
Athapascan-1: On-Line Building Data Flow Graph in a Parallel Language

François Galilée
Gerson G. H. Cavalheiro

� Jean-Louis Roch
Mathias Doreille

LMC-IMAG-A PACHE Project
�

Grenoble, France
http://www-apache.imag.fr

Abstract

In order to achieve practical efficient execution on a par-
allel architecture, a knowledge of the data dependencies re-
lated to the application appears as the key point for build-
ing an efficient schedule. By restricting accesses in shared
memory, we show that such a data dependency graph can
be computed on-line on a distributed architecture. The over-
head introduced is bounded with respect to the parallelism
expressed by the user: each basic computation corresponds
to a user-defined task, each data-dependency to a user-
defined data structure.
We introduce a language named Athapascan-1 that allows
built a graph of dependencies from a strong typing of shared
memory accesses. We detail compilation and implementa-
tion of the language. Besides, the performance of a code
(parallel time, communication and arithmetic works, mem-
ory space) are defined from a cost model without the need
of a machine model. We exhibit efficient scheduling with re-
spect to these costs on theoretical machine models.
Keywords: Multithreading, macro-data flow languages,
on-line scheduling, parallel complexity.

1. Introduction

Recent work in the field of parallel programming has re-
sulted in the definition of extensions of sequential languages
that can be theoretically proven efficient when scheduled
on abstract machine models. Such languages allow explicit
parallelism independently of a specific architecture. The
performance of a program is evaluated directly from a lan-
guage based performance model [1] that specifies the costs
of the primitive instructions and rules for composing costs
across program expressions. The adequacy between these
theoretical costs and the effective performances of execu-

�
CAPES–COFECUB Brazilian scholarship�
CNRS, INPG, INRIA and UJF

tion on an architecture is then related to the scheduling al-
gorithm used. To cope with programs including branch-
ing instructions that are unpredictable at compile time, the
schedule is computed on-line. Costs then include schedul-
ing overheads.

Most on-line scheduling algorithms rely on a (greedy)
list schedule [7]. This consists of an on-line mapping of
ready tasks to idle processors. Such a schedule leads to
nearly times optimal executions, including scheduling over-
heads, on theoretical machine models such as the PRAM.

To achieve efficiency regardless various criteria, some
knowledge about the execution is often required. For in-
stance, to bound the amount of memory usage, the knowl-
edge of a sequential schedule (i.e. a total ordering of tasks
that results in a correct sequential execution) may be used.
In this way, list scheduling leads to parallel computations
achieving a linear speed-up while requiring a space related
to the one of the sequential execution for certain classes of
programs: strict computations [4], nested computations [2]
or planar graphs [3]. Furthermore, in practice, due to the
magnitude of the ratio between local and remote memory
access costs, some significant improvement can be brought
to a schedule some knowledge about the data flow corre-
sponding to the execution [8]. Some programming environ-
ments use such a graph in input [16].

Several languages have been designed that enable the
on-line building of the data flow describing the execution.
Most of them are built on top of a standard sequential lan-
guage commonly used in high performance computing. To
bound the related overhead, parallelism is expressed by the
user who defines the grain of data and control. Although in
Jade [14] and BSP [9] instructions are grouped by block,
most languages are based on a parallelism expressed via
asynchronous function calls, like Cilk [11]. Synchroniza-
tions that will occur during a sequence of instructions is ex-
pressed at task creation or by specific statements (often a
sync instruction [15, 11]) that allows a task to synchronize
with others.

Such an explicit synchronization instruction bounds the

on-line computation of future data flow dependencies that
will occur after the synchronization. So, it forbids the on-
line use of static strategies although some are of theoretical
and practical interest when tasks are of known cost [16].
Besides, to enable efficient scheduling on a distributed ar-
chitecture, a migration mechanism is then required to even-
tually move a task that was blocked and becomes ready to
another processor.

By typing the memory accesses a task can perform,
we exhibit a parallel language, named Athapascan-1 (Ath
stands forAsynchronous Tasks Handling) with no explicit
synchronization instruction that allows the on-line analy-
sis of data-dependencies. Athapascan-1 is mostly inspired
from Jade [14] concerning typing of memory accesses and
Cilk [11] concerning parallelism expression.

