
WSCOM: Online task scheduling with data transfers

Jean-Noël Quintin
INRIA Moais research team

Laboratory CNRS LIG
Grenoble University

France
jean-noel.quintin@imag.fr

Frédéric Wagner
INRIA Moais research team

Laboratory CNRS LIG
Grenoble University

France
frederic.wagner@imag.fr

Abstract—In our paper we consider the on-line problem of
tasks scheduling with communication. All information on tasks
and communication are not available in advance except the
DAG of task topology. This situation is typically encountered
when scheduling DAG of tasks corresponding to Makefiles
executions.

We introduce a new variation of the work-stealing algorithm:
WSCOM. We take advantage of the knowledge of the DAG
topology to cluster communicating tasks together and reduce
the total number of communications.

We propose several variants designed to overlap communi-
cation or optimize the graph decomposition.

Performance is evaluated by simulation and we compare
our algorithms with off-line list-scheduling algorithms and
classical work-stealing from the literature. Simulations are
executed on both random graphs and a new trace archive of
Makefile DAG. These experiments validate the different design
choices taken. In particular we show that WSCOM is able to
achieve performance close to off-line algorithms in most cases
and is even able to achieve better performance in the event
of congestion due to less data transfer. Moreover we show
that WSCOM can achieve the same high performances as the
classical work-stealing with up to ten times less bandwidth.

Keywords-load-balancing; online-scheduling; data transfers;
work-stealing;

I. INTRODUCTION

In our paper we take interest in the automatic paralleliza-
tion of the execution of make commands. GNU make is
a widely used program allowing the description of tasks
(known as targets) and dependencies among them. While
being used mainly as a software development tool to au-
tomate compilation, it is not uncommon to see makefiles
for many different kinds of applications. As an example,
make is often used as a way to achieve non-regression testing
since some tests might depend on successful completion of
previous ones. In fact it is even possible to use a Makefile
as a way to describe a coarse grained parallel application.

Our team has developed a new tool called DSMake. This
tool distributes the execution of a makefile by scheduling
the tasks on a distributed platform. Its goal is to minimize
the global completion time denoted as Cmax. Achieving this

This work has been supported by the minalogic project CILOE

requires an efficient scheduling algorithm. The correspond-
ing scheduling problem is difficult for two main reasons.
First, as the files sizes might be relatively large we take
communications into account. Secondly, we have a non-
clairvoyant setting: task sizes and communication are not
known in advance, nor the network topology.

We present Section II related algorithms from the liter-
ature. We present off-line scheduling algorithms optimiz-
ing communications and the classical work-stealing algo-
rithm [1] optimizing completion time.

Section III presents WSCOM, our new online scheduling
algorithm. Our approach is to reduce the number of com-
munications performed while keeping the load balanced.

The increased locality of computation achieved by de-
creasing the number of communication is used as a way to
increase performance even without knowledge of network
topology.

Section IV presents experimental comparisons using the
Simgrid simulator.

We then conclude on the obtained results in Section V.

II. RELATED ALGORITHMS

A. Offline algorithms

This section presents existing works for the off-line load-
balancing of a data-intensive application on p processors.
Classically, this problem is described by the three-field
notation: Q|prec, c, pi|Cmax. As input, we consider p het-
erogeneous processors and a DAG representing tasks de-
pendencies, tasks execution times and communication costs.
The aim is to minimize the total completion time.

This problem is NP-Hard and a 5/4-inapproximability has
been proved for the particular case P |prec, c = 1, pj =
1|Cmax by Hoogeveen et al [2].

We can classify heuristics from the literature into severals
categories. Some of them group tasks in task clusters. The
main idea of such heuristics is to avoid communication
by grouping communicating tasks on common resources.
We can cite the most commonly used heuristics like [4]
DCP [5] DL [6] DSC [7]. While these algorithms give good
performances for an infinite number of machines, execution

on a limited number of processors requires a folding of the
schedule which degrades performances.

