaapi C++ implementation of a task. It shows a
task Signature with its parameters and access modes, as well as a CPU implementation. The call to cblas_dsyrk is simplified.

least recently pushed task to the most recently one and it
computes true data-flow dependencies for each task. The
iteration stops on the first task found ready.

If a thread pops from its queue a task marked as stolen,
then it suspends the task execution and switches to the work
stealing scheduler that waits for dependencies to be met
before resuming the task. Non-stolen tasks are performed in
FIFO order without computation of data-flow dependencies,
because the task queueing order on each thread is a valid
sequential order of execution [13], [18].

C. Work-first Principle and Data-Flow Dependencies

The main difference between XKaapi and other soft-
ware [11], [14], [19], [20] is that XKaapi computes data-
flow dependencies only when an idle thread searches for a
ready task.

Tasks share data if they have access to the same memory
region. A memory region is defined as a set of addresses
in the process virtual address space. The user is responsible
for indicating the mode each task uses to access memory:
the main access modes are read, write, reduction or exclu-
sive [13], [18]. During a steal operation, the thief thread
computes true dependencies (Read after Write dependencies)
between tasks according to the access modes. At the expense
of memory copy, the scheduler may solve false dependencies
through variable renaming.

Computing data-flow dependencies during steal opera-
tions reduces the overhead of normal task execution in
recursive programs where the number of steals is dependent
of the critical path. This original idea in XKaapi follows the
work-first principle [3]: at the expense of a larger critical
path, XKaapi moves the cost of computing ready tasks from
the work performed by the victim during task’s creations to
the steal operations performed by thieves.

Thanks to our approach, the classical fine-grained re-
cursive Fibonacci in a data-flow implementation shows an
overhead T1/Tseq of about 10 [2], which is of the same order
as Cilk or TBB that do not handle data-flow dependencies.
In XKaapi, the cost of task creation is several orders
of magnitude lower than in StarPU [11], StarSs [10] or

OmpSs [14].
Tchiboukdjian et al. [21] proposes a theoretical analysis of

work stealing with dependent tasks, considering a XKaapi-
like protocol.

D. Acceleration Data Structure for Ready Tasks

XKaapi implements an optimization to compute ready
tasks at steal operation through the use of a list of ready
tasks instead of a work stack. The runtime switches to this
new structure when the cost becomes important, especially
when the victim’s stack contains many tasks, as for instance
in the block linear algebra algorithms presented in this paper.

In a steal operation, the scheduler computes a list of tasks’
successors from the work stack and attaches it to the stack.
The successors of a task are tasks with true dependencies
with the task. Subsequently using the successors list, ac-
tivated tasks are pushed directly into a ready task list. If
new tasks are created, the scheduler computes a new list
of their successors. Therefore, the search for a ready task,
which would be proportional to the number of tasks in the
work stack (and to the number k of their parameter, to verify
their dependencies), switches to take constant time (access
to the first element of the list of ready tasks) plus an O(k)
overhead for the activation of the successors. Consequently,
subsequent steal operations in a thread with a ready task list
have lower cost.

Thus, our optimization moves the overhead of computing
ready tasks from each steal operation to the steal operation
that detects new tasks in the work stack.

III. EXTENSION FOR MULTI-CPU AND MULTI-GPU

This section describes the features to support multi-CPU
and multi-GPU2 in XKaapi through multi-versioning task
implementation, locality-aware work stealing scheduling,
concurrent GPU operations as provided by recent Fermi
GPUs, and software cache memory.

2Our current version supports NVIDIA CUDA.

template<> struct TaskBodyGPU<TaskSYRK>{
void operator (ka :: gpuStream stream,

ka :: range2d r<double> A,
ka :: range2d rw<double> C)

{ cublasDsyrk(kaapi cublas handle (stream),
A→dim(0), A→dim(1), A→ptr(), A→ld(),
C→ptr(), C→ld()); } };

Figure 2. TaskSYRK’s GPU version with the XKaapi C++ API.

A. Versioning Task Implementations

The extensions to the C++ interface provide a high
level interface for multi-versioning a task implementation
[9]. A task implementation for GPU (respectively CPU) is
the specialization of the class TaskBodyGPU (respectively
TaskBodyCPU). For instance the CPU implementation of
TaskSYRK presented in Figure 1 can be complemented with
a GPU implementation as written in Figure 2.

At least one implementation is expected per task sig-
nature (TaskSYRK in the example). The implementation
can be recursive, calling the task signature and leaving
to the scheduler the freedom to choose the more relevant
implementation. All task implementations must conform to
the task signature (TaskSYRK in the example), except for
one optional formal parameter (here stream) that enables
to pass information to the task implementation from the
caller (during ka::Spawn) or from the runtime (here the
current CUDA stream where the kernel should be launched).

