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Abstract. We study the problem of dynamic load-balancing on hierar-
chical platforms. In particular, we consider applications involving heavy
communications on a distributed platform. The work-stealing algorithm
introduced by Blumofe and Leiserson is a commonly used technique to
balance load in a distributed environment but it suffers from poor per-
formance with some communication-intensive applications. We describe
here several variants of this algorithm found in the literature and in
different grid middle-wares like Satin and Kaapi. In addition, we pro-
pose two new variations of the work-stealing algorithm : HWS and PWS.
These algorithms improve performance by considering the network struc-
ture. We conduct a theoretical analysis of HWS in the case of fork-join
task graphs and prove that HWS reduces communication overhead. In
addition, we present experimental results comparing the most relevant
algorithms. Experiments on Grid’5000 show that HWS and PWS allow
us to obtain performance gains of up to twenty per cent when compared
to the classical work-stealing algorithm. Moreover in some cases, PWS
and HWS achieve speedup while classical work-stealing policies result in
speed-down.
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1 Introduction

With the recent increase of interest in parallel programming, the number of
parallel libraries using work stealing as their scheduling engine raises. The work-
stealing algorithm [2] is a distributed version of list scheduling achieving a good
load-balancing on distributed platforms. However, it may suffer from high com-
munication costs for applications transferring large amounts of data or platforms
with complex network topologies.

In this paper we propose to improve the performance of work stealing by
taking the data locality into account.

Section 2 presents the standard work-stealing algorithm together with vari-
ants from the literature. We provide a detailed description of the work-stealing
algorithm and emphasize different implementation choices leading to different
variants of the algorithm. In Section 3, we introduce two new algorithms HWS
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and PWS, designed to reduce long distance communications. We present in Sec-
tion 4 a theoretical analysis of the HWS algorithm showing an efficient load-
balancing and a reduced number of communications. Section 5 describes a set
of experiments validating the new algorithms and comparing them with some
existing policies. Finally, we conclude in Section 6.

2 Work-Stealing Algorithms

Work stealing is a scheduling algorithm which achieves an efficient dynamic
load-balancing. This algorithm has many good assets:
– it is a scalable distributed algorithm,
– the execution time is theoretically bounded,
– the number of steal attempts is theoretically bounded.

The classical work-stealing algorithm is presented in Section 2.1. The work
around the library Satin [9] on hierarchical work-stealing algorithms [8] is de-
tailed in Section 2.2. Finally, the steal policy commonly applied within the dis-
tributed middle-ware Kaapi [5] is described in Section 2.3.

2.1 Classical Work-Stealing

Several libraries and languages like Cilk [3], TBB [11], Satin [9], Kaapi [4],
Charm++ [6], X10 [7] implement in their own way a work-stealing algorithm.
In each of them, the execution is described with a set of tasks. Each task can
spawn/fork other tasks, and/or execute some instructions. Depending on the
library, the programming work to describe dependencies between tasks can be
more or less tedious.

The set of all tasks forms a DAG (directed acyclic graph), which is generated
online during the execution. Since tasks are running on a distributed architec-
ture, the DAG is itself distributed: each processor stores its part of the DAG
in a stack of tasks. As the DAG is discovered online, the work is unbalanced
between processors. Each processor is in one of two possible states depending on
the amount of tasks in its stack:

A worker is a processor which has some work to do. Its stack may be empty
or not. During the execution of a task, the worker creates some tasks. All such
tasks are pushed onto the stack.

A thief is a processor which has no work to do. It therefore tries to steal
work from another one (the victim).

Usually when the execution starts one of the processor is a worker while the
others are thieves. During the execution, processors have to make choices de-
pending on their state. Each worker must choose which task will be executed.
When a processor is a thief, it must choose which processor will be the victim
and which task will be stolen. The performance of the work-stealing algorithm
depends heavily on these choices. The theoretical bounds of Blumofe and Leis-
erson [2] are valid for particular choices.

How does a processor choose the next task in its stack? Blumofe et
al. [2] suggested that on each processor the parallel schedule executes instructions



in the same order as in the sequential execution. This choice preserves sequential
optimizations designed by the programmer. Thus when a processor executes a
task without stealing, the processor performs instructions in the same order as
in the sequential computation. To achieve this, it needs to execute the latest
task created.