In section 2, we detail the syntax and semantic of the
language. The section 3 presents how the macro-data flow
can be computed on-line with a bounded overhead; we
also prove that space and time efficient executions can be
achieved on theoretical machine models without need of
migration. Particularities of the implementation, that uses
local multithreading, are detailed in section 4; this section
presents also some experimental measures on a distributed
and on a shared memory architecture.

2. The Athapascan-1 language

2.1. Overview

In order to deal with data and control flow at a grain de-
fined by the user (macro-data flow), parallelism is expressed
through asynchronous remote procedure calls, denoted as
tasks, that communicate and are synchronized only via ac-
cess to a shared memory.

The Athapascan-1 semantics rely on shared data access
and ensure that the value returned by the read statements is
the last written value (or a copy of) according to the lexico-
graphic order defined by the program: statements are lexi-
cographically ordered by ’;’. This choice of such a sequen-
tial semantic is motivated by its direct readability on the
program source (an obvious example in Fig. 1). This order
defines a total ordering on all tasks during the execution.

The control of the accesses semantic during execution is
entirely data driven: the precedences between the tasks, the
needed communications or the data copies are ensured au-
tomatically by the runtime system. It is based on an entry-
release consistency scheme; the objects entries are always
done at beginning of tasks and the corresponding release at
the end of tasks. The prototype of a task specifies accesses
performed on shared objects:r stands forread, w for write.
All tasks are a priori independent; conflicts between two
tasks that access a same object are solved using the total
lexicographic ordering. For instance, in Fig. 1, the task

update(a) precedesprint(a) in the lexicographic or-
der; then,print(a) is delayed untilupdate(a) re-
sumes. The program will thus print� on the output.

Athapascan-1 is implemented as a C++ library and is
then fully compatible with C and C++ languages. A sim-
ple ANSI C extension is handled by a basic preprocessor.
For the sake of simplicity, the syntax presented here is the
one recognized by this preprocessor; it makes the use of the
C++ library easier by replacing typical C++ constructions
by keywords.
task update(shared(w)< int > x)

{ x.write(5); }
task print(shared(r)< int > x)

{ printf("%d", x.read()); }

task test() {
shared< int > a;
fork update(a);
fork print(a);

}

Figure 1. Lexicographic based semantic.

2.2. Syntax and abstract representation

Tasks and closuresA task definitionis similar to a C pro-
cedure definition, having simply thevoid returned type re-
placed by thetask keyword:
task user_task(<params>) {<statements>}

A task implements a sequential computation whose
granularity is fixed by the user; it is created in program
statements by prefixing a standard C++ procedure call by
thefork keyword: fork user_task(<args>);.
This statement creates an object, calledclosure, gives it for
scheduling to the current scheduler and returns for contin-
uation (asynchronous task creation). A closure is a data
structure that contains an instantiation of the user task (that
defines the method to run) and the list of its effective pa-
rameters. A closure is said to beready if all the arguments
that will be read by the task are ready orwaiting if some
argument that will be read is not ready. A parameter is said
to be not ready for a task iff this task has a predecessor not
yet completed in lexicographic order which will write the
same parameter.

The state of a closure is then directly linked to the state
of the effective parameters that will be read by the task. Two
types of parameters are distinguished: first, the classicalpa-
rameters by value which are always ready since the closure
possesses a copy of them; and second, the parameters which
are references to shared data versions.
Shared data and their versionsThe shared memory, that
allows the tasks to synchronize, is composed by shared data.
In this memory, an objectx of typeT is declared as follows:
shared< T > x ;
The typeT defines the granularity of the data handled in the

algorithm. A succession ofversionsis associated with each
shared data: each shared data version represents the value
at a certain instant of execution. When declared, a shared
data creates an object, calledevolution, containing pointers
toward twotransitions; these transitions are objects manag-
ing the allocation, state and accesses of data versions. The
first transition manages the version of the data that will be
read (thecurrentversion of the shared data) and the second
the version that will be generated (let us say written) by the
execution of the task (thefutureversion of the shared data).

