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ABSTRACT
Cryptography in general is mostly based upon alge-

braic computations. The efficiency of the algorithms that
are used depends on how fast these computations can be
made. That’s why people try to gain as much speed as pos-
sible on this part. That’s what the M4RI library is aimed
at. It proposes a set of fast arithmetic functions on dense
matrix over te field with two elements that are much and
well optimized. It is a reference in the field. But M4RI
only uses the CPU to do the computations, that’s why we
tried to see what could be gained from using the GPU to do
the same tasks. In our work, we tried to understand what
made the M4RI algorithms so efficient, and to see how we
could adapt them to make a good use of the computational
abilities of the GPU.
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1. INTRODUCTION
Cryptography in general is mostly based upon algebraic

computations. For instance, cryptographic attacks based
on Groëbner bases [1] use intensively matrix-matrix multi-
plications. The efficiency of such algorithms is important
because it determines how secure the cryptographic meth-
ods are. There exists good, well optimized implementa-
tions of matrix-matrix multiplications, such as the M4RI
library (http://m4ri.sagemath.org) that contains a combina-
tion of the Strassen-Winograd and the M4RM (“Methods of
the four Russians” Multiplication) algorithms, which is way
faster than the well-known naive algorithm. But we thought
it was possible to go even faster than that.

Indeed for the last few years, the GPUs (Graphical Pro-
cessing Units) have been evolving, and now their use is not
limited to computer graphics computations anymore. Now,
the new GPGPU technique is born : General-Purpose com-

puting on Graphics Processing Units, which means using
GPUs to perform computation in applications traditionally
handled by the CPU (Central Processing Unit).

What we have been working on is to see what could be
gained from implementing the M4RI algorithms on GPUs.
Such an attempt is legitimate insofar as GPUs are opti-
mized for massive parallel computations, more than mul-
ticore CPUs are. Therefore, the implementation of matrix-
matrix multiplication on GPUs consists mainly in paralleliz-
ing appropriately the existing algorithms. The aim of this
article is to explain our work and to present a few compar-
isons in terms of performances (timing, especially) between
the different GPU-based multiplication algorithms that we
tried and implemented.

The paper is structured as follows. We proceed from
the description of the ”naive” algorithms (section 4 and 5)
to the four russians method (section 7), illustrated by our
results of benchmarking and comparisons (section 6 and 7.3).
This is the heart of this article, but we thought that before
that, it was appropriate to give some explanations about
our data structures (section 2) and about programming on
GPUs (section 3) first. There are then two more sections
(section 8 and section 9) where we sum up the difficulties
we encountered and conclude.

2. DATA REPRESENTATION
All our work only concerns algebraic computations over

the field with two elements (F2). And there is a gain that
can be made from working over F2 : as each coefficient can
only be 1 or 0, we can represent 64 coefficients with only one

64 bits machine word. Besides, the arithmetic operations in
F2 are logical & and XOR, which are bitwise operations that
can be done directly on 64-bits machine words. That’s why
we chose to use a flat row-major representation for our ma-
trices. Thus we reduce one of the matrix dimensions by a
32 factor (a 64 bits machine is equal to 8 bytes whereas an
32 bits integer is 4 bytes).
For instance, we can store a 32768 × 32768 matrix in the
VRAM since the compressed form needs 32768 × 32768 ÷
64 × 8 ≃ 134MB. Indeed, NVIDIA GPUs with CUDA ca-
pabilities have at least 256MB of dedicated memory.

This representation allows us to gain useful memory
space, but we must be careful when processing computa-
tions based on these compressed matrices data. When we
compute the product A × B of the matrices A and B, we



need to read the lines of A and the colums of B. Our com-
pressed representation is very convenient to read lines from
the matrix A, but there is a problem when it comes to read-
ing the columns of the matrix B. To bypass that issue, we
chose to store in memory BT instead, in the flat row-major
compressed format.

Although this idea may seem really naive, it brings a
considerable improvement. We must not forget that any
basic arithmetic operation on a GPU is roughly 4000 times
cheaper than a read or write operation in the GPU global
memory. In the NVIDIA CUDA programming guide, we
can find the exact figures : the throughput of any bitwise
operation is 8 operations per clock cycle, and the latency
when accessing local or global memory may vary between
400 and 600 clock cycles. So, that’s something that really
must be kept in mind when programming on GPUs : the
bottleneck is located at the memory reads/writes level.