Aside from clustering, many useful heuristics are based
on list scheduling. The main objective is then to avoid idle
times more than to reduce communications. In particular
most algorithms execute communications as soon as possible
in order to cover communication times by computations.
More specifically we can cite HEFT [10], CPOP [10],
BIL [11], MinMin [12], MaxMin [12], sufferage [12] and
HBMCT [13].

B. Work-Stealing

Blumofe and Leiserson [1] have introduced an on-line
dynamic scheduling algorithm providing good execution
times while being fully decentralized. Each time a processor
becomes idle it sends a steal request to another one. Each
processor keeps a stack of tasks to execute and eventually
provides some to others. Different versions of the work-
stealing algorithm exist, by refining the choices of the stolen
processor, the stolen task and the local execution order.

In [14] Arora et al bound the number of steal requests
by O(pD) and the execution time by W/p + O(D) where
p is the number of processors, D the critical path and W
the total work. For this proof, the stolen processor is chosen
randomly with a uniform probability. At each steal, only the
oldest task is stolen; the local task execution order follows
the sequential order.

The aim of each steal is to balance the load between
both processors. Stealing half of the work on the target
processor has been shown to be efficient in [15] [16]. In
practice only the oldest task is stolen because this task
generally represents a significant amount of work on the
target processor. This property derives from the fact that
tasks are created recursively. Several libraries implement
the work-stealing algorithm like Cilk [18], Kaapi [19],
Satin [20], TBB [21], X10 [22].

Moreover, all these libraries are not directly suited for our
problem as the DAG is discovered at runtime since tasks are
created recursively.

For example, the Cilk language provides the keywords
spawn and sync. The programmer has to describe how the
work is recursively divided into smaller and smaller tasks.
And There are no way to describe some dependencies among
severals tasks created in different parts of the program. Also
with these keywords, the programmer is restricted to fork-
join DAG.

III. WSCOM: WORK-STEALING WITH COMMUNICATION
ON GENERAL DAG

We now consider an on-line version of the problem
Q|prec, c, pi|Cmax. This problem corresponds to the real
problem of tasks scheduling for DSMake.

We make the following assumptions:
• Tasks processing times are unknown

• Network topology is unknown
• Data sizes are unknown
• Application DAG is known in advance

Most of these assumptions are pretty common: it is often
difficult to know processing times in advance and this is
particularly true for DSMake as the application is provided
by the user. Communication times are very difficult to
predict as no information on the network is available and
moreover the network might be shared by several users.

Notice that in our model we know in advance the DAG
of tasks. This property stems from our use of DSMake.
In practice, the whole DAG is described by users in the
Makefile before execution start. We intend to take advantage
of this knowledge to achieve efficient schedules.

While it might seem difficult to obtain performance with
so many unknowns we can rely on work-stealing algorithm
as an on-line distributed list-scheduling algorithm achieving
good schedules even with unknown processing times.

We modify the work-stealing algorithm to take advantage
of the additional information on the DAG structure.

Section III-A presents the main idea of WSCOM, on the
restricted case where DAG are join DAG. The algorithm is
then extended to its more general version Section III-B.

Finally Section III-C describes in more details several
possibilities to achieve the communication.

A. WSCOM on join DAG

While our WSCOM algorithm is working on general
DAG, we initially present the main idea of the algorithm
on the special case where the input graph is a join DAG,
i.e. the outgoing degree of vertices is bounded by one and
there is only one leaf. On such graphs, the complexity of
WSCOM is reduced and the algorithm easier to understand.

We basically rely on two different ideas.
First, it seems difficult to manage communications while

it is impossible to know in advance their sizes. In the
event of very large communications, the execution should
obviously be sequential and the opposite case will require
dispatching tasks on the largest number of machines. We
avoid this difficulty by switching to a bi-objective problem.
Our primary objective is to minimize the execution time
without communications and our secondary objective is to
minimize the total amount of communication. This change
of point of view allows to optimize communications even
in the online case since we now consider minimizing the
number of communications. With this approach we can hope
that in reasonable configurations a reduction in the number
of communications might show a positive impact on the
completion time.