The shared data version references possess the following
methods:

T& access(); void write(const T&);
const T& read(); void cumul(const T&);

Example. Fig. 2 shows the different data structures that
compose the Athapascan-1 system. All these objects are
dynamically allocated in the heap and return to the heap
when they are completed: after task execution in the case of
closures; when no access can be made on a data in the case
of transitions.

a

a

sh
ar

ed
 d

at
aa

2 Q

P

� �� �� �
� �� �� �

� �� �� �
� �� �� �

� �� �� �� �

� �� �� �� �

ready closure

waiting closure

waiting transition

waiting transition

evolution
task

value
T2

T1

T3a

executable codeready transition
1

2

3
parameters

Figure 2. Internal data structures.

Fig. 3 shows two codes for computing the� th Fibonacci
number. The first version is the familiar recursive procedure
that computes the� th Fibonacci number. If the threshold is
reached, thefibo task just writes the result into the shared
datares; else it creates two tasks that will compute concur-
rently the two previous Fibonacci numbers and a tasksum
that will add these two numbers and write the result in the
shared datares. This summing task will be delayed un-
til the two Fibonacci tasks have been completed, because
the access made on the shared data are incompatible (write
and read) and the two Fibonacci tasks have been created
before. The second version is a cumulative version of the
”sum tree” developed by the first version.

2.3. Lexicographic ordering and parallelism

In order to respect sequential consistency (lexicographic
order semantic), Athapascan-1 has to identify the related

task fibo(int n, shared(w)<int> res) {
if(n<2) res.write(n);
else {

shared<int> x, y;
fork fibo(n-1, x);
fork fibo(n-2, y);
fork sum(x, y, res);

}
}
task sum(shared(r)<int> x, shared(r)<int> y,

shared(w)<int> z) {
z.write(x.read() + y.read());

}
(a) – recursive version

cumulative add(int& x, const int& y)
{ x += y; }
task fibo(int n, shared(cw<add>)<int> res) {

if(n<2) res.cumul(n);
else {

fork fibo(n-1, x);
fork fibo(n-2, y);

}
}

(b) – cumulative version

Figure 3. Two versions of code to compute
the � th Fibonacci number.

data version for each read performed on a shared data. How-
ever, parallelism detection is easily possible in this context
if all the tasks define the shared data objects that will be
accessed during their execution (for independent tasks de-
tection), and which type of access will be performed on
them (for tasks precedence detection and shared data ver-
sions evolution).

For this reason the Athapascan-1 tasks can not perform
side effects (all manipulated shared data are located in the
parameter list) and shared parameters are typed according
to the future manipulation.
Access right: evolution of shared data versions.In the
declaration of formal parameters of tasks, the references to
shared data version are typed by theiraccess right, i.e. the
kind of manipulation the task (and all its sub-tasks, due to
lexicographic order semantic) is allowed to perform on the
shared data. These rights arer_w for read&write modifi-
cations,w for writing, cw<f> for accumulation andr for
read only.
Remark concerning accumulation. The accumulation
law is an user defined law that is supposed to be associative
and commutative. Note that this law is part of the reference
type, so a mix of different laws is not allowed, but obey to
lexicographic order semantic (Fig. 3(b)). The initial value
is the previous value of the shared data according to the lex-
icographic access order.
The postponed access right.To improve parallelism, there
is a refinement to access right, that denotes if an access will
be either performed or not on the shared data. An access
is said to be “postponed” (access right suffixed byp) if the
task will not perform any access on the shared data but will
create tasks that may benefit of this right.

3. Data flow building and cost model

Adding restrictions on accesses that can be performed by
a task, we establish that a representation of data dependen-
cies can be computed on-line on a distributed architecture
with a bounded overhead both in time and memory usage.
This enables the definition of a cost model related to the
language. We exhibit scheduling algorithms with provable
performances with respect to this cost model on theoretical
parallel machines.

3.1. Shared data version access graph

In order to be able to determine the state of the transitions
and closures, Athapascan-1 dynamically maintains a graph
of the shared data versions access. This graph is composed
of the closures and transitions for the nodes and the pointers
of evolutions for the edges. At each instant it gives a partial
description on the data flow dependencies that will occur
until the end of program.

The evolution of this graph happens at each task or
shared data creation (addition of edges and/or nodes) or task
termination (removing of edges and/or nodes, node’s state
evolution), as shown in Fig. 4. Schedulers can take bene-
fit of this graph which is maintained, for semantic reasons,
by the system. Without over-cost they have some relevant
information on the application to schedule.

