
Deque-free work-optimal parallel STL algorithms

Daouda Traoré1, Jean-Louis Roch1, Nicolas Maillard2, Thierry Gautier1, and
Julien Bernard1

1 INRIA Moais research team, CNRS LIG lab., Grenoble University, France
2 Instituto de Informática, Univ. Federal Rio Grande do Sul, Porto Alegre, Brazil

1 Fristname.Lastname@imag.fr, 2 nicolas@inf.ufrgs.br

Abstract. This paper presents provable work-optimal parallelizations
of STL (Standard Template Library) algorithms based on the work-
stealing technique. Unlike previous approaches where a deque for each
processor is typically used to locally store ready tasks and where a proces-
sor that runs out of work steals a ready task from the deque of a randomly
selected processor, the current paper instead presents an original imple-
mentation of work-stealing without using any deque but a distributed list
in order to bound overhead for task creations. The paper contains both
theoretical and experimental results bounding the work/running time.

1 Introduction

The expansion of multicore computers, including from two to dozens of pro-
cessors, has recently led to a new surge of research on the parallelization of
commonly used algorithms with special attention to the C++ Standard Tem-
plate Library STL [1,2,3,4,5]. Most STL algorithms admit fine grain recursive
parallelism (see Sect. 2); also implementations [6,3,4,5] commonly rely on work
stealing, a decentralized thread scheduler: whenever a processor runs out of work,
it steals work from a randomly chosen processor.

Yet, work stealing achieves provably good performances [7,8,9,10]. In the
sequel, let W be the parallel work, i.e. the number of unit operations; let D be
the parallel depth, often denoted T∞ too since it corresponds to the theoretical
time on an unbound number of processors. Then, the following classical bounds
hold: with high probability (denoted w.h.p.), the number of steals is O (p.D) and
the execution time of a recursive computation on p processors is Tp ≤ W

p +O (D),
a similar bound being achieved in multiprogrammed environments [8].

However, work W and depth D are antagonist criteria that often cannot
simultaneously be minimized. Let Wseq be the minimal sequential work. For
some problems, any parallel algorithm with D = o(W) has a work W = Wseq +
Ω(Wseq). For instance, any prefix computation – i.e. STL’s partial sum – with
depth D = o(Wseq) requires asymptotically a work W ≥ 2Wseq [11]. Thus, di-
vide&conquer parallel prefix with depth D = logO (1) Wseq, – e.g. Ladner-Fisher
algorithm – takes a time greater than 2Wseq

p . This compares unfavorably to the

tight lower bound 2Wseq

p+1 when p is small, up to 4. Similar lower bounds occur
for STL unique copy and remove copy if [12].

To minimize the work while preserving the depth, we propose in Sect. 3 an
implementation of work stealing that performs the recursive on-line coupling of
two distinct algorithms: one is sequential, that enforces a minimal work overhead;
the other one is parallel, and minimizes the depth on an unbound number of
processors. Differently from classical implementations of work stealing [7,9,10],
our scheme does not rely on a deque of tasks but on a list of successful steals, so
it is called deque-free. It relies on two operations on the work, called extract par
and extract seq; extending previous works on parallelism extraction [13,4].

In Sect. 4, we state that, based on a processor on online tuning of the chunk
sizes in the loops, the list is managed with work overhead O

(
pD logO (1) W

)
.

This result is used in Sect. 5 to provide parallel STL algorithms for partial sum,
unique copy, remove copy if, find if, partition, and sort that all asymp-
totically achieve the tight lower bound, e.g. 2Wseq

p+1 for partial sum. The deque
free algorithm has been implemented on top of Kaapi [9]. Experimentations on
a 16-core computer, presented in Sect. 6, confirm this theoretical result, outper-
forming Intel TBB [3] and MCSTL [5].