B. Locality-Aware Work Stealing

We extend each CPU or GPU thread with a local queue
named mailbox in which remote threads can push tasks.
This is similar to the approach proposed in [22], but without
explicit locality annotation. Our locality-aware work stealing
pushes the successors of a task to selected remote resources
(CPU or GPU) based on meta-data information attached to
each user data.

We developed two heuristics for local optimization, called
H1 and H2, using these meta-data:

• H1 – For each task to be activated, XKaapi first goes
through every task input parameter and looks for the
resources where the parameter is valid, and its size. The
resource which owns the biggest sum of input bytes in
valid state is then chosen as the host to run the task.

• H2 – This second heuristic is based on the data access
modes. It tries to reduce the invalidations of the data
replicas: the scheduler pushes a newly activated task
on the mailbox of the resource that has a valid copy
of its write or exclusive accessed parameters. If more
than one resource is eligible, then the scheduler simply
selects a resource at random among the set of eligible
ones.

Experiments show that the heuristic H2 usually makes
better local decisions, except for embarrassingly parallel

applications, such as matrix product, where they both lead
to a similar performance.

C. Asynchronous Task Execution

Once a task is selected, the runtime ensures consistency
of its input data on the GPU device before the GPU
kernel executes. The runtime assumes that the GPU task
implementation launches the GPU kernels asynchronously.
Once a task implementation has launched computations on a
GPU, the scheduler starts the execution of the next selected
task by sending its input data in advance. This enables to
overlap data transfers with kernel executions.

We empirically found that the best performance gain is
obtained when having two tasks being processed per GPU.
Starting more tasks do not increase performance significantly
and reduce the capacity to balance the work load, because
tasks can not be aborted neither reactivated after the start of
a GPU transfer.

Data transfers and kernel invocation on a GPU are handled
asynchronously as well as the completion of these opera-
tions. We have gathered these functionalities in an extension
of CUDA streams presented in the next section.

D. Concurrent GPU Operations

Recent GPUs, such as NVIDIA’s Fermi and Kepler,
support new features for asynchronism. For instance, Fermi
GPUs have one execution engine and two copy engines,
enabling to concurrently perform a kernel execution and
memory transfers (two-way host-to-device and device-to-
host), under the condition that no explicit nor implicit
synchronization occurs.

We developed a mechanism to take advantage of this
asynchronism for multi-GPU systems. XKaapi splits the
execution of a GPU task in two basic operations: host-to-
device input transfers (H2D); and TaskBodyGPU execution
(i.e. launch of CUDA kernels) (K). The device-to-host output
transfers (D2H) depend on the software cache write-back
policy and the scheduling decision of future tasks that access
data in read mode.

Since concurrency between data transfers and kernel
launches must use CUDA streams, we defined a new data
structure, called kstream, that groups together three types
of CUDA streams: a stream for host-to-device transfer, a
stream for kernel execution and a stream for device-to-host
transfer. The kstream allows to insert a request for one of
the three types (H2D, K, or D2H) and to specify a callback
function with one argument. After each request insertion,
the kstream inserts a CUDA event to detect its completion.
Once the kstream detects the event completion, it calls the
callback function with its argument as parameter. This is the
responsibility of the kstream client to regularly poll for the
completion of asynchronous requests by calling a specific
function. The XKaapi work stealing algorithm polls each
time a GPU thread is idle.

This design allows concurrent execution between each
type of CUDA stream. The kstream represents three flows
of FIFO ordered GPU operations, which execution is inde-
pendent from each other. The FIFO order is only respected
among operations of the same type (H2D, K or D2H).
The callback mechanism enables to compose a sequence of
operations and is typically used by the GPU work stealing
algorithm, first to insert data transfers for the input of a task,
and then to invoke the kernel launch when the transfer ends.

E. Data Management and Software Cache

XKaapi manages GPU memory through a software cache,
based on the Least Recently Used (LRU) replacement policy.
Each GPU thread maintains a FIFO queue of allocated
memory blocks. When a GPU task requires accessing a host
memory block that is not present on the GPU, the runtime
will allocate memory and insert it in its own queue. In order
to enable asynchronous memory transfers with CUDA, user
data is page-locked through specific CUDA library function
(cudaHostRegister).

If its memory is full, a GPU tries to evict the least
recently used memory block of its own queue (LRU policy).
If possible, unused blocks are reused without being freed.
This optimization avoids unnecessary CUDA calls.

Consistency is guaranteed by a lazy strategy using a write-
back policy. Data transfers to or from the GPU occur only
when a task accesses data and when the data is in an
invalid state in the target address space. This policy avoids
unnecessary transfers, unlike write-through policy [7], [11],
[14]. All transfer operations are asynchronous and rely on
the use of our kstream data structure to signal the completion
of operations.