3. PROGRAMMING ON GPUS WITH THE
NVIDIA CUDA LIBRARY
Before getting more technical about how we implemented

our algorithms, we think it is important to recall a few things
about how GPUs work. The letters GPU stand for Graph-
ical Processing Unit. Modern GPUs are very efficient at
manipulating computer graphics, and their highly parallel
structure makes them more effective than general-purpose
CPUs for a range of complex algorithms. But to benefit from
this highly parallel structure, problems must be approached
in a quite different way, compared to CPU programming,
and it is necessary to learn to program in a slightly different
way from what one is usually used to. As getting more fa-
miliar with GPU programming has been an important part
of our work, we want to try and summurize here what we
learned about it, and hopefully it will be of some use to the
readers of this article.

A GPU is composed of several multiprocessors that
share a global memory space. Each multiprocessor is equal
to 8 processors and can run from 768 parallel threads that
share 16 KB of local memory, which is really faster than
global memory. This memory is called shared memory, as
it is a memory shared between the threads run by a multi-
processor. Plus, it is as fast as registers. The appropriate
use of this fast local memory is crucial in order to improve
the computations speed. Each multiprocessor also has 8 KB
of local memory used to store constants. Each multiproces-
sor has 8192 registers shared between the threads of active
blocks (8 active blocks at most). Knowing this figure is im-
portant to proportion the problem and use the capabilities
of GPUs.

Whereas it is useful to know the exact hardware config-
uration to really deeply optimize algorithms, it is not really
necessary to achieve a real gain compared to what is done by
computing with the CPU. But here is what is really useful.
The CUDA programmer must define kernel functions that
will be executed in parallel by each thread, as opposed to
more classic C functions that are run only once. Threads
are gathered in thread blocks, that form a grid. Thus, the
programmer has to specify for each call to a kernel, what
the grid dimensions and the blocks dimensions are. That
is to say, he or she has to specify how many thread blocks

to use, and how many threads in each. Thread blocks are
required to execute independently : it must be possible to
execute them in any order, in parallel or in series. This inde-
pendence requirement allows thread blocks to be scheduled
in any order across any number of cores, enabling program-
mers to write code that scales with the number of cores. The
number of thread blocks in a grid is typically dictated by the
size of the data being processed rather than by the number
of processors in the system, which it can greatly exceed. In
the NVIDIA documentation, it is advised to use blocks of
around 256 threads, because it offers a good compromise be-
tween memory latency and number of available registers for
most kernels.

There is a programming pattern we used in our algo-
rithms. It is a list of things we need to do each time. First,
we allocate memory (cudaMalloc) in the device memory for
the data upon which we want to do computations. At that
point, it is usefull to check the status of the memory al-
locations (cudaErrorMemoryAllocation). Indeed, different
devices may have different amounts of memory available,
and it is useless to try to do computations when we don’t
have enough room available to store our data. Then we copy
the data upon which we want to do the computations from
the host to the device memory (cudaMemcpy(destination,
source, size, cudaMemcpyHostToDevice)). After that,

the dimensions of the blocks and of the grid are set, and
a call to a kernel function is made. It is possible to do se-
quetially several calls to the same or to different kernel func-
tions, depending of what treatment we want to do on our
data. In that case, the dimensions of the blocks and of the
grid need to be properly set for each call. Kernel functions
take as paramaters pointers to memory zones where to read
or write data, and other useful informations, such as matri-
ces dimensions in our case. After the kernel functions calls
comes the part were we retrieve the result from the device
memory, and copy it to the host memory. Same as before,
we call cudaMemcpy, but with cudaMemcpyDeviceToHost as
last parameter this time. And finally we can free memory
on the device using cudaFree.

4. THE NAIVE ALGORITHMS
This section describes a few naive GPU-based algo-

rithms of matrix-matrix multiplications (with an O(2n
3)

complexity). For all algorithms, we took inspiration from
the naive implementations given by NVIDIA in the CUDA
Software Development Kit [2] and programming guide [3].
The aim of this part of our work on simple algorithms was
to get more familiar progressively with programming using
CUDA, and to obtain a lot of data for later comparisons
with the other algorithms.