3.2. Bounding cost of Athapascan-1 statements

Due to the access semantic (based on the lexicographic
order), the accessed values can be easily determined on
the source code. It is also possible to evaluate the time
and memory cost of any Athapascan-1 program. In order
to bound the cost of the on-line building of the evolution
graph, the following restrictions are added:

� � � : All graph modifications and task creations are local
(need no communication). This is discussed in the section
4.1.

� � � : All shared data versions that can be read (read right
and direct mode) by a task are always ready during the task
execution.

It follows that the tasks which can directly read a shared
data are not allowed to create tasks that would write on this
shared data: else, the creator task would have to wait until
the resumption of the newly created task before any read of
the new shared data version (else the access semantic would
not have been respected). So, as a consequence, the type
shared(r_wp)<T> has no sense, and for example a task
having ashared(r_w) can not create a task requiring a
shared(w) as formal parameter.

� � � : A task creation (fork) generates no data copy.

It follows that the tasks which can directly write a shared
data are not allowed to create tasks that would read on this
shared data: else a copy of the last written value should be
stored for the created task, or the creator stopped until the
created resumes all reads on the last shared data version.
So, as a consequence, the typeshared(rp_w)<T> has
no sense and, for instance, a task having ashared(r_w)
can not create a task requiring ashared(r) as formal
parameter.

Definition 1 A correct Athapascan-1 program verifies both
the syntax and conditions� � to � � .

Note that the strong typing of accesses in shared memory
enables the verification of the correctness of a program at
compile time. The allowed conversions of shared data ver-
sion types at task creation are summarized in Fig. 5.

� �� �� �� �� �� �

� �� �� �� �� �� �	 		 		 	

� � �� � �� � �� � �� � �� � �

 � � �� � �� � �

� �� �� �� �� �� �

� � �� � �� � �� �� �� �

� �� �� �� �� �� �

� � �� � �� � �� � �� � �� � �

� �� �� �� �� �� �

� � �� � �� � �� �� �� �� �� �� �� �� �� �

� � �� � �� � �� �� �� �

� � �� � �� � �

! !! !! !" "" "" "

T0

1

T1

0

2 T2

T1 T2

2

2

T0

1

T0

T1

01

yT1

2

0

T1

1

T2

T2

#$ $$ $$ $

waiting

ready

T0
waiting

(b)

res

x y

res

ready ready
fibofibo

waiting

(c)

x y

readyready

waitingwaiting
fibo

fibo fibo

res

ready ready

waiting

(d)

sum

yx

res

waitingwaiting

fibofibo

fibo

waiting

ready

T2x

sum

T0

(e)

ready

waiting waiting

fibofibo

waiting

waiting

res

ready

(f)

T0
waiting

res

sum

x y

waiting ready

waiting

fibo

(a)

Figure 4. Dynamic evolution of the shared
data versions access graph for the recursive
version of fibo(2): (a) initial state, (b) af-
ter the creation of the two shared x and y, (c)
after the creation of the two fibo tasks, (d) af-
ter the creation of the sum task and just before
the end of the fibo(2) (e) just after (f) after
the execution and completion of fibo(0).

formal parameter
required type for the
effective parameter

shared(r[p])<T> shared(r[p])<T>
shared(rp_wp)<T>

shared(w[p])<T> shared(w[p])<T>
shared(rp_wp)<T>

shared(cw[p]<f>)<T> shared(cw[p]<f>)<T>
shared(rp_wp)<T>

shared(r[p]w[p])<T> shared(rp_wp)<T>

Figure 5. Allowed conversion for passing ref-
erence on a shared data version as parameter
of a task.

Lemma 1 In a correct program, any Athapascan-1 state-
ment (i.e. fork, read, write, cumul, access,
shared) has a bounded cost both in time and memory
space. Each graph modification is made in constant time
and space.

This results from shared types and conditions� � and� � . �

Lemma 2 There is no any precedence relation between a
task and the task that creates it.

This results from shared types and condition� � . �
This property enables us to exhibit a sequential schedule of
tasks, denoted as thereference order, that respects the se-
quential semantics while being different from the classical
depth-first sequential one.