How does an idle processor choose which processor to steal? In [2]
the authors prove that random choice is efficient. Within a bounded number
of attempts workers receive a steal attempt with a high probability. The main
advantage is that the victim choice does not require more information than the
total number of processors. Thus, the random choice is the simplest choice which
leads to theoretical bounds.

How does the thief choose the stolen task? During a steal request, any
disruption on the worker might raise the execution time. Many papers in the
literature as [12,13] explain how a lock/wait free algorithm can be implemented
to limit overheads. As tasks are forked recursively, tasks close to the root of the
DAG potentially contain more work than tasks forked farther away. Using the
above guidelines, the oldest task which is on the top of the stack, is chosen.

Blumofe et al. [1] prove under these choices that the execution time and the
number of steal attempts is bounded. We introduce here some notation, used to
conduct their theoretical analysis. In this analysis, the application is modeled
by a DAG of unit-sized tasks [2]. This DAG is characterized by W (or T1) the
number of nodes and D(or T∞) the number of nodes on the critical path. With
a high probability the execution time is bounded by W

p + O(D), where p is the

number of processors in [1]. The number of steal requests during the execution
is bounded by O(p ∗D).

While these results are impressive, the model in use here might not be accu-
rate enough for large-scale distributed systems since the communication cost is
not taken into account. The time of each steal attempt is theoretically bounded
by the same constant although the cost of communications is not uniform on the
platform. For this reason hierarchical work-stealing algorithms were introduced
by Nieuwpoort et al. [8].

2.2 Existing hierarchical work-stealing algorithms

Three hierarchical work-stealing heuristics [8] called CHS, CLS, CRS have been
introduced in the library Satin [9]. These heuristics take into account the exe-
cution platform in different ways but only change the victim choice, the stolen
task remaining the oldest one in the stack. In [8], Nieuwpoort et al. compare
these heuristics on several applications. Since CRS largely outperforms CLS and
CHS on most application, we will not consider CLS and CHS in the remainder
of this paper.

In CRS, computers perceive two levels of hierarchy : processors in the same
cluster and others. Each computer is able to send two types of steal attempts :
asynchronous and synchronous. Asynchronous steal requests are restricted to
one computer in other clusters at the same time. Conversely, synchronous steal
attempts are restricted to computers in the same cluster. Steal attempts are sent



only when the stack is empty, like in the classical policy. Each processor is able
to send at any time one asynchronous steal and one synchronous steal.

Experiments using the Satin library show in [10] that the classical policy
can be outperformed. An algorithm which considers the hierarchy of the plat-
form, can take the advantage over existing heuristics. While CRS presents a
performance improvement, it can be further improved since:

– No theoretical analysis is provided,
– Tasks might be transferred several times in advance for nothing.

To illustrate this last point, consider a processor working on a task received
by a synchronous request. While working, it receives a task from a previous
asynchronous request. This task can eventually be stolen once more before being
consumed by the ongoing processor.

2.3 The Kaapi library

Kaapi is a middle-ware developed by our research team at INRIA, which im-
plements a distributed work-stealing algorithm. The Kaapi work-stealing policy
takes advantage of a short description of the hierarchy. Each processor perceives
two levels of hierarchy :

– Processors on the same computer. Their stacks can be accessed concurrently.
– Other computers. A network communication is required to steal tasks from

them.

The thief can choose to send a request to a processor on the same computer,
or another one. In the Kaapi work-stealing algorithm a processor becoming a
thief first sends a steal request to a processor on the same computer, then sends
a steal attempt to a processor on another computer. If the steal request fails,
the thief restarts this algorithm. This algorithm could easily fit to several levels
of hierarchy. While it is not studied theoretically, this algorithm outperforms
standard work-stealing algorithm in many practical cases.

In this paper, the implementation of work-stealing policies is done with the
Kaapi library. We have implemented the classical work-stealing algorithm and
the CRS algorithm to compare them with our policies.

3 Proposed algorithms

In the previous section, we presented an overview of different work-stealing al-
gorithms from the literature. Each of them have some interesting features :

– The classical algorithm benefits from a theoretical analysis.
– CRS has experimentally good performances on hierarchical platforms.
– Kaapi introduces its own algorithm, which also outperforms the classical

work-stealing algorithm [5].

Each algorithm has however some weaknesses.

– The classical one is experimentally outperformed by CRS and Kaapi policies.
– However CRS and Kaapi work-stealing have not been theoretically studied.