2 Related work: Parallel STL and work stealing

Among the works related to the parallelization of STL (see [5] for a survey),
we focus on parallelizations based on recursive range partitioning with random
access iterators and work stealing. In [2], a one-dimensional structure (a range)
is converted into a two-dimensional structure (a collection of subranges) each
subrange being processed sequentially by a given thread. Additional merge op-
erations, possibly parallel, may be involved to complete the work. Threading
Building Blocks (TBB) [3] and the Multi-Core Standard Template Library (MC-
STL) [5] are both dedicated to multicore computers and based on Cilk’s [7] work
stealing implementation. TBB and MCSTL use recursive range partitioning:
each subrange is recursively split in order to balance the load by work stealing
up to a given sequential threshold. In TBB, this threshold may be adapted by
the runtime – default ideal strategy – or tuned by the user. In MCSTL, a fixed
threshold is used; additionally a partitioning in p subranges is implemented with
OpenMP. Finally, although its main concern was cryptography, the paper [4] has
introduced basic techniques also developed here but was restricted to only few
STL algorithms.

Then, using work stealing, those libraries provide asymptotic optimal prov-
able performances when recursive range splitting is work optimal: this is the
case for instance for STL for each and accumulate. However, recursive par-
allelism may introduce an arithmetic overhead, as seen in the introduction
for partial sum, implemented in TBB by the Ladner-Fisher algorithm with
a non optimal work 2Wseq. To reach the optimal work 2p

p+1Wseq, MCSTL im-
plements partial sum by static partitioning in p + 1 subranges at the price of
poor performances on a multiprogrammed environment. A similar implemen-
tation is provided for unique copy. None of these libraries provide a parallel

remove copy if. The next section presents an implementation of work stealing
which deals with work optimality.

3 The deque-free work stealing algorithm

Implementations of work stealing enforce the optimization of the sequential ex-
ecution of the parallel algorithm according to the work-first principle [7]. Poten-
tially parallel tasks are pushed on a local deque according to some sequential
order; when a processor completes a task, it just pops the next one from the
head of its deque if ready, thus following the sequential order. When the deque
is empty, the processor becomes a thief, stealing a ready task from a randomly
chosen victim. Although it is based on the work first principle, the deque-free
work stealing presented in Algorithm 1 replaces the sequential execution of the
parallel algorithm by the execution of a work optimal sequential algorithm from
which, at any time, a fraction of the work may be extracted.

As is common, the computation is modeled by a DAG that unfolds dynami-
cally as the computation proceeds. However, the unfolding is performed by the
scheduling operations, which occur at each stealing attempt. Each node in the
DAG corresponds to a work stream [I1, . . . , I⊥[of sequential instructions. For
some STL algorithms – e.g. transform, for each – it may correspond to a range
of indexes, but not in the general case.

At any time and for any node, it is assumed possible to extract some work
from the computation in progress through an operation, named extract par in
the sequel, without blocking the victim. Indeed, on a steal by Ps, let w = [If , I⊥[
the instructions that the victim Pm has yet to perform. Then extract par ex-
tracts from w a subrange [Ik, I⊥] with k > f and creates a new node which
range w′ = [I ′k′ , I

′
⊥′ [. The thief Ps processes w′ while the victim Pm keeps on

the sequential execution of w, now restricted to [If , Ik[. Ps starts the execution
of w′ behaving as Pm with its own thieves. Note that w′ is different from the
range [Ik, I⊥], since it encompasses the parallel work necessary to process what
would have been a sequential work in the initial range.

The execution of the deque-free algorithm performed by Pm is described in
Algorithm 1. It is structured in two loops: the inner nano-loop corresponds to the
computation of the work. The outer micro-loop corresponds to the course of Pm’s
thieves according to the sequential order in w. Braces indicate critical sections.
The figure on the right shows the synchronization scheme between Pm and Ps,
similar to the distributed list homomorphism skeleton DH [13] but in an on-line
context. Synchronizations are nested and the DAG of nodes corresponding to a
given execution matches a Cilk strict multithreaded computation [7].

