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Abstract

This paper present differents ways to implement paral-
lel versions of the MD6 cryptographic hash function.
MDG6 is one of the several candidates for the SHA-3
competition, which aim is to find a new hash function
to replace the old SHA-2, vulnerable to modern attacks.
We tried to see how a cryptographic hash function like
MD6 could be efficiently parrelizable, to take the most
of the new parallel architectures that are in our com-
puters nowadays (multicores/processors, GPGPU).

1 Introduction and context

Cryptographic hash functions: Information secu-
rity is essential on cumputers. This buissiness grows
a lot due to digital signature and mostly because of the
Internet with its huge data flow exchange on it. Cryp-
tographic hash functions can be used to check message
integrity. Indeed, you have to be able to detect data
corruption . Moreover, they are also used for password
verification without saving the cleartext password !

SHA-3: For years, MD5 was used as the standard
cryptographic hash function. Because of the discov-
ery of new attacks and of the increase of computing
power (which made old unefficient attacks now possi-
ble to perform), SHA-1 has been developped.

SHA-2 family, a SHA-1 variant, that contains SHA-
224, SHA-256, SHA-384 and SHA-512, has been de-
velopped too.

Recently, new attacks have been performed against
SHA-1. As these attacks are difficult to perform in re-
ality (because they needs lot of computing), as they still
need less operations that an exhaustive research, it is
enough to say that SHA-1 is not yet cryptographic re-
liable. Because SHA-2 is based on SHA-1, maybe it
could be concern by theses attacks.

Consequently, a competition has been launched by
the NIST to suggest a new cryptographic hash function,
that will be called SHA-3.

One of the most interisting candidate is MD6, that
we’ll study in this article.

Parallelism: For years, there was a contest to CPU
frequency with a huge growth of computation abilities.

Password are usually not stored in cleartext for obvious reason
but instead in digest form (hash code).

But now, we reached physical limits that bound this
evolution.

So now, parallels architectures are under devel-
opment because they increase the computing power,
by adding several cores or processors, instead of
increasing the performance of an unique processor.

Because of the video games industry growth, graphic
cards have been improved, and particulary their graphic
processors unit (GPU). They are made for highly paral-
lel computing applications, like graphic processing, so
they get a lot ALU.

Today, it’s possible to use those GPU to make computa-
tion that are not necessarily closed to graphic comput-
ing, with tools like CUDA (see 4).

2 MD6

2.1 Presentation

MD6 is one the twenty favorites hash funcion for the
SHA-3 competition.

It has been developped by Ronald L. Rivest, a ameri-
can cryptographer who developed MDS5 and participate
to the development of RSA, with Shamir and Adleman.

In this section, we’ll try to understand how MD6
works, to find some source of parallelism.

We will not smeak about security proofs, that are not
the subject of this article, and that have been demon-
strated in [1] and [2].

2.2 Principle

MD6 take as parameter a message of length less than
264 bits. It computes a digest of d bits where 0 < d <
512 bits.
d defaimt value is 256 bits, but it could change.
Moreover, lot of MD6’s parameters, that have default
value, can be changed:

Key K : Default is null (with length 0). Could be use
for salting.

Level L : As describe in 2.4, MD6 use an quaternary
Merkle tree. His height could be specified with L,
which is 64 default (that means fully tree based).
If L is equal to O, then compression is made se-
quentially, with a Merkle-Damgérd construction,
that give the same result. If L is less than 64, MD6



uses a hybrid mode: first tree-based, from 0 to L,
then sequential.

Number of rounds r : default is » = 40 + |d/4], so
when default d value (512), » = 104.

Other parameters : constantes used in compression
function (like @ or the ¢7) could also be changed.

2.3 Mode of operation

The mode of operation is based on a quaternary Merkle
tree.

This mode is interisting for us, because, as a tree, it
could be easily parallelizable. In fact, each tree node
can be computed in parallel.

The unit measure is the word, that is 8 bytes, or 64
bits.
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Figure 1: MD6 Merkle tree

Tree’s leaves are data from the file we want to hash.
They could be padded with 0, to get leaves with a 16
words size (equivalent to 128 bytes or 1024 bits). More-
over, each node should have 4 children, so fictive nodes
padded with O have to be created if necessary. Each
block, composed by 4 nodes, is compressed (using the
compression function describe in 2.4) to obtain a 16
words node.

In this way, we go up into the hash tree and we stop
when we have only one node: the root.