In addition, we believe that load-balancing algorithms can improve perfor-
mance by using some knowledge of the platform. We therefore introduce two
new variations of the work-stealing algorithm. The first one, “PWS” (Probabil-
ity work-stealing) is a simple algorithm, which considers several levels of hier-
archy. The second “HWS” (Hierarchical work-stealing) takes into account the
hierarchy of the platform and the knowledge of the application.

3.1 Probability Heuristics : PWS

In PWS, we suggest reducing the steal time by picking up nearby processors
in priority. This requires a description of the hierarchy to estimate the distance
between the thief and the target processor.

We then apply the classical work-stealing algorithm with following changes:
the probability to choose a target computer for steal attempts is not uniform
anymore but instead proportional to the inverse of the distance between the thief
and the target processor. This strategy has the advantage of increasing the data
locality and of reducing the average latency of steal requests.

3.2 HWS

We also introduce a second algorithm called HWS based on a completely different
approach. HWS has been designed after observing the behavior of the classical
work-stealing algorithm on several applications. The work-stealing algorithm
balances the load between the thief and the target processor. The main idea
behind HWS is to use the same mechanism at the cluster level. Thus, we suggest
stealing in a single attempt, a large amount of work inside the target cluster.

To this end, HWS changes the choice of the stolen task as well as the target
processor. HWS needs information about the platform. The platform is divided
in some processor groups which are sets of processors connected with a fast link.
For example, it could be a cluster or the set of cores in one processor. The risk of
congestion between groups arises with the amount of transferred data. To limit
this risk, we chose to restrict in each group, the number of processors which
can steal another group. In each group, only one processor sends remote steal
requests in HWS. This processor is called a leader.

This change may however have a strong impact on load-balancing. Since the
number of remote steal requests is decreased, we want remote thieves to steal
a larger amount of work. Therefore, each leader gives some work to its cluster
when there is not enough work, and keeps the large tasks to balance efficiently
the load between leaders. As seen in Section 2.1, in most applications, tasks close
to the root node of the DAG usually contain a large amount of work while this
amount decreases as the recursion develops.

To distinguish tasks with a large amount of work, a limit is given by the user.
The level of a task is determined according to the fork tree : the level of a task
is equal to the number of its parent tasks up to the root task. When new tasks
are created, their level is their parent level incremented by one. Two types of
tasks are defined :



Block 1 Block 2 Block 3 Block 4

1

2

4

7

11

19

12

20

24

3

5

8

13

21

14

9

15 16

22

25

26

27

28

6

10

17

23

18

Fork/spawn
Dependency

Local task
Global Task

Characteristics of G

W = 28 , D = 10
W1 = 6 , D1 = 4
Wg = 9 , Dg = 6
Wl = 19 , Dl = 4
B = 9

Fig. 1. Representation of the work done by slaves and leaders.

Global tasks have a level below the limit. They can be stolen between groups.

Local tasks have a level higher than the limit. They belong to a single group.

We artificially limit the number of global tasks in any application. For ex-
ample an application recursively dividing the work in halves like in some divide
and conquer problems has 2l global tasks where l is the chosen limit. To avoid
a huge number of global tasks, l is chosen small. Global tasks are centralized on
the leader. In summary we have two types of processors :

Leaders : they execute only global tasks. And they balance the load between
groups and manage the load inside their groups.

Slaves : they perform the classical work-stealing algorithm within their group.

To balance the load between groups and leaders each leader has two stacks :
the global stack for global tasks accessed by leaders, the local stack for local
tasks accessed by slaves from its group.

Leader algorithm : When the execution starts, all tasks are located on leaders
stacks. Leaders which have some tasks execute them. When a task is created, the
leader can choose to push the task in the local stack or in the global task. This
decision depends on the task depth in the fork tree. Task pushed in the local
stack by a leader is called a slave task. All tasks belonging to the fork subtree
of a single slave task is called a block of tasks. Figure 1 shows the set of blocks
for an application, the limit l being set arbitrarily to three.

The leader provides some work to its group by pushing a local task in its
own local stack. We suggest detecting the amount of work inside the group. If
this amount is not sufficient to exploit the group processing power, the leader
provides another local task to its group by executing a global task or stealing a
global task. The amount of work inside the group can be estimated as proposed
in the CHS algorithm [8] by sending additional messages. Another solution that
can avoid such extra messages is for the leader to detect a lack of work by
evaluating the number of steal attempts it receives. We chose to implement this
latest option for this study.