Generally, the extracted work w′ of Ps differs from the stolen range [Ik, I⊥].
Moreover, a subsequent merge operation may be required to complete the result
r of [I1, I⊥[from the ones of both [I1, Ik[and [I ′k′ , I

′
⊥′ [. This merge operation may

be empty, e.g. for each. However, in general, it consists into non-blocking com-
pletion of [I1, Ik[– resp. [I ′k′ , I

′
⊥′ [– based on a merge m– resp. merge s – operation

by Pm – resp. Ps –. Each of both operations corresponds to a sequential stream

of instructions, that can be executed in sequential in a non-blocking way if no
steal occurs. Both streams are parallel; the scheme is similar to the distributed
list homomorphism skeleton DH [13].

The merge m and merge s instructions to perform depend on the state of
the last thief Ps of Pm when Pm completes Ik−1. Two cases arise. Either Ps

has previously completed ws; then the results from both Ps and Pm can be
merged by Pm to complete r; in this case merge s= ∅. Or the thief has com-
pleted I ′l−1 with k′ < l < ⊥′ and is currently processing I ′l , head of w′ = [I ′l , I

′
⊥′ [.

Then, Pm preempts Ps after I ′l ; after synchronization, both perform their part
of the distributed merge, respectively merge m and merge s. Also, the deque
of tasks is replaced by a list of stolen computations managed locally on each
victim Pm: at extract par, Pm inserts at the head of Pm’s list a pointer to
the stolen work. After completion of merge m Pm accesses the head of its thief
list that corresponds to its next instruction, previously stolen by a thief P ′s;
and proceeds to a new distributed merge instruction now between Pm and
P ′s. Pm is then only interrupted when it performs a preemption on a stealer
process, then waiting at most the completion of the current run-seq on Ps.

Init v, w ← { extract-par }1

// v is the victim, w the stolen work2

// v initialized w.SignalMerge to false3

// v initialized w.SignalJump to false4

thiefList ← ∅5

// Micro-loop6

while ({ w 6= ∅ }) or ({ thiefList 6= ∅ }) do7

// Nano-loop:8

while(Is ← { w.extract-seq })6= I⊥)9

Is.run seq

if { w.SignalMerge = true } then10

{ v.thiefList.insertHead(thiefList) }11

thiefList ← ∅ ; { w.SignalJump ← true }12

merge s13

end14

if (thiefList = ∅) break else15

ws ← thiefList.head16

{ ws.SignalMerge ← true }17

while({ ws.SignalJump 6= true })18

yield

jump ; merge m19

end20

end21

{ w.SignalJump ← true }22

goto 123

Algorithm 1: The Deque-Free Algorithm.

i
1

i
k

i
l

i
k

i
1−1

i
k

i
1

[]...

Pm Ps

merge signal

Steal signal

extract−par

jump

merge

merge

The main process Pm

runs the sequential
algorithm on its
container.

Ps calls extract par
and runs [I ′k, I ′⊥] in
parallel.

The arithmetic work is processed in the nano-loop. To amortize overhead, at
each step, Pm extracts from w its next sequential chunk Is of instructions by
extract seq and runs the sequential algorithm on it. It stops only when pre-

empting a thief, thus few times if the depth is small. The next section states
some choices for the extract seq chunks in order to achieve optimal work for
STL algorithms.

4 Theoretical bounds for online granularity

Let w = [Ik, I⊥[be the stream of instructions that an arbitrary process Pm is
processing at a given top. Let Wseq(w) – resp. D(w) – be the work – resp. potential
depth – in number of unit time instructions to complete w in sequential – resp.
in parallel with an unbounded number of steal operations –. The next theorem
states that extracting blocks of D(w) operations with extract seq achieves an
optimal asymptotic sequential work while not increasing the potential depth on
an unbounded number of processors,

Theorem 1. If the following two hypothesis hold:
(1) D(w) ≥ log2 Wseq(w), (2) ∀ε > 0, limWseq(w)→∞

D(w)
W ε

seq(w) = 0,
and if each extract seq operation returns D(w) unit time instructions, then for
all δ > 0, the number of calls to extract seq is bounded by (1 + δ) Wseq(w)

log2 Wseq(w)

when |w| tends to infinity.