IV. EXPERIMENTS

All experiments have been conducted on a heterogeneous,
multi-GPU system, named “Idgraf“. Idgraf is composed of
two hexa-core Intel Xeon X5650 CPUs (12 CPU cores total)
running at 2.66 GHz with 72 GB of memory. It is enhanced
with eight NVIDIA Tesla C2050 GPUs (Fermi architecture)
of 448 GPU cores (scalar processors) running at 1.15 GHz
each (2688 GPU cores total) with 3 GB GDDR5 per GPU
(18 GB total). Figure 3 illustrates the hardware topology
of Idgraf. The machine has four PCIe switches to support
up to eight GPUs. When two GPUs share a switch, their
aggregated PCIe bandwidth is bounded to the one of a single
PCIe 16x. Experiments using up to four GPUs always use
one GPU per PCIe switch to avoid this bandwidth constraint.
On the other hand, experiments using more than four GPUs
have to share some pairs of GPUs through the PCIe switch.

We used as software environment GNU/Linux Debian
squeeze x86/64, the compiler GCC 4.4, CUDA 4.1, and the
library ATLAS 3.9.39 (BLAS and LAPACK).

Xeon X5650

QPI-PCIe
Bridge

Tesla C2050
Xeon core

Xeon X5650

PCIe
Switch

PCIe 16x

QPI

QPI-PCIe
Bridge

GPU

GPU

GPU

GPU

GPU

GPU

GPU

GPU

PCIe
Switch

PCIe
Switch

PCIe
Switch

PCIe 16x

QPI QPI

QPI

Figure 3. Idgraf hardware topology with two hexa-core CPUs and eight
Tesla C2050 GPUs.

A. Dense Linear Algebra Benchmarks

Our experiments use the same parallel version of the dense
linear algebra problems matrix product (doing C ← C +
AB) and Cholesky Factorization, as found in PLASMA [8].
The algorithms have been re-implemented in XKaapi to use
its low overhead task creation. The matrix data layout is
the same as in PLASMA (tile data layout). All elementary
tasks access to one or more tiles. The parallel Cholesky
factorization is a two levels parallel algorithm: at the upper
level, we use the PLASMA algorithm with 1024 × 1024
tiles; at the lower level the panel Cholesky factorization
(DPOTRF) is parallelized using the same parallel algorithm
as at upper level by decomposing one tile in sub-tiles of size
128× 128. We have not used auto-tuning to select the sizes
of the tile and sub-tile, but an empirical approach: after a
few experiments showing their average good performances,
we have decided to use theses values.

We calculate the number of Flops according to
PLASMA [8] algorithms. If N denotes the dimension of
the matrices, the number of Flops for a matrix product is
2N3, and 1

3N
3+ 1

2N
2+ 1

6N for the Cholesky factorization.
All results, except when specified, are in double precision
floating-point operations.

Each result is a mean of 30 executions. The 95% confi-
dence interval is represented on the graphs.

B. Overlapping Data Transfers with Kernel Executions

This section presents experiments to evaluate the capacity
of our design to exploit asynchronous data transfers in
concurrence with GPU kernel executions. Our experiment
measures the performance of the matrix product algorithm.
Matrices A and B of dimension N×N are decomposed into
tiles (or blocks) of size s× s. We devised our implementation
such that all computations are performed on the GPU. Matrix
computation is done with double precision, each block-
matrix product launches CUDA kernels using the CUBLAS
DGEMM routine.

We compare the performance of three versions:
• CUBLAS (no copy): CUBLAS when the time to copy

input and output matrices is not considered.

 0

 50

 100

 150

 200

 250

 300

 350

 0 4096 8192 12288 16384 20480

G
Fl

op
/s

Matrix order

CUBLAS (nocopy)
XKaapi (tile=2048)
XKaapi (tile=1024)
XKaapi (tile=512)
CUBLAS

Figure 4. Performance results from DGEMM on Idgraf for a single CPU
and a single GPU, and different block sizes.

• CUBLAS: CUBLAS with copy time included.
• XKaapi (tile=s): our XKaapi implementation with the

performance obtained from native calls to CUBLAS
DGEMM on s×s tile sizes. Each measure includes all the
costs of CUDA memory allocations and data transfers.

1) Raw Performance: Figure 4 illustrates the results of
DGEMM with the three versions and different tile sizes for
XKaapi. Note that CUBLAS (no copy) measures the GPU
peak performance.

CUBLAS (no copy) reached its peak performance (about
315 GFlop/s) for 4096 × 4096 square matrices. For larger
matrices, the performance decreases to 293 GFlop/s.