Digest is the truncated value of the tree’s root (last d
bits, so last 256)

2.4 Compression function

The compression function has a vector of 89 words in
entry, represented by the figure ?? and composed by :

Q a vector of 15 words, equals to the fractional part of
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Figure 2: Entry data for compression function

K 8 words of the key (or O if there isn’t a key)

U 1 word, which point out the block position, we give
details in figure3

V 1 word, we give details in figure 4

B 1 bloc of 64 words of data, which match for 4 nodes
of 16 words.

| ‘ | 1 1 1 i 1 1 1 |

Figure 3: Unique word of id U, auxiliary entry of com-
pression function composed of a byte for the level in the
tree and 7 bytes for the position in this level
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Figure 4: Word of control V, auxiliary entry for the
compression function. r is the number of rounds, L
the maximun height of the tree, z equals to 1 for the last
compression (which one leads to the root) 0 otherwise,
p is the number of 0 added (padding), keylen the key’s
size and d the digest’s size

The compression function does afterwards r rounds
(104 by default), each composed of 16 independents
loops which may be parallelizable. Each of those 16
loops does around 15 logical operations or shift bits?.

Each round compute 16 words, from 89 words com-
puted before (the 89 first values are the vector of the
figure 2 gave in entry for the compression function).

The last 64 words computed are the outputs of the
compression function.

2logical operations are prefer to arithmetic operations and branch
dependent operation to avoid side channel attacks

P



2.5 Reference implementation

The reference implementation, aviable on the
competition website (http://csrc.nist.
gov/groups/ST/hash/sha-3/Roundl/
submissions_rndl.html) is based on radix’s
lists, which insure a memory cost in log, n.

Each tree level is filled with 4 blocks, when a level is
full, we clear it by compressiong the 4 blocks and filled
the next level up.

This version is not straight parallelizable, so we de-
cided to do our own MD6’s implementation, which
compress data level by level. We have a cost in memory
in O(n) because at the begining we to store the whole
message. We used 2 arrays : one for the working level,
and another 4 times smaller for the next level up filled
by the blocks’ compression results. When the next level
up is full, it become the working level and we allocate
a new empty array 4 times smaller which become the
next level up. We only have reimplemented the oper-
ation mode, in order to be able to parallelized is eas-
ily. The code, spend most of is time in the compression
function (not moddified), our code is as efficient as R.L
Rivest’s one. On our test machine (which feature are
given in ??) we got a rate average of 27,5 MB/s (by
hashing files of different size).

3 Parallel implementation on CPU
using the Intel TBB

3.1 Presentation of the Intel TBB

Threading Building Blocks (TBB) is a librairy in C++
made by intel in order to write programs which bene-
fit of multiprocessors/multicores architectures [3]. It’s
a librairy packaging a set of data strucutes and algo-
rithm to enable programmers to write their code without
thinking of the threads managing like in POSIX threads,
Windows threads or Boost Threads, where you have to
manage the creation, the sinchronization and the end-
ing of each thread. In the librairy computation are con-
sidered as tasks which are automatically distributed on
the whole avialable ressources, using efficiently by the
same time caches

3.2 Implementation

We choosed to look down our tree by width, from left
to right. Thus for each level, we compute in parallel all
the blocks of words, the TBB managing the distribution
of computations on the differents processor/cores.

We measure on a 850 MB file, the impact of the num-
bers of processor/cores on the hashing rate. Here are
the results on the machine Idkoiff, results are likely the
same on ensibm (see the part ?? for details on the ma-
chines). On a dualcore, the algorithm is twice faster
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Figure 5: TBB’s rate, depending on the numbers of pro-
cessor/cores for three files of different size

than on one core. However, we noticed that beyond
8 processors/cores, the increase of performance is no
longer linear with the number of processors/cores. It
might be linked to the memory bus’ saturation of the
machine. The algorithm is all the same 8 times faster
using 16 processors/cores. Note : To use the TBB, we
used g++ 4.3.3, whereas for all the others implementa-
tions we use gcc 4.3.3. Versions compiled with g++
are 3 times slower than those compiled with gcc for
some reasons that we don’t understand while the com-
pilation’s options and the code are the same.

4 Implementation on GPU

Note : the rates presented in the following parts are cal-
culated from the average hashing rate on several big
files of different size. We also included all memories’
copy in order to have a result near the reality and the
real time felt by the user.
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4.1 Cuda
4.1.1 Presentation

Cuda (Compute Unified Device Architecture) is a
GPGPU technology (General-Purpose Computing on
Graphics Processing Units). It enable programmers
to write program using their graphic processor (GPU)
to execute computation usually executed by the central
processor (CPU). Cuda is an extension of C language,
so it is easy to use cuda’s code in others C or C++ pro-
grams. Other extension for Python, Fortran and Java are
also available. All the NVIDIA’s recent graphics card (
GeForce series 8,9, Teslas and some Quadro and com-
ing cards ) match with cuda.