Proof. From hypothesis 2, ∀δ, ∃w0, ∀Wseq(w) ≥ w0, D(w) < δ
2
W

δ
2+δ

seq ; and then, W
2

2+δ
seq <

δ
2

Wseq

D(w)
. Now, let the interval of iterations be split in two parts: (1) For the iterations

such that there remain more than W
2

2+δ
seq operations: there are at least D(W

2
2+δ

seq) op-
erations to be extracted at each call to extract seq, which, by hypothesis 1, is larger

than log

„
W

2
2+δ

seq

«
= 2

2+δ
log Wseq(w). Therefore, there are at most Wseq(w) divided by

this number calls to extract seq, i.e. (1+ δ
2
)

Wseq(w)

log Wseq(w)
. (2) For the next (fine-grained)

iterations, there are at most W
2

2+δ
seq < δ

2

Wseq(w)

D(w)
operations to be performed (for any

Wseq(w) ≥ w0), and therefore at most this number of extract seq calls (if each one
includes only one operation). Therefore, and with hypothesis 1, the number of calls

to extract seq is, in this phase, less than δ
2

Wseq(w)

log Wseq(w)
. Adding the two bounds, one

gets that the number of extract seq calls is at most
`
1 + δ

2
+ δ

2

´ Wseq(w)

log Wseq(w)
, hence the

expected result.

Thus, the overhead induced by extract seq operations in the nano-loop is
asymptotically upper bounded by Wseq

log Wseq
while the micro/nano loops does not

increase the initial potential depth D. This bound is similar to direct recursive
partitioning by work stealing when recursivity is halved at a grain Ω(D), but
then at the price of an increase of the depth by a factor ρ > 1. The first hypothesis
seems reasonable, since log2 Wseq(w) is a lower bound on the potential depth if
Wseq(w) is optimal. The second means that the work to be performed is much
larger than the critical path, which is verified for STL algorithms with polylog
depth. Yet, the order of Wseq(w) may be unknown, e.g. for STL find if. In order
to extract either log2(Wseq(w)) (by extract seq) or a fraction (by extract par)

of w, a third level of control of the instruction flow is used, called the macro-
loop [4]. It consists in spanning an a-priori unknown set of instructions in steps
(or chunks) of size s1, s2, . . . sm, analogously to Floyd’s algorithm. The macro-
step i of size si may start only after completion of step i−1. Eventually, the i-th
chunk will contain extra instructions, besides I⊥. But, to obtain

∑
i=1,m si '

Wseq(w), in the sequel si =
P

j=1,i−1 sj

log
P

j=1,i−1 sj
(with s1 being some constant value).

Then the macro-loop preserves asympt. the work Wseq(w) while increasing the
potential depth by a factor at most log Wseq(w). Embedding the micro-nano
loop in the macro-loop is straight-forward and leads to the final deque-free work
stealing algorithm, whose performance is stated in the next theorem:

Theorem 2. If the parallel execution of w = [I1, . . . , I⊥[on an unbounded num-
ber of processors performs (1+α)Wseq(w) operations with α ≥ 0, then, w.h.p., the
[macro-micro-nano] deque-free algorithm completes w on p processors in time:

Tp(w) =
α + 1
α + p

Wseq(w) +O
(
D(w) log2 Wseq(w)

)
,when Wseq(w) →∞.

Proof. Using macro-steps only increases the number of instructions from Wseq to
Wseq(w) + O (log Wseq(w)). From theorem 1, this number is increased by the nano-

loop up to Wseq(w)
“
1 +O

“
log Wseq(w)

Wseq(w)

”
+O

“
1

log Wseq(w)

””
= Wseq asymptotically. If

only one processor Pm runs the program, it will never be preempted and will simply
run the sequential algorithm, i.e. Wseq operations. On p ≥ 2 processors, p− 1 perform
extract par operations, completing at most Wpar(m) = (1 + α)Wseq(m) operations
where m is the instructions stream corresponding to those p− 1 thefts; while Pm com-
pletes Wseq −Wseq(m) operations. Since each call to extract par extracts a fraction
of the work, the victim whole number of extract par operations in the macro-loop
is O

`
log2 Wseq(w)

´
w.h.p; then the sequential process waits O

`
D(w) log2 Wseq(w)

´
for all preemption operations. Since Pm is never idle, except when preempting a

theft or eventually during the last macro-step of size at most
Wseq(w)

log Wseq(w)
: Tp(w) =

Wseq(w)−Wseq(m)+O
`
D(w) log2 Wseq(w)

´
(1). Besides, due to work stealing, w.h.p.