The second important idea is to combine clustering and
work-stealing to achieve performance for both our objec-
tives. The work-stealing schedule will provide a guarantee
on the completion time without communications while the

clustering part of the algorithm will impact the overall
amount of communications.

To achieve the clustering and to provide recursive task
creation we add some new virtual tasks to the DAG. These
Fork tasks require no computations but will simply generate
other tasks on the local stack when executed. Initially only
one fork task is available and this task will recursively create
all real tasks to execute. What is more, the recursive splitting
is allowing us to regroup communicating tasks together.

To optimize communication we take advantage of our
knowledge of the DAG topology. To the initial join DAG, we
add a fork-DAG built by symmetry as illustrated Figure 1.
The fork-DAG is identical to the task DAG with reversed
edge orientation. Moreover, a fork-edge between the fork
task and its symmetrical node is added. If we take for
example an execution on 2 processors we end up with the
following situation: Initially only one task fA exists and is
located on p1 (first processor). p1 executes it and adds to its
stack fB , fC , fD, A. p2 steals a task from p1 and ends up
with fD while p1 executes fB and generates the underneath
tasks. At this point p1 executes the sub-graph between fB
and B while p2 executes the sub-graph between fD and D.
We can clearly see that using the symmetry allows us to
improve the locality of computations.

fA

fB fC fD

A

B C D

Stolen part

fork tasks
standard tasks
task creation
task dependency

Figure 1. WSCOM DAG using Symmetry

While this algorithm enables us to build a recursive
clustering of the tasks, some others options are possible.

For example, a very basic way to cluster recursively all
tasks is to build a perfect binary tree of fork tasks on
top of all real tasks. This scheme depends on the order of
DAG sources. However,since this basic scheme does not take
into account dependencies, it might generate an important
amount of data transfer.

Another possibility is to use a task clustering algorithm
from Section ?? (with no information on tasks sizes and
communications sizes) to generate clusters. However, ob-
taining a recursive decomposition is not straightforward.

B. WSCOM on general DAG

Extending WSCOM to DAG leads quickly to the problem
displayed Figure 2. Since A has outgoing edges to B and
C, by symmetry, fA has incoming edges from fB and fC .
Thus if fB is executed on processor p1 and fC on processor
p2, both processors should contain the task fA.

fA

fB fC

A

CB

fA

fB fC

A

CB

Stolen task

which processor can
execute this part?

Figure 2. Problem with Outgoing Degree > 1

To solve this problem we need to remove fork edges
between tasks such that each task can only be forked once.
The choices of the edges to keep can however impact per-
formance since they might split the graph in very different
ways: inducing more or less communications or generating
unbalanced tasks clusters.

We provide two different algorithms solving this problem.
The first algorithm works by building the symmetric

graph of the initial task graph and solving the fork requests
concurrency problem by arbitrary choosing a spanning tree
on the fork requests DAG.

An other option is to try to postpone the decision at
runtime to take advantage of our partial knowledge of the
processing times of the tasks. WSCOM DHT works by
keeping all edges and allowing a fork to proceed if it is
the first time the corresponding task is forked.

To minimize the overhead of this operation while keeping
the algorithm decentralized, we advocate the use of a dis-
tributed hash table storing for each task a boolean variable
indicating whether a previous fork already succeeded. As a
side note these tables can also provide an alternate way to
update dependencies statuses.

It is difficult at first sight to evaluate which of these
two algorithms will lead to better performance. WSCOM
DHT provides the advantage to delay choices until more
information is available and should therefore induce a better
load-balancing but on the other side the DHT requests
will incur additional costs. Both algorithms are therefore
evaluated independently in our experimental work.