4 Theoretical analysis

We provide here a theoretical analysis of the HWS algorithm. Section 4.1 shows
that the execution time and the number of steal requests of HWS are bounded.
Section 4.2 analyzes in detail the obtained results.

4.1 HWS analysis

In this analysis, we restrict ourselves to a simpler variant of HWS where each
leader waits for the end of each provided block. Note that this restriction in-
creases the waiting time of the implemented version of HWS by considering
the worst case. During this waiting time, all slaves execute block tasks. For this
analysis, the waiting leaders could introduce some deadlocks in the case of depen-
dencies between different blocks. Therefore, we restrict our proof to applications
without such dependencies. All “Fork-Join” applications satisfy this constraint.

The proof is divided in several parts. First, we present a model of the appli-
cation. Then we begin by bounding the execution time of each block in a single
group of slaves. We then conclude by completing a global analysis.

Modeling the application: for our analysis we introduce the dependency
DAG G representing the application presented Figure 1. The edges of G describe
the dependencies between tasks, for example the forking of a task or precedence
with another task. On G we use classical notation presented in Section 2.1. We
recall that for the classical work stealing, Blumofe and Leiserson proved that :

– The execution time is less than : W
p + O(D)

– The number of steal requests is bounded by : O(p ∗D)

In HWS we use a limit l to separate global tasks and local tasks. Local
tasks are packed into blocks as shown in Figure 1. We introduce some additional
notation :

Wg : Number of global tasks and amount of work done by all the leaders.
Dg : Length of the critical path of the DAG G without local tasks.
Wl : Number of local tasks and amount of work executed by the slaves.
Dl : Length of the critical path of the DAG G without global tasks.
Wi : Number of tasks inside the block i.
Di : Length of the critical path of the DAG representing the block i.
B : Number of blocks.

An illustration of the above quantities is given in Figure 1. By definition of
blocks, we have :

Wl =
∑
i

Wi (1) Dl = max
i

Di (2)

We also introduce some notation to characterize the platform: the platform
has p processors divided in number of groups, as described in Section 3. For this
proof, the groups are considered of equal size (homogeneous case). We define pg
the number of processors in a group and g the number of groups. The case of
heterogeneous groups will be addressed in a future work.
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Fig. 2. A representation of the graph G′ executed by leaders

Theorem 1 With high probability, the execution time of an application with the

HWS algorithm is less than
Wg

g + Wl

pg∗g +O(DB
g +D+maxi

Wi

pg
). In addition, the

number of steal attempts between groups is smaller than O(g ∗ (D+ maxi(
Wi

pg
))).

Proof. We begin by studying the execution of blocks on a group. Each block
is executed by one group only. Moreover only one block can be executed at
the same time because the leader is waiting for the end of the block. Thus, the
execution time of the block is bounded by the bound of the classical work stealing
algorithm. Here, the execution time of the block i is lower than Wi

pg
+ O(Di).

Therefore the leader of the group waits at most Wi

pg
+ O(Di).

We now model the waiting times of the leaders. To achieve this, we build
a new graph G′ modeling the different activities of leader nodes. We replace
the block executed by a group with a chain of tasks inducing the same waiting
time for the leader. When the leader starts this chain with the work-stealing
algorithm, nobody can steal the remaining of the chain.

We define G′ as follows: each global task of G is copied identically inside G′.
Each block i of G is changed in a chain of tasks. The length of each chain is
equal to Wi

pg
+ O(Di). Figure 2 presents a DAG G′ and its characteristics.

Since the length of chain is an upper bound of execution time, the execution
time of G′ by leaders is greater than the execution of G with HWS on the whole
platform. We analyze the new DAG G′ to bound its execution time by leaders.
Execution time of G is less than the execution time of G′ by leaders with the
classical work-stealing algorithm. With the characteristics of G′, we can bound
the execution time by :

Wg

g + Wl

pg∗g + O(DB
g + D + maxi

Wi

pg
). In addition, the

number of steal requests is lower than O(g ∗ (D + maxi
Wi

pg
)). ut

Note : the execution time of work-stealing algorithm is bounded with a given
probability. Thus chain lengths are here in fact random variables. It is possible to
show that these probabilities have little impact in the remaining results presented
here. We do not present these computations here due to space limitations.