Tp(w) ≤ α+1
p−1

Wseq(m) + O
`
D(w) log2 Wseq(w)

´
(2). Elimination of Wseq(m) in (2)

from (1) leads to Tp = α+1
α+p

Wseq(w) +O
`
D(w) log2 Wseq(w)

´
.

This parallel coupling of two algorithms is totally adaptive, without any over-
head when run on a single processor. The next section illustrates its optimality
on a few STL algorithms.

5 Application to the STL

The generic three loops deque-free workstealing is specialized here to the STL.
for each, transform, accumulate, inner product: the deque-

free implementation is direct since α = 0: the work is defined by a subrange [f,l[
of indexes; extract par extracts the last half of the victim range; run-seq
performs the call to the native sequential STL. In for each and transform,
there is no merge (nop). In accumulate and inner product, merge m sums

the local result with the result of the thief, while merge s is nop. An optimal
parallel time Tp(w) = Wseq(w)

p is asymp. reached. However, by halving recursive
calls at a depth log Wseq(w), the sequential execution of the recursive partitioning
algorithm is asympt. optimal. Then, here, our scheme does not improve recursive
partitioning by work stealing. The parallel time is Tp = Wseq

p + O
(
log2 Wseq

)
which asympt. reaches the lower bound.

partial sum. The macroloop splits the range in O (log Wseq) subranges of

size si =
P

j=1,i−1 sj

log
P

j=1,i−1 sj
computed consecutively. Each macrostep is parallelized as

follows: the work and extract par are identical to transform. Only one process
PM follows the macrostep and preempts thieves, while other processes never
preempt similarly to transform; run-seq performs a sequential partial sum.
merge m gets from the thief the last computed prefix in its subrange and jumps
to the first index after this subrange. merge s gets from PM the last computed
prefix and apply a parallel transform to compute the final prefix of its subrange.
Due to merge, the depth of a macrostep isO

(
log2 Wseq

)
. Since α = 1, the parallel

time is Tp = 2Wseq

p+1 +O
(
log3 Wseq

)
which asympt. reaches the lower bound.

unique copy, remove copy if. For both, our implementation is sim-
ilar to partial sum and achieves the similar lower bounds as for stream compu-
tations [12].

find, find if: Our implementation relies on the macroloop: the macrostep
i is here of size si =

P
j=1,i−1 sj

log
P

j=1,i−1 sj
. Each macrostep is processed as follows;

run-seq is a sequential find; extract par is identical to transform; merge s
is nop; merge m compares the local index found (if any) with the one of the
thief, possibly preempted, to take the minimum index. Parallel find performs
early termination within a macrostep: if a process finds the first iterator N in
run-seq, then it empties its work. Due to the microloop, all the other processes,
when they try to merge with it, or to steal part of its work, terminate. This is
also true as soon as one process – in particular the main process – reaches the
upper bound r. The algorithm runs in time Tp = Wseq

p +O
(
log3 Wseq

)
partition and sort : Our implementation of partition (on which the

sort is based) [14] performs a parallel, in-place partition. The work corresponds
to two subranges SL and SR and maintains pointers on the left-most (resp. right-
most) block bL in SL (resp bR in SR); run-seq performs a specific partition on
the distributed container [bL, bR] to partition it, performing in average the same
number of swap operations than a sequential partition of a contiguous container.
Thus, it follows the STL partition scheme. extract par splits SL and SR into
two halves, the thief partitioning the right-most half of the left block, and the
left-most half of the right block. Special care has to be taken when one whole
half of the elements has already been partitioned, since the thieves always try
to steal two blocks of elements. In this case, the remaining blocks of elements
to be partitioned must be re-ordered, so that the algorithm may proceed. The
algorithm runs in time Tp = Wseq

p +O
(
log2 Wseq

)
.

sort is based on introspective sorting [14] which is based on quicksort. When
the size n of input array is lower than a fixed tuned threshold g, the sequential

partition algorithm is applied. Else, the previous deque-free partition is per-
formed. When completed, the two parts of the array are sorted in parallel with
workstealing. It runs in expected time Tp = Wseq

p +O
(
log3 n

)
.