In the rest of this paper we refer to WSCOM DHT as
WSCOM.

Algorithm 1 WSCOM
Require: G(V,E)// Application DAG

initially the current task c is undefined
we denote by m(v) the mirrored vertex of any vertex v
let s be the unique sink of G
if proc id = 0 then
c = m(s)

end if
while s is not executed do

while c is undefined do
if a task is ready on the stack then

pop last ready task from the stack into c
else

try to steal a task from a random machine and put
in c

end if
end while
// Check if the task is virtual or not
if c is a fork task then

if c has not been forked already then
mark c as forked
for all predecessor p of m(c) do

push m(p) on the stack
end for
push m(c) on the stack

end if
else

execute c
update dependencies

end if
end while

C. Data transfer

The last remaining part of the WSCOM algorithm deals
with data transfers between two dependent tasks.

Let A and B be two tasks such that B depends on the
output of A to start. We assume the required data cannot
be sent until A completes. Moreover, sending this data also
requires knowing the machine which will execute B. Since
our algorithm allows un-executed tasks to be moved between
processors, the exact information about the location of B
cannot be known before the start of the execution of B.

This limitation is not present for the off-line algorithms
since the entire mapping of the tasks is known in advance.
Communication of the data of A can in such cases start as
soon as A is completed.

It is therefore interesting to bypass these restrictions to
start sending as soon as possible. There are mainly two ways
to achieve this.

The first solution is to send as soon as possible and in
the event of a task migration to re-send the corresponding
data. These task migrations add some wasted operations

since the generate extra transfers of data. Such costs can
eventually involve tasks on the critical path and impact the
completion time. However since a task can only be stolen
once (because it is executed right away), the number of extra
communications is limited.

A second approach is to restrict steal requests to fork
tasks. Since these tasks require no transfer they do not
generate communication overheads. The disadvantage of this
method is that since the steal mechanisms are restricted, the
overall load balancing might be degraded.

In this paper, as we try to minimize the number of
communications, we will choose the second approach. We
refer to this algorithm as WSCOMPF (pre-fetching).

IV. EXPERIMENTAL ANALYSIS

In this section, we validate experimentally the WSCOM
algorithm presented in Section III. To obtain meaningful
results, we provide comparisons between WSCOM, the
different variants proposed and the scheduling algorithms
listed in Section II.

Since we intend to simulate communications we rely on
the Simgrid [23] simulator to achieve simulations where
network congestion, bandwidths and latencies can affect
the results. The use of simulations allows us to compare
executions on a large set of different platforms and thus to
test our algorithms under many different bandwiths.

Section IV-A presents details on the chosen configurations
and simulation parameters. Simulation results are analyzed
in Section IV-B.

A. Experimental Setup

Simulations work in the following way: We generate input
graphs randomly or from traces and simulate their execution
with different scheduling algorithms using Simgrid on sev-
eral network topologies (with homogeneous machines). We
then analyse execution times and communications volumes.

The goals are here to compare the different algorithms
and to estimate the bandwidth and networking effect on
performance.

1) Input Graphs: Input generation is an important step
to obtain meaningful simulation results. As the DAG repre-
sents the application, restraining the input DAG to specific
graphs might create a bias between the different scheduling
algorithms in use.

In our experiments we use two different kinds of graphs.
We use on one-hand random graphs, generated by different
methods and on the other hand graphs generated from real
execution traces.

GGEN [24] is a graph-generation software aiming to in-
corporate all standard random graphs generation techniques.
By using different generators from the literature we hope to
achieve fair comparisons of the algorithms.

We choose to use two generation algorithms: TGFF [25]
and layer-by-layer [26].

On each DAG, the expected number of nodes is five
hundred and tasks processing times are uniformly chosen
at random between 7 and 25 seconds. The communication
sizes are also uniformly generated. In some experiments they
are between 0 and 1 Kilobyte while in other experiments tar-
geting higher communication costs, the sizes are generated
between 0 and 1 Gigabytes.