Let � denotes a sequence of statements containing no
fork statement and� denotes afork statement. Then,
the trace corresponding to a sequential depth first execu-
tion of fork statements can be represented by a word� (any � � may be empty).
The entire independence between the created task and the
creator task (lemma 2) implies that this trace is semantically
equivalent to the trace

� 	 � .
This order of execution corresponds to an inner most outer
most order of evaluation: it is called thereference sequen-
tial order of statements evaluation and denoted by
 in the
following sections. Fig. 6 illustrates this execution order.

Proposition 1 The Athapascan-1 reference order of execu-
tion respects the semantic and requires no implicit copy.

This results from the conditions� � and� � . Note that the by
value passing mode generates a copy which is considered as
explicit. �

All assumptions concerning copies and synchronizations
ensure that the Athapascan-1 system is not responsible of
over-memory requirement: all decisions are to be taken by
the scheduling policies or the user. This enables us to eval-
uate the cost of a program directly from the code.

task user_task(<parameters>) {
stmts_1;
fork task_1(<args>);
stmts_2;
fork task_2(<args>);
stmts_3;

}
(a) Depth-first sequential order

task user_task(<parameters>) {
stmts_1;
stmts_2;
stmts_3;
fork task_1(<args>);
fork task_2(<args>);

}
(b) Reference sequential order

Figure 6. Two equivalent programs.

3.3. Cost measures

Proposition 1 enables non-preemptive schedules: execu-
tion of a closure is then delayed until its parent (the task that
has created it) resumes. From this reference order, costs
(time, space, depth, communications) are defined directly
on the code itself by related recurrence equations (max,�)
[10, 1]. Here, following notations in [1, 4], those costs are
defined on the trace of the execution. This trace can be rep-
resented by a bipartite DAG� (see Fig. 4, with node sets
corresponding respectively to tasks (oval nodes in Fig. 4
and shared data versions (box nodes in Fig. 4). Each task
node is weighted by its computation cost, related to the ex-
ecution of the body and excluding forked tasks; each data
node is weighted by the size of the data for a direct access
(white box) and a unit constant for a reference or postponed
access (black box). Note that those costs, related to the
trace, may be unknown until execution completes; they are
usually bounded with respect to the size of the input. �

and � � denote the sequential time and space, � the paral-
lel time, � � and� � the communication volume and delay.
Sequential time � and space� � . These are defined from
a serial execution of the program following ther reference
order
 . Since all fork statements are pushed in memory
until the completion of a task, it can be noted that the space
� � can be larger than the one required by a depth-first execu-
tion. However, if the number of fork statements is bounded
by a constant,� � is increased only by a constant factor. For
instance, the space� � related to program in Fig. 3(a) is� �

� � .
Parallel time � . Arithmetic depth � (or parallel time)
is the depth of� taking into account weights of task nodes.
 � is then a lower bound of the minimal time required by
any non-preemptive schedule on an unbounded number of
processors ignoring communications times (PRAM model

[6]).
Communication volume and delay.Communication vol-
ume� � and delay� � are evaluated from� similarly to �

and � but taking into account only weights of shared data
version nodes.� � is the sum of the weights over all data
nodes; Assuming that the shared memory is emulated in an
auxiliary file, � � is then an upper bound on the total number
of accesses performed in this file during a serial execution.
� � is the length of the critical communication path in� .
Scheduling overhead� . Since the overhead involved by
the scheduling of the graph is also involved, we denote by�
the size of� . Scheduling the program will require at least� scheduling operations that may be performed in parallel.

In the following sections, we study the scheduling of an
Athapascan-1 program on various machine models; time
and space required by the execution on the machine (in-
cluding the cost of the scheduling algorithm) are related to
above abstract costs defined on the program itself that are
independent of the machine.

3.4. Scheduling on a PRAM

We consider a PRAM [6, 10] with a bounded number� of processors; this allows us to eliminate communication
overheads. In order to be consistent with Athapascan-1, we
consider a CRCW-PRAM with cumulative concurrent write
ones. For the sake of simplicity, we assume that, during
execution, any task performs a bounded number (say 2) of
fork statements.

Proposition 2 Including scheduling overheads, any
Athapascan-1 program can be executed on the� -PRAM in
time (a) � � � �� � � � � � or

(b) � � � �� � � � � � � � 	 �

 � � � � � � � � � �� � .