6 Experimentations

We have implemented the deque-free work stealing algorithm on top of Kaapi [9]
and specialized it to implement the previous algorithms: this implementation
is referred as DFW below. Experimentations have been performed on an AMD
Opteron NUMA machine (8 dual-core, 2.2 GHz, Lunix 2.6.23-1-amd64, archi-
tecture x86 64). All tests were run at least 10 times: the average, the fastest
and the slowest execution time of the 10 executions are presented. We have used
MCSTL 0.8.0-beta and the TBB 20 014 stable version. All programs (MCSTL,
TBB, DFW) were compiled with the same gcc 4.2.3 and the same option -O2.
All input data follow uniform distributions on an array of n doubles.

partial sum. Figure 1 compares, for n = 108, DFW partial sum to MC-
STL [5] partial sum which is based on a static splitting into p + 1 parts. The
STL partial sum average time of this experiment is 1.24s: the sequential exe-
cution with DFW exhibits no overhead. DFW outperforms MCSTL, and the
runtimes are more stable. We argue that this is due to possible perturbations
by system processes since, while work stealing is stable, static splitting is sen-
sitive to any perturbation due to intermediate barriers. For this fine grain and
memory intensive operation, performances do no scale above 4 processors, but
when we have augmented the unit operation, the speedup has augmented. Figure
2 compares with the TBB implementation, which is recursive and depends on
the chosen granularity. DFW yet reaches the theoretical bound 2Wseq

p+1 with high

stability; while TBB seems to scale and reaches the Tp = 2Wseq

p for some p.
unique copy. Figure 3 compares the runtime of DFW unique copy to

MCSTL on n = 108 double. MCSTL implements a static partitioning in p + 1
parts. The sequential STL execution time for this experiment is 0.61s. DFW
performs much better than MCSTL and appears more stable. For this fine grain
and memory intensive operation, performances do no scale above 4 processors.

remove copy if. Figure 4 shows the execution times obtained with DFW
remove copy if with a predicate of 16µs and n = 106. At this larger grain, per-
formances scales up to 16 core, reaching the Wseq

p lower bound [12].
find if. The experimentations consist in three measures with n = 106 where

the position k of the first element to find is 102, 104, 106. The time to compute
pred is τpred = 35µs. In table 2 DFW find if provides speed up from k = 106,
scaling up to 12 processors. In any case no speed down is observed with respect
to the STL sequential time. This illustrates the DFW macroloop scheme in which
one among the p processors always follows the sequential order.

sort. Table 1 shows the speed-up for sort w.r.t. sequential STL for n =
6.4105 and n = 3.27108 and with 2, 8 and 16 threads. Threshold is g = 10000.
DFW performs better than the two other ones for large n; this is not the case
for small values even if close.

Speed-Up Sort: input size n
w.r.t. STL n = 6.4105 n = 3.27108

sequential p=2 p=8 p=16 p=2 p=8 p=16

DFW 1.6 2.3 1.3 1.9 6.9 8.1

TBB 1.9 3.4 1.8 1.9 4.9 5.1

MCSTL 1.7 2.1 2.0 1.8 5.1 7.1
Table 1. sort: speed-up w.r.t. STL.

DFW find if: n = 106 elements;
first matching is at position k
k p=2 p=8 p=12 p=16

k=102 0.99 0.99 0.99 0.99

k=104 1.92 5.51 6.02 6.35

k=106 1.99 7.89 11.4 13.1
Table 2. find if: speed-up w.r.t. STL.

Fig. 1. partial sum: runtime of DFW and
MCSTL vs. number of processors, on n =
108 double.

Fig. 2. partial sum: runtime of DFW
and TBB with n = 3.104 objects (uni-
tary operation time τop = 1.5ms).