Our XKaapi version, that takes data transfers into ac-
count, with blocks of size 1024 × 1024 and 2048 × 2048,
reaches the GPU peak performance for matrices bigger than
6144×6144. For matrices bigger than 8192×8192 XKaapi’s
implementation sustains 309 GFlop/s for a 2048×2048 block
size, outperforming CUBLAS (293 GFlop/s). This algorithm
with block size of 1024×1024 generates numerous tasks that
can be exploited by our runtime to pipeline and overlap data
transfers with computations. Our good performance confirms
that we are able to overlap an important amount of the data
transfers with the GPU kernel executions.

2) Out of Core Performance: Thanks to the XKaapi
software cache and to our design to exploit concurrent
GPU operations, our blocked DGEMM algorithm sustains a
309 GFlop/s performance peak even after the GPU runs
out of memory with matrices larger than 10240 × 10240,
which require ≈ 2.43 GB of device memory out of the 3 GB
available on the NVIDIA Tesla C2050 cards.

3) Taking into Account Copies with CUBLAS: For small
matrices, because the number of tasks remains low, the data
transfer is not entirely overlapped by computation. Even
in this case, XKaapi presents good results. For instance,
the performance of CUBLAS nocopy with matrices of size
2048 × 2048 is about 312 GFlop/s. Performance drops to
152 GFlop/s if we take into account the data transfers. Our

XKaapi DGEMM for this matrix dimension and with block
size of 1024 × 1024 generates 8 tasks for each sub-matrix
product, and it reaches 240 GFlop/s, that corresponds to
157% of improvement over CUBLAS when data transfers
are taken into account.

4) Outperforming the CUBLAS GPU Peak Performance:
A deeper look at the results presented in Figure 4 shows an
interesting phenomenon. For matrix dimension 4096×4096
using a 512 × 512 block size, our blocked DGEMM reaches
247.5 GFlop/s. For bigger matrix dimensions, using the
same block size, the performance increases up to 271
GFlop/s. However, a simple analysis shows that our blocked
DGEMM algorithm performance should be upper bounded by
CUBLAS DGEMM, since our implementation only calls it to
compute each of its blocks. Besides, the same figure shows
that the performance of CUBLAS DGEMM, without taking
into account data transfers, is 233 GFlop/s for a 512× 512
matrix. Here XKaapi enables to increase the performance
by 16%. It is still unclear why we get such a gain. It
could be related to a better GPU occupancy, or to specific
CUDA optimizations for small matrices, which includes new
CUBLAS batched *GEMM routines since version 4.1.

In the subsequent experiments, we only consider XKaapi
programs with tile size 1024×1024 for Cholesky factoriza-
tion and 2048× 2048 for parallel DGEMM.

C. Comparison of Work Stealing Heuristics

In this section, we compare the performance of the H1
and H2 heuristics (see section III-B) against the default
work stealing algorithm (label default) on the matrix product
(DGEMM) and Cholesky factorization (DPOTRF). The matrix
size is constant (40960×40960) while the number of GPUs
varies.

1) Parallel Matrix Product: Figure 5 reports the perfor-
mance of the parallel DGEMM using up to eight GPUs.

For all heuristics, the speedup linearly increases with
the number of GPUs (Figure 5(a)). The peak performance
is 2426.40 GFlop/s for eight GPUs (2.43 TFlop/s). This
corresponds to a sustained performance of 303 GFlop/s per
GPU, which is very close to the peak (315 GFlop/s) on the
DGEMM kernel. For matrices of size 16384× 16384 XKaapi
reaches 2.0 TFlop/s, and 1.6 TFlop/s for matrices of size
8192× 8192.

The three heuristics (default, H1 and H2) show similar
GFlop/s performance. When looking at the total amount of
data transfered, presented in Figure 5(b), the heuristic H2
outperforms the two other approaches with transfers reduced
up to 24%. In such a parallel problem, the overlapping
capability of XKaapi allows to mask almost all the delays
in data transfers. The measured performance is not impacted
whatever the chosen heuristic is.

2) Cholesky factorization: Figure 6 illustrates our per-
formance results. In addition to GPUs, we involve in the
computations all remaining CPU cores, out of the twelve

 0

 500

 1000

 1500

 2000

 2500

1GPU 2GPU 3GPU 4GPU 5GPU 6GPU 7GPU 8GPU

G
Fl

op
/s

Number of GPUs

 default H1 H2

(a) Performance in GFlop/s.

 0

 50

 100

 150

 200

 250

 300

2GPU 4GPU 6GPU 8GPU

M
em

or
y

tr
an

sf
er

 (G
B

)

Number of GPUs

default H1 H2

(b) Total data transfers in (GB).