4.2 Results interpretation

In the previous section, we proved that the HWS execution time was bounded
by

Wg

g + Wl

pg∗g + O(DB
g + D + maxi

Wi

pg
). This bound is rather complex and we

might wonder whether this expression is out of touch with the real world or not.
We offer an interpretation of the above terms:

Wg

g : The work above the limit l is performed by leaders. This term results
from the HWS design. Each global task can only be executed by leaders. If the
limit l is chosen small enough, this term is negligible compared to others.

Wl

pg∗g : This shows that local tasks are balanced efficiently between slaves.

Thus, most of the work is balanced on the whole platform.
D : The tasks on the critical path have to be executed one after the other.

This term comes directly from the classical work-stealing algorithm bound.
maxi

Wi

pg
: This expression derives from the main HWS constraint : each

block is restricted to be executed by only one group. This constraint is imposed
by HWS to restrict communications. The execution time cannot be lower than
the execution time of the largest block on one group. This term is sizable if :
maxi Wi <

Wd

g . In practice, this problem rarely occurs.

DB
g : The origin of this term can be understood from the proof. It derives

from the fact that all blocks are executed one by one. Since blocks are executed
sequentially, their critical paths may add up during the execution. Note that this
term comes from the waiting constraint artificially added for the analysis and
might be negligible in practice.

To conclude this analysis, we highlight two observations. We have shown
that the work is efficiently balanced under some conditions : the limit l is small
and the work is not too unbalanced between the different blocks. In addition,
the number of global steal attempts is bounded by O(g ∗ (D + maxi

Wi

pg
)) which

fulfills the main goal of the HWS algorithm. We therefore expect experimental
validations of HWS to outperform the standard work-stealing algorithm.

5 Experimental validations

We compare PWS and HWS with three standard algorithms from the literature :
the classical work-stealing (denoted by WS), Kaapi work-stealing and CRS.
These experiments stand as a practical test for our algorithms and enable us to
exhibit a significant performance gain.

Our experiments are designed not only to compare existing heuristics to PWS
and HWS but also to show the disruption of the network on different kind of
applications.

In our experiments, we use the Grid’5000 1 platform. On this platform, the
largest shared memory computer has two 2.5 GHz Intel Xeon E5420 of four

1 Experiments presented in this paper were carried out using the Grid’5000 experimen-
tal testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding
bodies (see https://www.grid5000.fr).



Fig. 3. Execution time for Merge-Sort with severals work-stealing algorithms on shared
and distributed platform.
cores each. The baseline is an execution on a single node with eight cores to
the execution on two nodes with four cores each. The different computers are
here connected by an InfiniBand network. The execution platform is hierarchical
and enable us to understand the behaviour of heuristics without many disrup-
tions. These first experiments achieve a distributed execution in a controlled
environment.

We analyze all scheduling algorithms for two different applications. The first
one is an implementation of the Merge Sort algorithm. The goal is to sort an
array of four Gigabytes. This algorithm was selected because it induces a large
amount of communications. The second application solves the N-queen problem.
This application spawns many tasks but each task transfers only a little amount
of data.

Sections 5.1 and 5.2 report respectively the results from the experiments with
the Merge Sort and the N-queen example.

5.1 Merge Sort

We analyze the execution time of each work-stealing algorithm to sort an array
of four Gigabytes on a distributed platform. The implementation of the merge
sort algorithm uses a recursive splitting in two by spawning two tasks each
sorting half of the data. The fusion of each half is done in place with the merge
algorithm from the STL library. When the array size is less than four Kilobytes,
the work is performed sequentially with the sort of the standard library STL.
We evaluated an overhead lower than three per cent by comparing a pure STL
sequential execution with an execution of the parallel code on one core. The error
bars on all figures represent the confidence interval computed with one hundred
experiments per point.

Figure 3 shows the comparison between PWS, HWS and existing policies.
CRS and WS obtain a speed-down with respect to the execution time on four
cores on one node, on about ninety per cent of all executions. This result is
consistent with the analysis provided in [8]. In this paper, CRS achieves bad
performances for matrix multiplications. The results are due to the high amount
of data in use in both setups. Kaapi work-stealing policy exhibits a speed-up for
more than 60 per cent of all executions over WS on one processor.