4.1 The classical product
We will not introduce the very well-known algorithm for

matrix-matrix multiplication and its implementation in C.
For our experiment, we used the GPU-based version given
by the CUDA SDK [2] and we added timing functions to
benchmark the algorithm and compare it to the CPU-based
version. The programming consists in allocating three ma-
trices (A,B) : entry values, C : result) in RAM, copy them
to the VRAM (video memory), call the kernel and copy the
result from VRAM to RAM. The kernel computes multipli-
cations between all sub-matrices of each entry (A and B).



We compute separately each sub-matrix of the result ma-
trix C. The shared memory is used to store the sub-matrices
from A and for B we need to compute that sub-matrix. Each
thread computes one element of the block sub-matrix. The
dimensions of the sub-matrices are 16 × 16, which requires
256 threads. The coefficient of the result matrix computed
by each thread is converted modulo 2.

The reason why we implemented such a simple and in-
efficient algorithm was we wanted to have an idea of what
the GPU performances were, what we could gain compared
to CPU performances, even on stupid computations.

4.2 Using the BLAS library
Basic Linear Algebra Subprograms (BLAS, [4])) is an

application programming interface standard for publishing
libraries to perform basic linear algebra operations such as
matrix-matrix multiplications. Heavily used in high perfor-
mance computing, highly optimized implementations of the
BLAS interface have been developed by hardware vendors
such as by Intel as well as by other authors (e.g. ATLAS
is a portable self-optimizing BLAS [6]). For the compari-
son between CPU and GPU, we used the LAPACK library
for C ([5] and [7]). The computation is very easy : we
call the matrix-matrix multiplication kernel with the com-
mand cblas_sgemm then we convert the result modulo 2. In
the GPU version, it is the same : there is no direct ker-
nel invocation, the computation is done with the command
cublasSgemm from the CUBLAS library [8]. The matrices
need to be in a row major format in order to have the true
result, unlike the CPU command where you can choose the
matrices representation.

The BLAS library is a very optimized one. We use it
mainly for comparisons purposes. In the general case, it
would be foolish of us to try and do better than what BLAS
does. But as we work only on matrices with coefficients
in F2, there actually is some hope to do better. Because
we have a compressed data representation format we can
manipulate with bitwise operations, because we have subtile
algorithms approriate to work over F2 that wouldn’t work
in the general case.

5. IMPROVED DOT-PRODUCT
If we come back to the basics of matrix-matrix multipli-

cations, we notice that it is based on dot products between
row and column vectors. Since there are n

2 dot products, it
could be useful to fasten their executions. To do that, we use
the compressed format for the matrices (matrices of 64-bits
machine words, as explained in section 2). Besides, as we do
computations in F2, the product is a logical &, and the sum
is a logical XOR, which are very low cost operations to do on
64 bits words. After that, there only remains to compute
the parity of a 64-bits word to have the result. Here is how
it works :
Given two vectors A and B

A = (ai)1<=i<=n
and B = (bi)1<=i<=n

, the usual dot prod-
uct is given by :

A.B =
n

X

i=1

ai × bi.

Here, we compute instead :
A.B =parityof( a1&b1 XOR . . . XOR a n

64
&b n

64
).

parityof computes the parity of a 64-bit machine word (e.g.
returns the number of bits that are set to 1 in the binary
representation of 64-bit integer parameter).
To do that, we used an integer function ([3] C.2.3) :
parityof(v)=__popcll(v) & 1 .

Now, about parallelizing, we use the same block parti-
tionning as we did for the naive classical dot product. That
is to say that each thread block computes a sub-matrix of
the result matrix, and inside a thread block, each thread
computes a coefficient. The only thing that changes from
the classical matrix product is that the way to compute is a
little different : we use our compressed data representation
format and bitwise operations instead of integers and sums
and products.

6. PERFORMANCES ANALYSIS
Our benchmarks were done on a computer which has

sixteen 2.2 Ghz AMD64/Opteron and two NVIDIA GTX280,
running on a 64-bit Debian/GNU Linux.
But the tests only use 1 CPU and 1 GPU. Let’s remember
that this GPU has 30 multiprocessors and 1GB of VRAM.
The algorithms was compiled with GCC 4.3.3 and we used
the option −O2.