7 Conclusions

We have introduced a generic deque-free work-stealing implementation that we
have used to parallelize 80% of the STL algorithms for containers with random
iterators. The proposed STL algorithms all achieve polylog potential depth on
an unbounded number of processors, while the size of the scheme adapts auto-
matically to the available resources and their speeds.
A theoretical analysis is provided which proves work optimality for the STL pre-
sented algorithms with asymptotic ratio 1 w.r.t. to the lower bound on p identi-
cal processors, while this lower bound increases with p. In particular, the partial
sum (prefix) computation is performed in asymptotic optimal work 2p

p+1Wseq

without reference to the number of processors in the code, except inside the
implementation of work stealing. To our knowledge, it provides the first prov-
ably work optimal parallel implementations of partial sum, unique copy and
remove copy if. When compared to TBB and MCSTL, the experimentations
exhibit good performances and stability w.r.t. static partitioning and direct re-
cursive work stealing.
Since it achieves provable optimal performance, we think that this scheme is
a basis to design of algorithms that oblivously adapt to the number of pro-
cessor and their respective speeds. The considered algorithms (except sort) are
related to a sequential linear traversal of the container; they are both processor
and cache-oblivious on the CO-model. A perspective is then to extend this dis-
tributed scheme to algorithms with non-linear complexity in the input/output
on distributed memory architectures.

Fig. 3. unique copy: runtime of DFW
vs. MCSTL on of n = 108 double.

Fig. 4. remove copy if: runtime of DFW
(predicate time τpred = 16µs).

References

1. Musser, D.R., Derge, G.J., Saini, A.: STL tutorial and reference guide, second
edition. Addison-Wesley, Boston, MA, USA (2001)

2. Austern, M.H., Towle, R.A., Stepanov, A.A.: Range partition adaptors: a mecha-
nism for parallelizing stl. SIGAPP Appl. Comput. Rev. 4(1) (1996) 5–6

3. Reinders, J.: Intel Threading Building Blocks - Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly (2007)

4. Danjean, V., Gillard, R., Guelton, S., Roch, J.L., Roche, T.: Adaptive loops with
kaapi on multicore and grid: Applications in symmetric cryptography. In: ACM
PASCO’07, London, Canada (2007)

5. Singler, J., Sanders, P., Putze, F.: The multi-core standard template library. In
LNCS 4641, S.V., ed.: Euro-Par 2007. (2007)

6. Yu, H., Rauchwerger, L.: An adaptive algorithm selection framework for reduction
parallelization. IEEE Trans. Par. Dist. Syst. 17(10) (2006) 1084–1096

7. Frigo, M., Leiserson, C., Randall, K.: The implementation of the cilk-5 multi-
threaded language. In: SIGPLAN Conf. PLDI. (1998) 212–223

8. Arora, N.S., Blumofe, R.D., Plaxton, C.G.: Thread scheduling for multipro-
grammed multiprocessors. Theory Comput. Syst. 34(2) (2001) 115–144

9. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime sys-
tem for data flow computations on cluster of multi-processors. In: ACM PASCO,
London, Canada (2007) 15–23

10. Chowdhury, R.A., Ramachandran, V., Blelloch, G.E., Gibbons, P., Chen, S.,
Kozuch, M.: Provably good multicore cache performance for divide-and-conquer
algorithms. In: SIAM/ACM Symposium on Discrite Algorithms (SODA). (2008)

11. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. Journal of the ACM
27(4) (1980) 831–838

12. Bernard, J., Roch, J.L., Traore, D.: Processor-oblivious parallel stream computa-
tions. In: 16th Euromicro Conf. PDP, Toulouse, France (2007)

13. Bischof, H., Gorlatch, S., Leshchinskiy, R.: Generic parallel programming using
c++ templates and skeletons. In 3016, S.V.L., ed.: Domain-Specific Program Gen-
eration. (2004) 107–126

14. Traoré, D., Roch, J.L., Cérin, C.: Algorithmes adaptatifs de tri parallèle. In:
RenPar’18 / SympA’2008 / CFSE’6, Fribourg, Switzerland (2008)