Figure 5. Performance results of DGEMM on eight GPUs for a matrix size of 40960× 40960, with three load balancing heuristics.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1GPU
11CPU

2GPU
10CPU

3GPU
9CPU

4GPU
8CPU

5GPU
7CPU

6GPU
6CPU

7GPU
5CPU

8GPU
4CPU

G
Fl

op
/s

Number of CPUs/GPUs

 default H1 H2

(a) Performance in GFlop/s.

 0

 50

 100

 150

 200

10CPU+2GPU 8CPU+4GPU 6CPU+6GPU 4CPU+8GPU

M
em

or
y

tr
an

sf
er

 (G
B

)

Number of CPUs/GPUs

default H1 H2

(b) Total data transfers (GB).

Figure 6. Performance results of DPOTRF on eight GPUs and four CPUs for a matrix size of 40960× 40960.

available, after removing the ones each GPU monopolizes
to run its GPU thread.

We conclude that: (a) the default heuristic has a bigger
communication footprint that explains its poor scalability
on more than four GPUs; (b) heuristic H1, which reduces
the communication volume, enables a gain in scalability
up to six GPUs; (c) heuristic H2 has the lowest volume
of data transfers and scales up to eight GPUs. The peak
performance with H2 is 1.79 TFlop/s in double precision
and 3.92 TFlop/s in single precision.

Note that with more than four GPUs, at least two GPUs
share the same PCIe-16x bus. Consequently, a scheduling
algorithm that introduces a lot of memory transfer is more
penalized on such hardware.

3) Conclusion: The local optimization decisions made
by the heuristics do not ensure global reduction of data
transfers. The second heuristic H2 tries to minimize cache
invalidations and seems to be more interesting: its effect is
to keep data local to the resources, applying the classical
“owner compute rule”. The gain here is that the runtime
automatically computes the right device to schedule the tasks
without any programmer annotation.

We note that our heuristic allows to obtain very good

results. To our knowledge, this is the first time that teraflop
performances in double precision are reported on a multi-
core machine with up to eight GPUs. Moreover, these results
were obtained using a purely work stealing algorithm.

D. Overlapping on Multi-GPU

This section refines the analysis of performance impact
when data transfers are overlapped with kernel executions
on multi-GPU. Figure 7 shows the performance results of
the Cholesky factorization using the default work stealing
and our H2 heuristic on four CPUs and eight GPUs. For
the default work stealing strategy, the overlap improves
performance by 160.28 GFlop/s for the largest matrices
(40960 × 40960). The gain is significantly higher for the
H2 heuristic, where the performance gain is about 550.48
GFlop/s for the largest matrices. In addition, even in the
case without any overlapping, H2 heuristic improves per-
formance over the default work stealing strategy by 431.45
GFlop/s for the largest matrices (40960 × 40960). It rein-
forces our claim that our H2 heuristic can enable significant
performance gains.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960

G
Fl

op
/s

Matrix order

H2
H2 no overlapping

default
default no overlapping

Figure 7. Impact of overlapping in XKaapi default and locality-aware
work stealing algorithm with DPOTRF on four CPUs and eight GPUs.

CPUs Matrix order
4096 8192 16384 32768 40960

1 53.85 206.38 622.55 962.21 1052.58
±0.98 ±2.70 ±7.90 ±31.77 ±20.53

4 115.16 391.05 755.91 1013.65 1022.45
±1.02 ±2.64 ±6.89 ±7.81 ±37.55

8 138.34 439.70 782.21 999.46 1045.53
±1.06 ±3.38 ±10.51 ±6.90 ±4.19

Table I
GFLOP/S USING FOUR GPUS AND VARIABLE NUMBER OF CPUS.

E. Multi-CPU Performance Improvement

In this section we analyze the gain of using several CPUs
for the Cholesky panel factorization. Table I shows, using
heuristic H2, the performance results when using up to eight
CPUs and four GPUs for different matrix sizes. Matrices up
to a 16384×16384 size show significant performance gains.
For matrices larger than 32768 × 32768 the factorization
does not benefit from additional CPUs. The reason for these
different performance gains is the influence of the compute-
bound tasks in the factorization. Level-3 BLAS operations
such as DGEMM dominate the overall execution in a O(N3)
growth order with respect to panel factorizations, which
increases in order O(N).

To illustrate executions, Figure 8 displays the Gantt di-
agrams for two configurations. On the top, one CPU and
four GPUs compute the Cholesky factorization of a small
matrix of size 6144 × 6144. This configuration reaches a
performance of 122.61 GFlop/s. We can see that GPUs are
idle, because they wait for the panel factorization performed
by the CPU (the factorization task is on the critical path of
the execution). By increasing the number of CPUs to four
(bottom part of the figure), the performance increases to
243.80 GFlop/s.

