
Building Secure Resources to Ensure Safe

Computations in Distributed and Potentially

Corrupted Environments

Sebastien Varrette1⋆, Jean-Louis Roch2, Guillaume Duc3, and Ronan Keryell3

1 University of Luxembourg, LACS Laboratory, Luxembourg
2 MOAIS/SAFESCALE Project, CNRS–INRIA, LIG Laboratory, Grenoble, France

3 HPCAS/SAFESCALE group, Computer Science Laboratory, Institut
TÉLÉCOM/TÉLÉCOM Bretagne, Plouzané, France

Abstract. Security and fault-tolerance is a big issue for intensive par-
allel computing in pervasive environments with hardware errors or ma-
licious acts that may alter the result. In [1, 2] is presented a novel, ro-
bust and secure architecture able to offer intensive parallel computing in
environments where resources may be corrupted. Some efficient result-
checking mechanisms are used to certify the results of an execution. The
architecture is based on a limited number of safe resources that host
the checkpoint server (used to store the graph) and the verifiers able to
securely re-execute piece of tasks in a trusted way.
We extend this approach in the case we have also some secure processors
to build a trusted check-pointing infrastructure and to replace some un-
trusted nodes, avoiding some re-execution. Our approach is illustrated
on a medical application and some experimental results are presented.

1 Introduction

Nowadays, intensive parallel applications require often global computing plat-
forms composed of scattered resources that are interconnected through the In-
ternet. Such platforms, called grids [3], are more and more used since the 90’s.

Grid environments raise various concerns in terms of security and data pri-
vacy. In particular: users and resources should be authenticated; only authorized
users should be allowed to access and to use only the resources of the grid al-
located for their own purpose; communications should be ciphered to ensure
privacy but also integrity; data should be securely stored; the system should
remain operative even in case of failure of some grid components or disconnec-
tions which are relatively frequent events. In other words, the integrity of the
execution should be guaranteed; the resources of the grid should be protected
from malicious code; the infrastructure should not fail even if some parts of the
grid are under control of a pirate or, worse, an wicked system administrator,
since, on quite large grids, it is no longer possible to know neither to trust every
remote system administrator or computer owner.

⋆ Also affiliated with MOAIS.



Other constraints could intervene depending on the type of grid. In this
article, we describe a computing platform able to address these issues. More
precisely, the approach as been presented in [1, 2] and relies on dataflow graph to
represent a parallel execution in a portable way. Using this representation, fault-
tolerance mechanisms and efficient result-checking algorithms for heterogeneous
multithreaded applications have been proposed. Those functionalities assume
the availability of a strongly secured area among the resources of the computing
platform. Such resources host the checkpoint server (which stores the graph)
and verifiers which are used to re-execute some tasks in a trusted way in order
to figure out with a given detection probability if a task did not returned the
expected result.

In this paper, we focus on the effective construction of strongly secured re-
sources in the context of the SAFESCALE project. Our talk is mainly oriented
toward open-source solutions in computing grids based on Unix or Linux op-
erating systems which constitute major actors in this field. While this issue is
generally treated with software solutions, we combine both software and hard-
ware (secure processors) approaches to build strongly secured resources.

In the following, the computing platform of the SAFESCALE project is de-
scribed in section 2. This infrastructure is able ensure the computation resilience
despite crash faults and malware attacks that lead to computation alterations.
In section 3, we expound the construction of the secured resources that are es-
sential for both result-checking and fault-tolerance mechanisms. Section 4 details
an application deployed on the proposed architecture.

2 A computing platform ensuring computation resilience

Resilience in grid execution is a prerequisite that should be embedded in the
application: at this scale, component failures, disconnections or results modifica-
tions are unfortunately part of operations, and applications have to deal directly
with repeated failures during program runs.

In [1, 2], the authors present a robust and secure ar-

task

s1

f1

e1

f5

e2

f4

f3
f2

e3
e4

s2Outputs

Inputs

Fig. 1. A data-flow
graph with 5 tasks.

chitecture able to deal with intensive parallel computing
in environments where resources could be corrupted. The
corruption could be caused by DDoS attacks, virus or tro-
jan horses, as expounded in the precedent section. The
proposed approach uses a portable representation of the
distributed execution: a bipartite Direct Acyclic Graph
G = (V , E). The first class of vertices is associated to
the tasks (in the sequential scheduling sense) whereas the
second one represents the parameters of the tasks (either
inputs or outputs according to the direction of the edge).
Such a graph is illustrated in Figure 1.

Using this representation, portable fault-tolerance
mechanisms for heterogeneous multithreaded applications have been proposed
[4]. Since we have a clean separation of the applications in tasks that communi-



cate only through their defined inputs and outputs with no other side effect, each
one can be run again in case of trouble. Furthermore, efficient result-checking
mechanisms exploiting the graph have been developed [1] and are able to certify
the behaviour and the results of an execution.