On the other side, we have extracted a set of around 500
Makefiles from the widely known MacPort [?] repository. A
set of large applications has been compiled on a platform.
Resulting compilation times have been monitored, as were
the communication sizes and the resulting graphs are stored
in an online archive available on our website at .

2) Simulated Platforms: The Simgrid simulator allows
us to provide a xml description of the platform architecture
enabling tests on a wide range of platforms.

We consider two different platforms which are chosen
relatively simple on purpose as a way to acknowledge and
understand the behavior of the different algorithms under
controlled conditions.

Our first topology (clique) is a complete graph, which is
the topology considered in the list-scheduling algorithms: no
congestions occur here because no links are shared.

Since the clique topology does not reflect actual networks,
we also consider a second topology (cluster) where all com-
puters are connected by one switch. As such a congestion
could be obtained if several senders are sending to the same
receiver (or vice versa). In our experiments we consider
platforms with a number of processors comprised between
1 and 50.

Link capacities are defined with a latency equal to 0.1
millisecond and a bandwidth equal to 1 Gbit per second.

Node capacities are homogeneous and set to 3.2 GHz.

B. Experimental Results

We now present results obtained from our set of exper-
iments. For each experiment, we consider a set of input
graphs (randomly generated or from traces) and execute
different scheduling algorithms with different computing
resources. When using TGFF we consider the average results
over 400 random graphs and 100 graphs for layer-by-layer
(which requires less parameters).

Trust intervals are not displayed on our curves as the
variations on the obtained results are minimal.

In all experiments the list min curve represents the
best results obtained among all list-scheduling algo-
rithms: HEFT [10], CPOP [10], BIL [11], MinMin [12],
MaxMin [12], sufferage [12] and HBMCT [13].

1) WSCOM on random DAG: We start by presenting
a comparison between list min and WSCOM using the
distributed hash table and allowing or not pre-fetching.

Each curve displays on the x-axis the number of proces-
sors available on the platform and on the y-axis the resulting
execution time or number of transfers.

Note that the list-scheduling algorithms are working off-
line and as such know in advance all processing times and
transfers sizes. On the opposite WSCOM is working on-line
and only knows the DAG topology. The comparison of these
algorithms is still meaningful as it allows us to assess the
performance of WSCOM.

For small communication volumes, all algorithms exhibit
very close performances and we do not present these results
in more detail.

Large communication times: As the communication
volumes increase, congestion on shared links starts appear-
ing. For experiments on large data sizes, we therefore con-
sider both cluster and clique topologies to assess the shared
link effect on performance. We recall that on the clique
topology, no link is shared and therefore list-scheduling
algorithms are as efficient as they predict. On cluster topolo-
gies however, congestion can affect communications and
decrease the performance of these algorithms.

Figure 3 presents a comparison of list min, WSCOM and
WSCOMPF for a clique topology. It can be seen that the

1 5 10 15 20 30 50
0

2,000

4,000

6,000

8,000

Number of processors

E
xe

cu
tio

n
tim

e
(s

)
WSCOMpf

WSCOM
list min

Figure 3. Comparison between list min, WSCOM and WSCOM PF, large
communications, clique topology

performance of WSCOM is now worse than performance
of list min. This comes from the fact that list-scheduling
algorithms can overlap communications with computations
while WSCOM is waiting for all communications before the
start of each task.

Thus, WSCOMPF which sends the data in advance
achieves a better execution time, close to the list min
execution time.

We should also emphasize that while the on-line execution
of WSCOMPF does not take advantage on information
on transfer sizes it still achieves close execution times to
list min. This behavior validates the recursive clustering of
WSCOM as a way to achieve efficient communications.

Figure 4 introduces the performance of list min WSCOM
and WSCOMPF on a cluster topology.

As the cluster topology induces congestions the perfor-
mance of the list-scheduling algorithms decrease.