Both schedules are deterministic and non-preemptive.

Both schedules are based on a greedy list strategy [7]: when
a processor becomes idle, it gets a ready closure if any and
performs its execution. Bounds for (a) and (b) differs from
implementation of the strategy. To obtain (a), a global lock
is implemented in the PRAM: each modification in the evo-
lution graph is performed in mutual exclusion. The number
of such modifications is bounded by

� � � � ; thus both idle
time corresponding to busy wait of the lock and manage-
ment of evolutions of the graph are bounded by

� � � � .
A distributed management of the list leads to bound (b): all
modifications on the evolution of the graph are performed
by a specific subset of

�� � 	 � processors in time
� � � � � . Other� � � � � � � � � � processors are dedicated to execution of clo-

sures. �
Bounds on (a) and (b) differs only from the scheduling

algorithm; however, without knowledge of weights in� , it
is not possible to decide which one achieves the best bound.

3.5. Scheduling on a distributed architecture

We consider now the scheduling on a distributed archi-
tecture DCM with� identical processors. The shared mem-
ory is emulated with the help of universal hashing func-
tions [12]. The delay occurring for any access is assumed
bounded by� � � � . In order to obtain efficient emulations
(� � � � constant or very small to�), a slackness strategy
[13, 15] is used. It consists in emulating a� � � � -PRAM on
the distributed architecture,� � � � being larger enough com-
pared to� . From here, the distributed machine is assumed
to emulate a� � � � -PRAM with delay� � � � .
Proposition 3 Including the cost of the schedule compu-
tation, any Athapascan-1 program can be executed on a� -

DCM in time � � �
� � � � �� � � � � � � � � �
� � � � � �� � � � � � � .

This schedule is non-deterministic and preemptive but re-
quires no migration of running closures.

The proof is deduced from proposition 2 applied on a
PRAM with � processors. The whole number of remote
access with delay� is bounded by� � . This leads to a
schedule on the� virtual processors with length bounded

by � � � �
� � � � � � � �

� � . To obtain the emulation

on the� processors,� � � virtual processors are emulated on
each processor by synchronous preemptive threads. Due to
the emulation of the shared memory, the algorithm is non-
deterministic. On each processor, threads are dedicated to
the execution of closures and are emulated preemptively.
However, once a closure starts its execution on a processor,
it is not migrated to another one. �

As a corollary, Athapascan-1 programs verifying� � �� � � � and� � � � � � can be scheduled asymptotically op-

timally on a distributed architecture with� � � � � �� � � in

time
� � � � � � �� . This result is similar to those in [4] for Cilk

programs.
A negative result however is that computations that in-

volves a large number of communications may not been ef-
ficiently scheduled. For instance, any program with linear
serial cost � � � �

� � where� is the size of the input re-
quires at least� � � � �

� � accesses. The schedule time is
then

� � � � � � � � � � : efficiency depends heavily on� .

3.6. Scheduling with space constraint

Previous schedules do not guarantee any bound concern-
ing the space required. However, since they are based on a
list of ready closures, sorting this list according to the ref-
erence order allows us to bound the memory space required
with respect to� � [3]. Due to the lexicographic semantic,
this list can be maintained sorted with no overhead accord-
ing to the reference order: all insertions and deletions are

performed in constant time. If all tasks are assumed to al-
locate

� � � � memory space for the execution of their own
body, then the space required for the resulting schedule on
the distributed machine is bounded by� � � � � � � � � � � [3].

4. Distributed implementation

In this section we describe the distributed implementa-
tion of Athapascan-1. We focus on the transition distributed
management and on the scheduling implementation. Par-
ticularly, we exhibits performance results obtained by a list
scheduling which theoretical efficiency has been studied in
the previous section.

In order to bound the delay occurring for remote ac-
cesses, each compute node of a parallel machine emulates
a certain number of virtual processors (threads) that share a
single address space. These threads are implemented by a
runtime kernel, called Athapascan-0 [5]: it defines a paral-
lel machine composed of a set of nodes executing a runtime
environment providing communication and synchronization
facilities and a local scheduling of threads enabling to hide
communications latencies for remote memory access. Atha-
pascan-1 is implemented on this runtime environment, us-
ing a bounded number of threads on the architecture. It pro-
vides the global scheduling of closures on the threads of the
whole architecture.