Table 1: Naive product CPU versus GPU

Matrix Dimensions CPU GPU
1024x1024 26,06 0,048
2048x2048 288,7 0,275
4096x4096 - 1,857
8192x8192 - 13,059

We didn’t try to launch computations on the CPU for
matrices bigger than 2048 × 2048, because it would have
taken too much time, and the result we have are sufficient
to say that for this naive implementation, the GPU comput-
ing brings a huge gain (between 50 and 100 times faster).
Yet, we can not launch computation for matrices bigger than
8192× 8192 as we are limited by the size of VRAM (used to
store the matrices).

Table 2: BLAS CPU versus GPU
Matrix Dimensions CPU GPU

1024x1024 0,356 0,049
2048x2048 2,752 0,205
4096x4096 21,79 0,985
8192x8192 170,8 5,415

Unsurprisingly, we see here too that computations made
with the GPU are faster (between 7 and 30 times faster).



We also were able to do some tests on a GeForce 8600M GS,
which is a more common and affordable Graphic card. It has
4 multiprocessors and 512 MB of dedicated VRAM. These
tests give an idea of what can be achieved on an average
machine.

Table 3: Tests on 8600m GS
Matrix Dimensions Naive Product BLAS

1024x1024 0,5797 0,1389
2048x2048 4.5739 1.0047
4096x4096 36.8049 7.7279
8192x8192 - -

Same problem here : we couldn’t compute products of
matrices of size 8192 × 8192 because there is not enough
memory available on the device to store the matrices. We
see here that the more expensive card is 8 times faster for
the bigger matices dimensions we could try, so it seems it
is worth investing in good hardware components even for a
GPGPU usage.

7. THE FOUR RUSSIANS METHOD

7.1 Idea of the algorithm
The “Method of the Four Russians” matrix multiplica-

tion algorithm can be derived from the original algorithm
published by Arlazarov, Dinic, Kronrod, and Faradzev [11],
but does not directly appear there. It has appeared in books
including [10]. It is well discribed in this paper [12], which is
focused on the numerous techniques employed for the special
case of F2 in the M4RI library and the benefits so derived.

To understand the algorithm, we must see that, when
computing the C = A×B product, each line of the matrix C

is a linear combination of the lines from the matrix B. It is
the i

th line from matrix A that determines which lines from
the matrix B appear in the i

th line of matrix C. Hence the
idea of precomputing the 2k possible linear combinations of
lines from matrix B for a given k, and store them in a table.
When we have such a table, the multiplication algorithm is
just to read successively each line from matrix A and to read
in the table to know what is the coresponding line of matrix
C.

The idea to tabulate the possible values may seem sur-
prising at first, but there are several arguments to support it.
First, as we only do computations over F2, the coefficients
can only be 0 or 1, so there is a sizeable probability that sev-
eral lines of matrix A are the same, and then we spare time
not doing redundant computations. Secondly, the precom-
putation of the table is not as costly as one could think. As
a matter of fact, this precomputation can be done with an
order that makes it really quick : the idea is to use a gray

code. This way, from a linear combination we deduce the
next one at almost no cost, simply by adding/substracting
(arithmetic XOR in both cases) the corresponding line from
matrix B to/from it.

7.2 Implementation using the GPU
There are here the same steps as in the other algo-

rithms, so we won’t detail the memory allocations and copies.
What is more of interest is to detail the kernel function that
we use. The partitioning we chose to use is the following :
Each thread block computes the coefficients of a sub-matrix
of the result matrix. The grid dimensions are the result ma-
trix dimensions divided by the dimensions of a block. The
dimensions (y,x) of a block must be chosen in such a way
that there is enough room in the shared memory to store a
sub-matrix of matrix A, a sub-matrix of matrix B, and the
table which contains linear combinations of lines from the
sub-matrix of matrix B.