Both approaches are conducted with a low overhead that only required the
existence of a checkpoint server deployed on a set of strongly safe resources.
This server stores the dataflow graph of the execution provided by the Kernel

for Adaptive, Asynchronous Parallel and Interactive — KAAPI — applica-
tion programming interface. KAAPI is a C++ library that allows to program
and execute multithreaded computations with dataflow synchronization between
threads. In addition, result-checking algorithms require the deployment of veri-
fiers that could securely re-execute some tasks in a trusted way. The proposed
approach aims at limiting the number of re-executions and therefore the number
of verifiers calls.

Unsafe Resources 

INTERNET

user

Verifier

Checkpoint Server

Safe Resources 

Computing Grid

Fig. 2. Resources hierarchy and mandatory components for portable fault-tolerance and

error-checking algorithms.

This leads to the infrastructure presented in Figure 2 in which the resources
have been divided in two classes:

1. a limited number of strongly safe resources that host the checkpoint server
and the verifiers;

2. the other resources, mentioned as “unsafe”, which constitute the real com-
puting grid and which are scattered among the different institutions (for
example, the different hospitals involved in the experiment described in sec-
tion 4).

It remains to detail the effective construction of the safe resources used in
the proposed architecture. This is one of the contributions of this article and the
purpose of the next section.



3 Building strongly secured resources

Building safe resources is one of the most important challenge of system ad-
ministrators. The solution used generally combines various software solutions to
make the system more robust.

3.1 Software Components

Even if the software components are secure, there is an asymmetry in the trust
for all the previous techniques: the aim is to protect the computing infrastructure
from the program execution and there is no way for the users to have a certified
and protected execution.

Software obfuscation is a software-only partial answer to software protection
and data protection [5]. The code is transformed at the source or binary level to
render more complex its readability and also change the data coding. Of course,
often this slows down the execution and it is not impossible for someone very
motivated to reverse-engineer the obfuscating process since the code is available
for execution and can be exercised at will.

Another way is to transform an algorithm that produces data from input data
into an isomorphic one that acts on ciphered input and produces ciphered out-
put. It is also possible to add some authentication mechanisms in it to certify the
computation done. For some simple algorithms there exist such efficient isomor-
phic algorithms but, unfortunately, this seducing approach has an intractable
complexity for real life programs [6]. Since basic computations (as, for exam-
ple, floating point operations that are highly optimized in modern processors),
are transformed in elementary operations executed to emulate some enciphered
circuits, the expected efficiency on grids is no longer possible.

There is still a big issue with a full software approach: the operating system
on the computing nodes have the full control of the hardware and the software
running on the nodes. It is very useful to build very complex and powerful
computing environment but it may be very dangerous too for the (foreign) users
of these computing nodes.

A computing node can easily discard a foreign process with all its data if it
looks malicious or exploits too many resources. In addition, even if the operating
system environment would be bug free, a foreign process needs to be completely
confident in the local software environment: this one can discard the process, the
data, read the program and the data, modify both, execute the program step-
by-step, and so on. If DoS are unavoidable (the local administrator could decide
to switch off the power supply of the computer anyway), computers should have
a mechanism to avoid this excess of power used in a malicious way or to signal
a running process that a kind of DoS occurred.

In the real life, operating systems and distributed computing environment are
huge pieces of software and it is unavoidable to have many bugs in them. Thus,
adding pieces of hardware to protect some processes from other parts running
out of their rails is quite interesting.



3.2 Hardware Components

During the last few years, several hardware architectures [7–9] have been pro-
posed to provide computer applications with a secure computing environment.
These architectures use memory encryption and memory integrity checking to
guarantee that an attacker cannot disturb the operation of a secure process,
or can only obtain as little information as possible about the code or the data
manipulated by this process even with some external physical attacks.

Clear text

process

context

Ciphered

process

context

Ciphered

process

context

Clear text

process

context

Clear text

process

context

Ciphered

process

context

RSA

AES

CBC

Swap-out

symmetric key

Processor

private key

Cache

MMU

Processor

Merkle tree

verifier

MMU

Cache

TLB

Secure

information

Bus

Data & instructions

Addresses

AES

CM+HMAC

Symmetric

key

Line

remapper

Line

remapping

buffer

Physically secure perimeter

Fig. 3. Simplified CryptoPage secure high-performance processor.

Some secrets can also leak out through the address bus of the processor (an
attacker can monitor the control flow graph of a running program and infer
algorithms or ciphering keys for example), some approaches try to cipher the
address bus more [10] or less [11]. Recently, we have proposed a processor ar-
chitecture that combines opaque secure mode execution with efficient memory
encryption and verification, resistant to replay-attack, with dynamic random
remapping of cache lines in memory page to hide memory usage and to avoid
address tracing [12]. The simplified architecture is represented on Figure 3. The
white boxes are the ones we added to a plain processor architecture (the gray
boxes). Rounded boxes are computing or function elements and the squared
boxes are some storage elements.