4.1.2 Special feature of programming

To program in a efficient way on cuda, you have to un-
derstand how a NVIDIA graphic card works. A very
good and detailed documentation [4] on this subject is
provided by NVIDIA.

Graphic cards are composed of several multiproces-
sors, which shared a same memory and can operate in
parallel. Those multiprocessors are composed of dozen
of cores which can as well operate in parallel.

Moreover, the graphic card have a global memory for
all the processors, but very slow and a constant mem-
ory also very slow but this one be layed in the cache.
De plus, la carte possede une mémoire globale a tout
les processeurs, mais tres lente d’acces, et une mémoire
constante, lente mais qui peut &tre mise en cache.

For the API, le main program is called the kernel.
This kernel must be called by a function executed by
the central processor (CPU). When you call the ker-
nel you need to specify on how many blocks this ker-
nel should be executed and how many threads you have
in each block. The execution of blocks on the graphic
card are completely independent and are computed on
differents multiprocessors. Threads in the same block
are executed on the same multiprocessor et can share
data (stored in the shared memory). Furthermore, they
can be synchronised using a border of synchronization.
Each thread have a data strucute, where you can find
its number and the number of the block where it is ex-
ecuted. This structure enable the programmer to have a
scalable execution.

The kernel can call auxiliary functions which will be
replaced (inline) in the final code. Complex operations
such as memory allocation, memory copies and so on
need to be compute by the central processor. Chaque

thread posseéde une structure de données lui permettant
de savoir son

In conclusion, we notice that the way to program with
CUDA is very special, it’s thought for parallel compu-
tation and scalable algorithm. And the result depends a
lot on the problem and how it is implemented.

4.2 Each block in parallel

In our first CUDA version, we compress each block in
parallel, each multiprocessor have to compute 4 nodes
into 1, it’s likely the same version as the TBB one (see
3.2). Each block in composed by one thread who com-
press a block of word (MD6 signification). The average
rate is about 2,7 MBY/s, so it’s 10 times slower than the
CPU version...

It’s linked with the fact that we don’t take advantage
of the available parallelism.

4.3 Parallelization of the compression
function

The compression of a block of words is composed by
independent steps, especially the 16 rounds of loop ex-
ecuted during a round of compression, which is the part
of the cost where the program spend the most of its
time.

We parallelized those 16 rounds of loop, expecting
increase meaningful performances of the program. In
order to have the most possible parallel version, we also
parallelized all the steps of the algorithm which can be
done in parallel, including memory copies in arrays at
the begining and at the end of the compression.

We now have a rate of 28 MB/s (10 times more than
the previous version). But, this version isn’t faster than
the CPU one. Moreover, for small files, time spent
for memory copies on the graphic card isn’t soften. It
seems to be linked to the fact that the compression func-
tion doesn’t do a lot of computation compared to the
memory access. In order to check it, we moddified the
compression function to do 160 rounds of loop instead
of 16. Thus, the GPU execution time for this version is
10 times faster than the identical version for CPU. Thus
in order to increase again performances, we need to re-
strict access to memory and also increase the number of
computation in each block.



4.4 Increase of the number of threads per
block

Of course we can’t increase the number of computa-
tion done by the compression function. To increase the
number of threads per block, we decided to compress
in each graphic block several block of words in parallel.
The problem is that the compression function use an ar-
ray and use each case only once. We only need an array
of 89 words to do the compression function. We never
need more than 89 words for a block so now we have
an array of 89 x N where N is the number of blocks
of words compressed by a graphic block instead of a
huge array of 89 + 16 * r . In facts with many threads
compressing many blocks of words, we need to have
several working arrays but the shared memory is lim-
ited and we can’t stored more than one array. We can’t
either stored those arrays in the global memory for ob-
vious performances reasons.Furthermore a too big array
reduce performances because each case is only reached
once the it don’t use cache system. Thus, we decided to
use N circular arrays as working arrays for N blocks of
words. Now we can increase the number of threads per
blocks.

4.5 Using circular array

The circular array, has a size of 89. In order to use
this array, we moddified our implementation to compute
each index of the array modulo 89. First we though it
would be better to use a circular array of 128 words, in
order to use logical computation (with a mask of bits)
to compute indexs, instead of the modulo arithmetics
computation which cost a lot. But arrays of 128 words
where to big to be stored in cache so performances
where quite bad.

So we decided to use circular array of 89 words. We
use 20 x 16 threads per blocks instead of 16 with the
old version. It’s the limit beyond we can’t have another
new circular array in shared memory. The rate is yet 80
MB/s. However, the time compuation could be reduce
tabulating the values of modulo operation, by storing
them in arrays and avoid those arithmetics compuations
which cost a lot.