1 5 10 15 20 30 50
0

2,000

4,000

6,000

8,000

Number of processors

E
xe

cu
tio

n
tim

e
(s

)
WSCOMpf

WSCOM
list min

Figure 4. Comparison of list min, WSCOM and WSCOM PF, large
communications, cluster topology

One very interesting point of this experiment is that
WSCOMPF is now achieving lower executions times than
list min. To explain such a result, we are interested in a
more detailed analysis.

Figure 5 represents the number of data transfers for the
different algorithms.

5 10 15 20 30 50
0

2

4

6

·1011

Number of processors

A
m

ou
nt

of
da

ta
tr

an
sf

er
ed

(b
its

)

WSCOMpf

WSCOM
list min

Figure 5. Amount of data transfered, large communication, cluster
topology

This figure shows that WSCOM and WSCOMPF are
indeed executing a lower amount of communication than
list min. We recall that WSCOM was designed as a bi-
objective algorithm with a first goal to minimize the execu-
tion time and a second goal to decrease the overall among
of communication.

Fewer communications result in a reduced congestion
and at the same time means that congestion can affect
less communications. The execution time is therefore less
likely to depend on the network state for WSCOM and
WSCOMPF algorithms.

In particular, the difference in the amount of communica-

tion between WSCOMPF and list min is the greatest for a
processor number comprised between 10 and 20. This im-
pacts the execution times as the differences between list min
and WSCOMPF on Figure 4 are also more important for
these numbers of processors.

Of course, as the number of processors grows, the amount
of transfers required to balance the load grows as well and
the differences between the algorithms reduce.

2) WSCOM on the Trace Archive: We have executed
similar experiments with graphs from the Trace Archive and
we now present the most significant results obtained.

For the Trace experiments, different graphs may generate
different kind of behaviours. All curves are therefore pre-
sented as clouds of points where each point represents the
average of the results obtained on one graph.

First, we start by presenting the performances obtained
on a 1Gbit clique network. With such settings, Figure ??
shows that for most experiments, performances of WSCOM
and list min are similar. These results are consistent with
results on random graphs with few data communicated.

0 500 1,000
0

500

1,000

WSCOM (s)

lis
t

m
in

(s
)

DAG
f(x)=x

Figure 6. Compare list min and WSCOM on DAG extracted from
Makefile (clique with 5 processors).

The next experiment evaluates the difference between
WSCOM and WSCOMPF and the same 1Gbit/s clique
configuration. We can see on Figure 7 that this time, the be-
haviour observed differs widely from the behaviour on ran-
dom graphs. WSCOMPF presents no performance increase
over WSCOM and even exhibit performances degradations
on some graphs.

We believe that this effect comes from a shape differ-
ence in graphs. WSCOMPF generates on trace graphs a
load imbalance as explained section III-C This shows that
actual graphs generators are not completely capturing the
characteristics of real Makefile applications.

Variable Bandwidths: We conclude this section with
experiments on variable bandwidths. We try here to evaluate
how much WSCOM is able to widen the application range of

0 500 1,000
0

500

1,000

WSCOM (s)

W
SC

O
M

p
f

(s
)

DAG
f(x)=x

Figure 7. Compare WSCOMpf and WSCOM on DAG extracted from
Makefile (cluster with 5 processors).

traditional work-stealing. More precisely, we study a subset
of the trace graphs exhibiting large communications (above
100MB) and speed-ups greater than five. For each graph
we run experiments with different bandwidths in order to
determine the minimum bandwidth necessary to reach a
speed-up of 4 on 5 computers. We hope to show here what
kind of platforms can be considered to achieve acceptable
performances.

We plot Figure 8 for both WS and WSCOM the minimal
amount of bandwidth necessary to reach a speedup of 4 on
a cluster platform. Each point displayed is proportional in
size to the number of graphs reaching the two corresponding
bandwidths. For some graphs, presented on the top, WS
never achieves a speed-up of 4.