There are several important steps, that are separated
by calls to __syncthreads() ; thus we are sure that each
thread has finished earlier computations when a thread be-
gins the next step. The first step is to load the sub-matrix
of matrix B in shared memory. Each thread loads a coef-
ficient. Next, we compute the table of linear combinations
of lines from this sub-matrix. To do that, each thread will
compute several lines of this table. It computes the first line
by analysing the corresponding gray code one bit after an-
other, and by adding the corresponding line each time a bit
is 1. But after this first line is computed, for the following
ones, the thread copies the previous line, it computes the
next gray code, computes the bit that is different from the
previous gray code, and then XOR only the corresponding
line. The next step is the computation of the result itself.
To do that, we need a loop to iterate on sub-matrices of
matrix A. In that loop, there are several steps. First, we
load a sub-matricx from matrix A in shared memory. Same
as usual, each thread loads one element. The next step is to
calculate the indices corresponding to the bits from the lines
of matrix A in the table where the linear combinations are
stored. What we do here is that only a few threads are ac-
tive because there are only a few indexes to compute. After
this step, the indexes are in the shared memory so that any
thread of the block can access to them. After that, there
only remains to XOR with the corresponding line in the re-
sult matrix the relevant linear combination from the table.
At this point all threads are active. After that, we go to the
next block sub-matrix of matrix A, and we keep iterating
until the loop is over, i.e. all sub-matrices of matrix A have
been taken into account.

7.3 Comparison and Performances analysis
We made some benchmarks of M4RI on our 64-bit De-

bian/GNU Linux :
This gives an idea of what we have to beat. But un-

Table 4: 2.5Ghz Core 2 Duo, 8600m GS, GTX280

Matrix Dimensions CPU GPU1 GPU2
8192x8192 0,65 - -

16384x16384 4,81 - -
32768x32768 34,2 - -

fortunately, right now we don’t have real results with our
algorithms because their implementation is not stable and
operative yet.



8. GPU PROGRAMMING TYPICAL DIFFI-
CULTIES
The main difficulties we coped with were the program-

ming of kernels. It is quite different as CPU programming
because they are very optimised for parallelism. It changes
the way to compute because we have several parameters
to take into account (different type and size of memory,
threads). Moreover, debugging is very difficult since it is
impossible to call host functions inside the kernel (no printf,
...) and there is no warning when a allocation or execution
failed. Fortunately a debugger exists and can help (CUDA
GDB) although it is still in beta version. NVIDIA also re-
leased a library named CUtil which checks memories, exe-
cutions,etc., but its use is far from being easy (there is no
help).

9. CONCLUSION
The actual power of high-end graphic cards shows that

a simple naive algorithm is executed faster with a GPU than
with a CPU. The capabilities of GPU only wait to be ex-
ploited. Now the current version of CUDA (2.2) is very sta-
ble and high-end GPU are always cheap so everyone can de-
velop and contribute to the CUDA community, assuming to
have some basic knowledge in C/C++. During this project,
we developed a little core which can still be enhanced since
GPUs offer more possibilities than CPU programming. To
go further in the project, the dot product by parity can be
improved by computing the parity of 64 words in one go
with a tree (resulting in a better complexity) instead of one
by one. The idea would consist in working with 1 × 64 sub-
matrices and compute the parity of 64-bit machine words,
obtained by having ANDed and XORed 64 times 64-bit machine
words of the compressed forms. Furthermore, NVIDIA in-
troduced enough tools to manipulate the device. Indeed,
a possibility of improvement could be the computation on
multi GPU (it was possible on our test machine). As we
saw several times, parallelism is crucial to obtain the best
performances.

In its current state, the project is unfortunately not as
advanced as it could be. It is too bad that the two most in-
teresting algorithms we worked on don’t work at this point.
We think we are very close to get them working, but there is
a mistake somewhere and we couldn’t figure out which untill
now. Anyway, we think that we have succeeded at least in
showing that there was much to be gained from using GPUs
to do algebraic computations over F2. Which is a reason suf-
ficient to continue to work on our algorithms to make them
work and to further optimize them, and later to adapt other
algorithms such as the Strassen-Winograd product to use
the GPU. There will be a lot of questions to be considered
when our algorithms will be operative. If our algorithms
are indeed faster (what preliminary tests seem to indicate,
but as tey were done on algortithms that don’t compute the
right results, we couldn’t put them here) we will have to see
where exactly are the memory limits different graphic cards,
and to search for appropriate cutoffs in cascade algorithms.
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