Figure 3 shows performances of PWS and HWS with a fixed value of ten per
cent for the probability to send a steal request to the other node in PWS and
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the limit l is set to two in HWS. All executions with HWS and PWS achieve a
significant speed-up compared to the classical policy on four cores of one node.
Figure 4 shows the evolution of the execution time as the PWS probability
varies. This probability can be chosen in a very wide range of values. Thus, the
probability could be easily chosen.

We have also monitored the amount of data transferred by the Merge Sort
application, which helps explaining these results. These amount is :
– Around eight Gigabytes for the classical work stealing CRS,
– Less than four Gigabytes for HWS and PWS.

5.2 N-queen
In our second set of experiments, we use a recursive algorithm to solve the N-
queens problem. The program spawns a task for each possible position of the
queen on the first line. Then given the choice of the first queen, the program
spawns a task for each possible position of the queen on the second line and so on.
When the level of recursion is more than four, the work is executed sequentially.
The program gives the number of possibilities to solve the problem. Many tasks
are forked but little data is transferred for each task. Thus, this example requires
a heuristic without overhead to get a linear speed-up.

In our experiments, the problem was solved for eighteen queens. Figure 5
shows the execution time of all scheduling algorithms executed on two nodes
and the WS on one node with one or two processors. These experiments indicate
that all strategies exhibits a roughly equivalent execution time. We conclude from
these experiments that when the amount of data to transfer is low, hierarchical
policies do not decrease performances. Moreover, these heuristics do not incur
any measurable overhead.

Conclusion
To conclude this section, we emphasize that we were able to achieve sig-

nificant speed-up with both PWS and HWS on experiments with large data
transfers. With an improvement reaching twenty per cent of the execution time
over standard algorithms on the same platform, a distributed execution becomes
a viable option. It achieves speedup in all executions while classical algorithms
increase execution time when using remote resources. PWS and HWS reduce the
amount of data transferred. With PWS, the programmer can tune the probabil-
ity parameter on a very wide range and obtain the best performance.



6 Conclusion

In this paper, we introduce two new work-stealing algorithms HWS and PWS
for hierarchical platform, and compare them to the state of the art. We provide
a theoretical analysis for HWS and show that under reasonable assumptions it
exhibits an efficient load balancing while greatly reducing the number of remote
communications. PWS and HWS are then validated experimentally on two dif-
ferent kinds of applications. Both of them show an increase in performance strong
enough to justify a distributed execution, with PWS outperforming HWS.

This work may be extended in several directions. First, on the theoretical side,
we would like to perform an analysis of PWS and relax the current assumptions
on the analysis of HWS. On a practical side we plan to conduct experiments at
larger scales with several levels of hierarchy.

We believe that while our work may not be the optimal solution for many dis-
tributed applications (which could take advantage of more standard techniques
like partitioning and static scheduling), it can increase the range of existing ap-
plications relying on work stealing middle-wares by enabling them to run on a
wider range of platforms.

References

1. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. In: ACM SPAA (1998)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM (1999)

3. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: ACM SIGPLAN. pp. 212–223 (june 1998)

4. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime system
for data flow computations on cluster of multi-processors. In: PASCO (2007)

5. Gautier, T., Roch, J.L., Wagner, F.: Fine grain distributed implementation of a
dataflow language with provable performances. In: ICCS (2007)

6. Kale, L.V., Krishnan, S.: Charm++: Parallel Programming with Message-Driven
Objects. Parallel Programming using C++ (1996)

7. Lee, J.K., Palsberg, J.: Featherweight x10: A core calculus for async-finish paral-
lelism. In: PPoPP (2010)

8. van Nieuwpoort, R.V., Kielmann, T., Bal, H.E.: Efficient load balancing for wide-
area divide-and-conquer applications. In: PPoPP (2001)

9. van Nieuwpoort, R.V., Maassen, J., Hofman, R., Kielmann, T., Bal, H.E.: Satin:
Simple and efficient Java-based grid programming. In: AGridM Workshop (2003)

10. van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Kielmann, T., Bal, H.E.: Adap-
tive load balancing for divide-and-conquer grid applications. SC (2006)

11. Robison, A., Voss, M., Kukanov, A.: Optimization via reflection on work stealing
in TBB. In: IPDPS (2008)

12. Shivali, A., Rajkishore, B., Dan, B., Vivek, S., K., S.R., Katherine, Y.: Deadlock-
free scheduling of x10 computations with bounded resources. In: SPAA (2007)

13. Valois, J.D.: Implementing lock-free queues. In: PDCS (1994)