4.1. Shared data versions access graph management

At compile time, besides verification of the correctness
of the Athapascan-1 program, a code is generated for each
fork statement, in order to create the corresponding clo-
sure. The management of the data-dependencies between
closures (shared data versions access graph) is distributed:
closures and edges are unique in the system, but transitions
may be replicated (Fig. 7). So, a closure always locally ac-
cesses its connected transitions (via the pointers of its pos-
sessed evolutions). Then all the accesses to the shared data
versions or the tasks creations are local events and create
no communication. The time required for a task creation is
therefore proportional to the number of its parameters.

In order to detect termination of accesses to a transition
in a distributedasynchronous environment, a termination al-
gorithm is implemented. Each transition is associated with
a master node that computes a balance between increasing
counters related to each of its replicate. These counters
are managed locally on each site that possesses a replicate.
When there is no more local access on the site, values of
local counters are sent to the master node.

4.2. Scheduling implementation

The global scheduling algorithm is used to determine a
site and a date to trigger the execution of a closure. The al-
gorithm implemented by this level of scheduling distributes
the work generated by an application attempting to optimize
a global index of performance (memory, execution time or
other).

After creation (fork) and until it is completed, the state
of a closure depends on the graph of evolutions. Added
to the stateswaiting and ready (paragraph 2.2), a closure
may also get into the staterunning, when its instructions
are executing sequentially andexecutedwhen the closure is
completed. Each change of state can potentially trigger a
scheduling action. Then, for each operation in the graph, a
signal is sent to the related scheduler allowing it to explore
the new graph configuration. So, it can get the information
that it requires about the current global state of execution:
for instance, closure attributes, parameters, state or prece-
dence constraints.

4.3. Scheduling layers: an experimentation

We present in Fig. 8 some performance results (time
in seconds) obtained from the execution of the Fibonacci
program (Fig. 3(a)) for an input 40, using values� 25 as
threshold to halting the task generation; then, roughly half
of the generated closures require less than a micro-second
and the other ones (that sequentially compute fibo(25 or
24)) few milliseconds. � � � � � � � �

tasks were gener-
ated, producing about� � � � � � � � �

edges. The exper-
iments were performed on five architectures: two mono-
processors, an IBM RS-6000 (AIX 4.2) and a Pentium (So-
laris 2.5.1); two distributed architectures, four nodes ofan
IBM-SP architecture (IBM RS-6000/370, AIX 4.2, IBM-
MPI) and a four nodes network of workstation - NOW (Pen-

� � �� � �� � �� � �
� �� �� �� �

	 	 		 	 		 	 	

� �� �� �� �� �� � � � �� � �� � �

fibo1

sum

x T1

res T0

T2 y T2 y

0 fibo

node 1node 0

ready

waiting

waiting

waiting

waiting

ready

Figure 7. Replicated transitions on a dis-
tributed graph. When fibo(0) is completes,
a message is sent from node 1 to 0 to warn the
transition T2 that no more writers exist on 1.

1 node architecture 4 nodes parallel architecture 1 node SMP architecture
IBM-SP NOW IBM-SP NOW

1 proc/node 1 proc/node 1 proc/node 1 proc/node
4 proc/node

Sequential 43.30 39.90 22.60
Ath-sequential 43.84 39.94 23.29

1 Thread 106.45 101.79 27.30 27.76 24.45
2 Threads 80.63 71.25 20.99 21.51 16.29
4 Threads 67.16 59.93 18.34 18.40 13.94
8 Threads 61.66 54.16 18.51 21.05 12.98

Figure 8. Influence of the local scheduling of threads on glob al greedy on-line scheduling.

tium, Solaris 2.5.1, LAM-MPI, Myrinet); and also under a
SMP (4 Pentium Pro, Solaris 2.5.1). In the table, the lines
correspond respectively to the execution of a pure C++ se-
quential algorithm, to an Athapascan-1 program compiled
to generate a sequential code and to the parallel execution
using� execution-threads in each node.