These extra CPUs enable to accelerate the panel factoriza-
tion with a 8.4 GFlop/s gain per CPU, but more importantly
they enable to reduce the idle time of GPUs leading to
a global gain of 121.18 GFlop/s. As reported by [6], [8],
[15] the acceleration of the tasks on the critical path (panel
factorization) is important.

1 CPU

4 GPU

4 CPU

4 GPU

CPU

GPU kernel

 Time: 0.31 (s)
Time: 0.62 (s)

Gain: 0.31 (s)

Figure 8. Gantt chart of DPOTRF tasks for a matrix size 6144 × 6144
on four GPUs (red) and up to four CPUs (blue).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 4096 8192 12288 16384 20480 24576 28672 32768 36864 40960

G
Fl

op
/s

Matrix order

H2 4CPU+8GPU
H1 4CPU+8GPU

default 4CPU+8GPU
default 11CPU+1GPU

Figure 9. Scalability of the two heuristics and default work stealing with
DPOTRF on eight GPUs and four CPUs compared to one GPU and one
CPU execution.

F. Scalability of the Cholesky factorization

Figure 9 gives an overview of the performances that have
been achieved on the Cholesky factorization for different
matrix sizes on eight GPUs and four CPUs using our two
heuristics and default work stealing. Except for matrices of
size 4096× 4096, which results are almost equal, H2 gives
the best performance for all matrix sizes and scales as the
matrix size grows.

V. RELATED WORKS

OmpSs [14] is a programming tool that provides a
set of OpenMP-like pragmas and a runtime system to
schedule tasks while preserving dependencies. It extended
SMPSs [20] and GPUSs [10] by providing simpler code
annotations with the capacity to have recursive tasks. OmpSs
does not offer any library API to write a program and
the user depends of the Mercurium compiler [14]. It offers
different scheduling strategies and coherence protocols such
as write-back and write-through, but the write-back is on
average always the best, as reported in [7]. OmpSs locality-

aware scheduling is similar to our H1 heuristic. To our
knowledge, OmpSs has concurrent execution and data trans-
fers in GPUs but we experienced some issues with matrix
sizes that can not be entirely stored into the GPU memory.
Moreover, as shown in [14], performances on multi-GPU
systems (up to four GPUs) remain difficult to compare with
our results since their software environment is different and
their experiments only reports results in single precision.
No result with Cholesky factorization is reported on multi-
GPU/multi-CPU architectures.

StarPU is a runtime system for scheduling a DAG of tasks
on heterogeneous architectures optimized for numerical al-
gorithms [11]. In a similar way, StarPU provides a program-
ming model and exposes an API to describe a scheduling
policy that allows flexibility in the work distribution. Its
API for tasks uses a similar approach to XKaapi called
codelet. StarPU uses data prefetch to anticipate memory
transfers before task execution and provides a lazy coherence
protocol. However, each GPU task needs a final synchro-
nization to ensure that all kernels are finished. Besides, its
scheduler uses the HEFT [16] algorithm to schedule all
ready tasks, thanks to cost models for data transfer and
task execution. Such an approach does not allow to react
to system load or task execution variations as our work
stealing algorithm does. In a recent work [12], we showed
that our dynamic work stealing without heuristic (labelled
’default’ in experimental section) reaches the same level of
performances as StarPU on the matrix product and Cholesky
factorization with a sequential panel factorization.

In the context of dense linear algebra algorithms,
PLASMA [8] provides fine-grained parallel linear algebra
routines with dynamic scheduling through QUARK, which
was conceived specially for numerical algorithms. QUARK
schedules tasks with data-flow dependencies and suffers
from a higher overhead than XKaapi [2]. Recently [19]
QUARK has been extended to have the capacity to process
parallel tasks for which a set of threads are coordinated
to execute the same task body. This is different from our
approach were we support a single programming model
based on recursive tasks to generate more parallelism.

All the above cited software compute dependencies at task
creation, even if most of them will never be really used. The
lazy dependencies computation of XKaapi is unique.

FLAME [7] is a high-level notation to express algorithms
for dense linear algebra operations on multi-CPU/multi-
GPU. MAGMA [23] implements static scheduling for linear
algebra algorithms on heterogeneous systems composed of
GPUs. Recently it has included some methods with dynamic
scheduling in multi-CPU and multi-GPU on top of QUARK
or StarPU, in addition to the static multi-GPU version.