100 101 102 103
100

101

102

103

WSCOM (Mb/s)

W
S

(M
b/

s)

DAG
f(x)=x

no
t

ac
hi

ev
ed

Sp
ee

d-
up

Figure 8. Minial bandwidth to achieve a speed-up above 4 on five
processors (WS, WSCOM).

We clearly see that WSCOM is able to reduce the band-
width requirements of the applications with for many graphs
a reduction of the needed bandwidth by a factor 10. This
experiment shows more than the others the usefulness of
WSCOM. We are able here to extend the field of application
of distributed makefile computations to a wider set of
platforms. This property really corresponds to the initial
objectives and developmental approach chosen.

3) Conclusion on experiments: In these experiments WS-
COM and WSCOMPF are compared to the list min sched-
ule which selects on each DAG the list-scheduling schedule
with the shortest schedule.

On applications with few communications WSCOM and
WSCOMPF achieve a schedule as efficient as the list min
schedule without information neither on the amount of
data transfer nor on processing times. For data intensive
application, results depend on the network topology and the
congestion on links. In the case where the communications
become more intensive, we exhibit differences of behaviour
for WSCOMPF between randomly generated graphs and
graphs coming from the trace archive.

We also show that WSCOM is able to achieve high
performances even in the case of reduced bandwidths. As
such, we are able to consider executions on a wider range
of platforms.

We believe that our experiments validate all design
choices on the proposed WSCOM algorithms. Experiments
show that a reduction in the amount of communication can
indeed improve performance.

V. CONCLUSION

In our paper we study the scheduling of DAG of tasks
with communication. We introduce an on-line scheduling al-
gorithm WSCOM together with several variants. WSCOM is
taking advantage of the knowledge of the graph to compute
one recursive clustering of the tasks. This clustering enables
our algorithms to reduce the amount of communication and
thus to achieve performance even in the event of congestion.

We conducted a set of experiments evaluating the pro-
posed algorithms and comparing them to off-line list-
scheduling heuristics from the literature. With a low amount
of communication, our algorithms and list-scheduling algo-
rithms show similar performance. Moreover, in the event
of network congestion WSCOM with pre-fetching is able to
achieve better results than the off-line algorithms on random
graphs.

Future works are of many different kinds.
We can hope to achieve real-world executions as we are

now finalizing the implementations of the different WSCOM
algorithms within DSMake.

Other improvements might be to consider re-execution of
communications instead of relying on WSCOMPF to enable
pre-fetching.

It should also be possible to generate more realistic
random graphs by developing new random generation al-
gorithms matching more closely the characteristics of the
trace archive graphs.

Finally we hope to provide a more theoretical analysis of
performance on different classes of graphs.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support
from CNRS, RENATER and several Universities as well as
other funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] R. D. Blumofe and C. E. Leiserson, “Scheduling multi-
threaded computations by work stealing,” J. ACM, vol. 46,
pp. 720–748, September 1999.

[2] H. J. Hoogeveen, j. K. Lenstra, and B. Veltman, “Three, four,
five, six, or the complexity of scheduling with communication
delays,” Operations Research Letters, vol. 16, no. 3, pp. 129
– 137, 1994.

[3] V. Sarkar, Partitioning and Scheduling Parallel Programs for
Multiprocessors. Cambridge, MA, USA: MIT Press, 1989.

[4] M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid
for message-passing systems,” IEEE Trans. on Parallel and
Distributed Systems, vol. 1, pp. 330–343, 1990.

[5] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path schedul-
ing: An effective technique for allocating task graphs to mul-
tiprocessors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 7, pp. 506–521, 1996.

[6] G. C. Sih and E. A. Lee, “Dynamic-level scheduling for
heterogeneous processor networks,” in SPDP, 1990, pp. 42–
49.