4.6 Tabulation des valeurs pour I’acces au
tableau circulaire

‘We tabulate all the values modulo 89 needed. On tabule
toutes les valeurs modulo 89 nécessaires, c’est a dire

celles qui pourront étre utilisées (de 0 a r x 89). This
array is created and copied into the constant memory
of the graphic cards. Thus the cost of the computation
of an index is replaced by a memory access. Data into
constant memory can be cached and a large numbers of
threads reached those data, the benefis is important. We
now have a rate of 105 MB/s with this version.

S Experimentations and results

5.1 Tests machines
‘We used three tests machines :

e A personal machine with an Intel Core2Duo
E6420 @3.1Ghz, a 8800Gts, Linux 2.6.28, gcc
433

o Idkoiff, a compuation machine of INRIA with
eight Dual core AMD Opteron @2.2Ghz, two
gtx280, Linux 2.6.26 gcc 4.3.3

e Ensibm a server of Ensimag composed of 16 IBM
Power5+ @ 1.5Ghz Linux 2.6.9, g++ 3.4

On the two first machine, we tested all our implemen-
tations : basic CPU, CPU with TBB, and the differents
CUDA versions. On ensibm we only runed our CPU
versions.

5.2 Tests

For each implementation, we measured execution time
with and without memory allocation and memory
copies, because those costs depends a lot on the ma-
chine. Indeed on our personal machine the copy rate is
2200 MB/s versus 700 MB/s on Idkoiff. We measured
the hashing rate for CPU and GPU on a set of file with
differents length, between 2 bytes and the memory sat-
uration of the graphic card : 60 MB for the 8800Gts,
and more than 350MB for the gtx280. On our per-
sonal machine we can consired memory cpies which
are quite light. Our results are presented on figure 6.
GPU versions are much faster than the CPU version for
big files, we can notice that costs of memory allocations
and memory copies are soften with the length of the file.
There is a factor about 5 between the maximal GPU
hashing rate and the CPU one : 150 MB/s for the GPU
versus 30MB/s for the CPU. Extra memory costs due to
copies between central memory and the card memory
are soften with the file length.But we couldn’t test it on
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Figure 6: Comparison between CPU version
(green),GPU version with memory copies (blue)
and without (red)

bigger files because we were limited by the card mem-
ory of our 8800Gts. For bigger files we should divided
it in a multiple of 4 smaller files and use our algorithm
on those 4 smaller files.

We also done the same tests on Idkoiff which got
more powerfull CPU and more powerfull graphics cards
(in our tests we only use one card).

But on this machine memory costs are very high due
to a thin rate (it might be linked to the machine’s ar-
chitecture). Results of those tests are on figure 7 We
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Figure 7: Comparison between GPU version (blue) and
CPU version (rouge) on Idkoiff

reached a hashing rate of 400 MB/s on big files with
a gtx280 versus 42 MB/s on an opteron. The rate
reached for the gtx280 is almost 10 times bigger than
the opeteron rate, more than 13 times bigger than the
Core2Duo one and more than 2.5 times bigger than our
8800Gts rate.

6 Conclusion

MDG6 is suitable for parallel implementations on GPU
and on multicores/processors.

On CPU, with Intel TBB library, performances in-
crease lineary, while memory access doesn’t overcharge
computer bus.

Moreover, no much modifications are needed to im-
plement TBB version from the sequential version.

CUDA implementation is more difficult to make, be-
cause it’s a new technology, and because its suppose
to know very well NVIDIA graphic cards architecture,
which are different from a CPU architecture.

Also, CUDA has number of limitations (including
no recursive call) that make the CUDA implementation
more difficult to make.

When programming CUDA application, we must
keep in mind some special features. Particulary, be-
cause memory copy costs are high, CUDA musn’t be
use for small data flow.

So it should be interisting to have many versions, and
to execute the one which is well suited for the data
quantity to hash. The best solution should be to use
an adaptative algorithm which will use at best available
computing ressources.

Despite these inconvenients, GPU parallel imple-
mentation is more efficient than CPU implementation
(as soon as file are enough big), despite of a longer de-
velopment time.

It’s interisting to see that GPU are less expensive that
dozens of processors, but can be more efficient as soon
as computation requirement is important.

Moreover, a GPU consumes less energy than a CPU.

About MD6, we see that even if GPU implementation
doesn’t use all the powerness of the graphic card, the
performances obtained are very good.

In conclusion, we can say that MD6 is very well
suited to use parallelism of present and future archi-
tecture. This make MD6 a modern cryptographic hash
function. Also, we see that GPU powerness, when cor-
rectly exploited, can achieve to get very performant im-
plementations of parallelizable algorithms.
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