Comparing the performances of the pure sequential al-
gorithm with the sequential version for the Athapascan-1
code, we verify the overhead introduced by the Athapas-
can-1 programming style is very small. However this is not
true in the parallel version where we can observe the over-
head produced by the scheduling and graph management.
This overhead is partially overlapped when the number of
threads on each node is increased. Besides, on the three
parallel architectures, a speed-up of about 2 can be obtained
with 4 processors. Speed-ups close to 4 were obtained with
thresholds larger than 25.

5. Conclusion

We present the Athapascan-1 language that enables the
on-line building of data flow dependencies with bounded
overhead. Its semantic is based on a lexicographic order
between instructions; it enables an implicit sequential non-
preemptive schedule. Both grain of data and computation
are explicit but independent of the target architecture. Paral-
lelism is expressed by asynchronous creation of tasks. Any
task can be scheduled such that, once started, it can con-
tinue its execution with no preemption. This property en-
ables provable scheduling.

The language is related to a cost model that defines par-
allel depth, work, sequential space, communication volume
and delay. Efficient schedules are developed that achieve
both optimal time and bounded space on a distributed archi-
tecture for a large class of programs. However, for lots of
practical applications, the use of this scheduling algorithm
on a distributed architecture leads to poor performances, far
from the ones obtained by simple static strategies. Since
the scheduling can be changed by code annotation, an issue
is then to take benefit of the on-line partial knowledge of
the annotated data flow graph in order to implement – in an
on-line context – such strategies.

References
[1] G. E. Blelloch. Programming parallel algorithms.Commu-

nications of the ACM, 39(3):85–97, 1996.
[2] G. E. Blelloch, P. B. Gibbons and Y. Matias. Provably effi-

cient scheduling for languages with fine-grained parallelism.
In Proc. of the 7th Symp. on Parallel Algorithms and Archi-
tectures, pp 1-12, Santa-Barbara, 1995. ACM Press.

[3] G. E. Blelloch, P. B. Gibbons, Y. Matias and G. J. Narkilar.
Space efficient scheduling of parallelism with synchroniza-
tion variables. InProc. of the 9th Symp. on Parallel Algo-
rithms and Architectures. ACM Press, 1997.

[4] R. D. Blumofe and C. E. Leiserson. Space-efficient schedul-
ing of multithreaded computations.SIAM Journal on Com-
puting, 27(1):202-229, 1998.

[5] J. Briat, I. Ginzburg, M. Pasin and B. Plateau. Athapascan
runtime: efficiency for irregular problems. InProc. of Eu-
roPar’97. Passau. Aug. 1997.

[6] S. Fortune and J. Wyllie. Parallelism in random access ma-
chines. InProc. of the 10th ACM Symposium on Theory of
Computing, San Diego, CA, 1978. ACM Press.

[7] R. Graham. Bounds on multiprocessing timing anomalies.
SIAM J. Appl. Math., 17(2):416–426, 1969.

[8] T. Gautier, J.-L. Roch and G. Villard. Regular versus irreg-
ular problems and algorithms. InProc. of IRREGULAR’95,
Lyon, France. Springer-Verlag LNCS 980, Sept. 1995.

[9] M. Goudreau, J. Hill, K. Lang and B. McColl. A proposal
for the BSP worldwide standard library (preliminary ver-
sion). TR, http://www.bsp-worldwide.org, Oxford Univer-
sity, 1997.

[10] J. Jájá.An introduction to parallel algorithms. Addison-
Wesley, Reading, Massachussets, 1992.

[11] C. Joerg.The Cilk system for parallel multithreaded com-
puting. PhD thesis, Massachussets Inst. of Tech., Jan. 1996.

[12] R. M. Karp, M. Luby and F. M. auf der Heide. Efficient
PRAM simulation on a distributed memory machine.Algo-
rithmica, 16:517-542, 1996.

[13] A. G. Ranade. How to emulate shared memory. InProc. 28th
Annual Symp. on Found. of Computer Science, IEEE, 1987.

[14] M. Rinard. The design, implementation and evaluation of
Jade: a portable, implicitly parallel programming language.
PhD thesis, Stanford University, Sept. 1994.

[15] L. G. Valiant. A bridging model for parallel computation.
Comm. of the ACM, 33(8):103–111, 1990.

[16] T. Yang and A. Gerasoulis. Pyrros: static task scheduling
and code generation for message passing multi processors.
In Proc. VI ACM Int. Conf. on Supercomputing, July 1992.