To the knowledge of the authors, this is the first time that
results on classical linear algebra subroutine are reported
with more than four GPUs. Moreover, almost all previous
reported results with high level of performances on a multi-

GPU/multi-CPU are based on static scheduling. In [15], the
authors attained about 760 GFlop/s (double precision) for
Cholesky factorization using three GPUs (Fermi) and nine
CPUs. They based their work on 2D block cyclic distribution
with a owner compute rule to map tasks to resources. On
the same number of GPUs (Fermi) resources and CPUs, we
obtained 837 GFlop/s with the same task-based program,
but dynamically scheduled tasks. DAGuE [24] is a paral-
lel framework focused on multi-core clusters and supports
single-GPU nodes. The Cholesky factorization performance
is only evaluated in single precision where only the GEMM
task is GPU accelerated.

Our H2 heuristic is inspired from [22], but with an
automatic scheme to (locally) reduce the number of cache
invalidations instead of the explicit annotation of the user
code. In SLAW [17] a similar heuristic is experimented. As
in [22], the programmer is responsible to explicitly specify
the location where his task need to run.

In the context of overlapping on GPUs, Huynh et al. [25]
proposed a code-to-code framework on multi-GPU archi-
tectures. It represented tasks as a DAG and mapped graph
partitions to each GPU statically in order to overlap data
transfers with kernel executions.

VI. CONCLUSION

In this paper, we presented XKaapi, a runtime system for
data-flow task programming on heterogeneous architectures.
XKaapi enables dynamic scheduling based on work steal-
ing for multi-CPU and multi-GPU architectures. The key
contributions of this paper include (1) an original locality-
aware work stealing for multi-GPU systems based on local
reduction of cache invalidations, (2) a fully asynchronous
task execution strategy on GPUs to overlap transfers with
kernel executions, (3) a light representation of tasks that
allows to generate high degree of parallelism at low cost,
(4) a lazy computation of dependencies with an optimization
that enables to move the overhead on the critical path rather
than on the work.

Our experiments report results up to eight GPUs on
classical linear algebra problems. The performance results
obtained are about 1.79 TFlop/s for Cholesky factorization
and 2.43 TFlop/s for matrix product in double precision.
As far as the authors know, this is the best performance in
double precision measured on a heterogeneous architecture
with up to eight GPUs. Previous related works on the same
problems only report results up to four GPUs using static
scheduling or static data distribution. For an equivalent
configuration our dynamic approach obtains similar — or
better — results.

Future works include new experimental evaluations on
other linear algebra problems such as LU and QR factor-
izations with new incoming accelerators such as the future
Intel Xeon Phi (Intel MIC) or the next Kepler GT110 GPU.

ACKNOWLEDGMENTS

The authors would like to thank Fabien Lementec for
providing early implementations on GPU support. This
work has been partially supported by the ANR-11-BS02-013
HPAC Project, the ANR 09-COSI-011-05 Project Repdyn,
and CAPES/Brazil.

REFERENCES

[1] A. Robison, M. Voss, and A. Kukanov, “Optimization via
reflection on work stealing in TBB,” in Proc. of the IEEE
IPDPS, 2008, pp. 1–8.

[2] F. Broquedis, T. Gautier, and V. Danjean, “libKOMP, an
Efficient OpenMP Runtime System for Both Fork-Join and
Data Flow Paradigms,” in IWOMP, Rome, Italy, 2012, pp.
102–115.

[3] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implemen-
tation of the Cilk-5 multithreaded language,” in Proceedings
of the ACM SIGPLAN 1998 conference on Programming
language design and implementation, ser. PLDI ’98. New
York, NY, USA: ACM, 1998, pp. 212–223.

[4] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,
and Y. Zhou, “Cilk: An efficient multithreaded runtime sys-
tem,” Journal of Parallel and Distributed Computing, vol. 37,
no. 1, pp. 55–69, 1996.

[5] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors.” Theor.
Comp. Sys., vol. 34, no. 2, pp. 115–144, 2001.

[6] J. Kurzak, H. Ltaief, J. Dongarra, and R. M. Badia, “Schedul-
ing dense linear algebra operations on multicore processors,”
Concurr. Comput. : Pract. Exper., vol. 22, pp. 15–44, 2010.

[7] G. Quintana-Ortı́, F. D. Igual, E. S. Quintana-Ortı́, and R. A.
van de Geijn, “Solving dense linear systems on platforms
with multiple hardware accelerators,” SIGPLAN Not., vol. 44,
no. 4, pp. 121–130, 2009.

[8] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra, “A class
of parallel tiled linear algebra algorithms for multicore ar-
chitectures,” Parallel Computing, vol. 35, no. 1, pp. 38–53,
2009.

[9] E. Hermann, B. Raffin, F. c. Faure, T. Gautier, and J. Al-
lard, “Multi-GPU and Multi-CPU Parallelization for Interac-
tive Physics Simulations,” in Proc. of Euro-Par, vol. 6272.
Springer, 2010, pp. 235–246.