[7] T. Yang and A. Gerasoulis, “Dsc: Scheduling parallel tasks on
an unbounded number of processors,” IEEE Transactions on
Parallel and Distributed Systems, vol. 5, pp. 951–967, 1994.

[8] Y. Tao and G. Apostolos, “Pyrros: static task scheduling
and code generation for message passing multiprocessors,”
in Proceedings of the 6th international conference on Super-
computing, ser. ICS ’92. New York, USA: ACM, 1992, pp.
428–437.

[9] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM Journal of Applied Mathematics, vol. 17, no. 2,
pp. 416–429, 1969.

[10] H. Topcuouglu, S. Hariri, and M.-y. Wu, “Performance-
effective and low-complexity task scheduling for heteroge-
neous computing,” IEEE Trans. Parallel Distrib. Syst., vol. 13,
pp. 260–274, March 2002.

[11] H. Oh and S. Ha, “A static scheduling heuristic for heteroge-
neous processors,” in Proceedings of the Second International
Euro-Par Conference on Parallel Processing-Volume II, ser.
Euro-Par ’96. London, UK: Springer-Verlag, 1996, pp. 573–
577.

[12] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic matching and scheduling of a class of
independent tasks onto heterogeneous computing systems,” in
HCW ’99. Washington, DC, USA: IEEE Computer Society,
1999.

[13] S. Rizos and Z. Henan, “A hybrid heuristic for dag scheduling
on heterogeneous systems,” in Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. 18th International,
april 2004.

[14] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors,” Theory
Comput. Syst., vol. 34, no. 2, pp. 115–144, 2001.

[15] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy,
and J. Nieplocha, “Scalable work stealing,” in Proceedings of
the Conference on High Performance Computing Networking,
Storage and Analysis, ser. SC ’09. New York, NY, USA:
ACM, 2009.

[16] N. Gast and B. Gaujal, “A mean field model of work stealing
in large-scale systems,” in ACM sigmetrics, New-York, 2010.

[17] A. Shivali, B. Rajkishore, B. Dan, S. Vivek, S. R. K., and
Y. Katherine, “Deadlock-free scheduling of x10 computations
with bounded resources,” in SPAA, 2007.

[18] M. Frigo, C. E. Leiserson, and K. H. Randall, “The imple-
mentation of the Cilk-5 multithreaded lan guage,” in ACM
SIGPLAN, june 1998, pp. 212–223.

[19] T. Gautier, X. Besseron, and L. Pigeon, “Kaapi: A thread
scheduling runtime system for data flow computations on
cluster of multi-processors,” in PASCO, 2007.

[20] R. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann,
and H. E. Bal, “Satin: Simple and efficient Java-based grid
programming,” in AGridM Workshop, 2003.

[21] A. Robison, M. Voss, and A. Kukanov, “Optimization via
reflection on work stealing in tbb,” in IPDPS, 2008, pp. 1–8.

[22] J. K. Lee and J. Palsberg, “Featherweight x10: A core calculus
for async-finish parallelism,” in PPoPP, 2010.

[23] H. Casanova, A. Legrand, and M. Quinson, “SimGrid:
a Generic Framework for Large-Scale Distributed Experi-
ments,” in 10th IEEE International Conference on Computer
Modeling and Simulation, Mar. 2008.

[24] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vin-
cent, and F. Wagner, “Random graph generation for schedul-
ing simulations,” in Proceedings of 3rd International ICST
Conference on Simulation Tools and Techniques. Malaga
Espagne: ICST, mar 2010.

[25] R. P. Dick, D. L. Rhodes, and W. Wolf, “Tgff: task graphs
for free,” in Proceedings of the 6th international workshop
on Hardware/software codesign, ser. CODES/CASHE ’98.
Washington, DC, USA: IEEE Computer Society, 1998, pp.
97–101.

[26] T. Tobita and H. Kasahara, “A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms,” Journal
of Scheduling, vol. 5, no. 5, pp. 379–394, 2002.