[10] E. Ayguadé, R. Badia, F. Igual, J. Labarta, R. Mayo, and
E. Quintana-Ortı́, “An Extension of the StarSs Programming
Model for Platforms with Multiple GPUs,” in Proc. of Euro-
Par, vol. 5704. Springer, 2009, pp. 851–862.

[11] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heteroge-
neous multicore architectures,” Concurrency and Computa-
tion: Practice and Experience, vol. 23, no. 2, pp. 187–198,
2011.

[12] J. V. F. Lima, T. Gautier, N. Maillard, and V. Danjean,
“Exploiting Concurrent GPU Operations for Efficient Work
Stealing on Multi-GPUs,” in Symposium on Computer Archi-
tecture and High Performance Computing (SBAC-PAD). New
York, USA: IEEE, 2012.

[13] F. Galilée, J.-L. Roch, G. G. H. Cavalheiro, and M. Doreille,
“Athapascan-1: On-line building data flow graph in a parallel
language,” in Proc. of PACT’98. Washington, DC, USA:
IEEE Computer Society, 1998, pp. 88–95.

[14] J. Bueno, J. Planas, A. Duran, R. M. Badia, X. Martorell,
E. Ayguadé, and J. Labarta, “Productive Programming of
GPU Clusters with OmpSs,” in Proc. of the IEEE IPDPS,
2012.

[15] F. Song and J. Dongarra, “A scalable framework for hetero-
geneous GPU-based clusters,” in Proc. of ACM SPAA. New
York, NY, USA: ACM, 2012, pp. 91–100.

[16] C. Boeres, G. Chochia, and P. Thanisch, “On the scope of
applicability of the ETF algorithm,” in Proc. of the 2nd
International Workshop on Parallel Algorithms for Irregularly
Structured Problems, ser. IRREGULAR ’95. London, UK,
UK: Springer-Verlag, 1995, pp. 159–164.

[17] Y. Guo, J. Zhao, V. Cave, and V. Sarkar, “SLAW: A scalable
locality-aware adaptive work-stealing scheduler,” in Proc. of
IEEE IPDPS, 2010, pp. 1 –12.

[18] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors,” in Proc. of PASCO’07. London,
Canada: ACM, 2007.

[19] A. YarKhan, J. Kurzak, and J. Dongarra, “QUARK Users’
Guide: QUeueing And Runtime for Kernels,” University of
Tennessee, Tech. Rep. ICL-UT-11-02, 2011.

[20] R. M. Badia, J. R. Herrero, J. Labarta, J. M. Pérez, E. S.
Quintana-Ortı́, and G. Quintana-Ortı́, “Parallelizing dense
and banded linear algebra libraries using SMPSs,” Concurr.
Comput.: Pract. Exper., vol. 21, pp. 2438–2456, 2009.

[21] M. Tchiboukdjian, N. Gast, and D. Trystram, “Decentralized
list scheduling,” Annals of Operations Research, pp. 1–23,
2012.

[22] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data
locality of work stealing,” in Proc. of ACM SPAA, ser. SPAA
’00. New York, NY, USA: ACM, 2000, pp. 1–12.

[23] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense
linear algebra for hybrid GPU accelerated manycore systems,”
Parallel Computing, vol. 36, no. 5-6, pp. 232–240, 2010.

[24] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra, “DAGuE: A generic
distributed DAG engine for High Performance Computing,”
Parallel Computing, vol. 38, no. 1–2, pp. 37–51, 2012.

[25] H. P. Huynh, A. Hagiescu, W.-F. Wong, and R. S. M. Goh,
“Scalable framework for mapping streaming applications onto
multi-GPU systems,” in Proc. of the 17th ACM PPoPP’12,
ser. PPoPP ’12. New York, NY, USA: ACM, 2012, pp.
1–10.

	Introduction
	Data-Flow Task Programming with XKaapi
	Data-Flow Task Definition and Creation
	Execution by Work Stealing
	Work-first Principle and Data-Flow Dependencies
	Acceleration Data Structure for Ready Tasks

	Extension for Multi-CPU and Multi-GPU
	Versioning Task Implementations
	Locality-Aware Work Stealing
	Asynchronous Task Execution
	Concurrent GPU Operations
	Data Management and Software Cache

	Experiments
	Dense Linear Algebra Benchmarks
	Overlapping Data Transfers with Kernel Executions
	Raw Performance
	Out of Core Performance
	Taking into Account Copies with CUBLAS
	Outperforming the CUBLAS GPU Peak Performance

	Comparison of Work Stealing Heuristics
	Parallel Matrix Product
	Cholesky factorization
	Conclusion

	Overlapping on Multi-GPU
	Multi-CPU Performance Improvement
	Scalability of the Cholesky factorization

	Related Works
	Conclusion
	References