A process cannot be stolen or tapped since its execution context is enciphered
with the public key of a given target processor. The confidentiality of the code
and the data is guaranty by a cipher (using a random session key) between the
internal cache and the memory. A data Hide-like address remapper [10] is added
to shuffle data each time a memory page is read into the processor. At this page



level,an efficient mechanism is also added to avoid a replay attack (when an
attacker replay an old data written and authenticated by the processor).

We implemented this architecture in the SimpleScalar simulator to have some
quantitative results. The performance on the SPEC CPUInt2000 running on
CyptoPage shows only an average slow-down of around 3% [12] with address
and data ciphering and lazy verification through speculative insecure execution.

Of course, a foreign process needs to ultimately trust the manufacturer of
the processor which could have some wire-tapping or key-escrow features in it,
or more probably hardware bugs too.

3.3 Secure grid

Some grids with some tamper-proof processors such as Java Smart Card [13]
have already been built but are not powerful enough to be general purpose. In
our globally secure grid environment, high performance tamper-proof hardware
processors can be used to securely run some parts of the computation if we have
enough of those trusted elements.

By using the same session key between 2 processors, we can migrate one
running process to another processor, that is useful in distributed computing for
load-balancing or fault-tolerance, without compromising the security.

If we cannot trust some parts of the nodes, i.e. we do not have enough
trusted elements, we need to probabilistically run again (as seen in section 2)
some parts of the computation on some secure nodes that are the trusted element
(the verifiers). If there is no trusted nodes at all, a grid user must choose to run
the verification parts of the remote computation on her/his own nodes she/he is
confident of.

4 An application using strongly secured resources in

SAFESCALE

To validate the presented infrastructure, the following security-demanding
healthcare application is considered:

– a given picture A is compared to a set S of pictures stored in a distributed
database;

– based on metadata information, some images X ∈ S are extracted and com-
pared to A; the result of this comparison is a score sA(X) that measures the
correlation between pictures A and X ;

– finally, the sorted results are brought to the end users.

Among concrete instances of such a generic application is the RAGTIME soft-
ware that uses medical image comparison within PACS (Picture Archiving and
Communication Systems) to detect rare and hard to predict diseases [2].

Due to numerical uncertainties brought by score computations, relevant re-
sults are obtained if several images in S are identified as matching picture A.
Also, such an application may directly takes benefit from the computational
power of a global computing infrastructure:



– the number of pairwise comparison scores to compute is huge and scores may
easily be computed in parallel;

– for a given user that submits a picture A interactively to the system, the
system usage is irregular, from high when it submits a picture to zero when
the user has no picture to score. Thus, federating resources from several users
in a single grid, positively contributes to increase the system throughput for
any users;

– the application tolerates few errors, which are expensive to prevent in a grid
context. Indeed, the major result is to find several images in S that are cor-
related to A, and thus bring together information on A. In this context, the
fact that only few scores have been fake (let say one or two) does not affect
the result. The critical point is here to ensure that almost all computations
have been correctly performed.

To illustrate the latter point, we consider the case where the user wants to
compute statistics on the top 5% best related picture to A in a huge database.
To achieve this, the top 10% scores computed on the grid are returned to the
user. Then if it is certified that the probability of an attack that may have fakes
more than 5% of the results is negligible, then the user is sure that among the
top 10% resulting scores on the grid, at least half of the results are undoubtedly
in the top 10%. The, recomputing the top 10% on secure resources may be a
way of preventing from a massive attack on such an application.

This generic application has been ported on top of the KAAPI environment
on in Grid’5000 infrastructure (a French grid with 5000 nodes France-wide). In
order to ensure that all metadata have been correctly analyzed, the selection
of the images in S that have to be scored against A is carried out on a secure
infrastructure CS (that may also be a grid); CS also manages access to a safe
checkpoint server where are stored both description of task to be performed (i.e.
path names of both pictures to be scored) and, later, result of the comparison
(which is associated to the two pathnames that identify the task). Then, all scores
to be computed are send to a global computing infrastructure CU . Afterwards, on
GC a few number Nǫq

of scores are recomputed and verified. If no result forgery
is detected, then the result of the comparison is correct with high probability.

4.1 Distribution of scores computation based on work-stealing

Since the number of scores to be computed on the grid is huge, having a central-
ized allocation strategy (when a processor becomes idle, it contacts the master
processor to obtain a new computation task) introduces contention and ineffi-
ciency. Instead, a distributed solution based on KAAPI work-stealing has been
developed. When a processor becomes idle, it picks a victim at random and steals
about half of is computation queue. Such a solution ensure high performances
on a global architecture where processor speed may vary. Indeed, let Π(t) be
the instantaneous computation speed (i.e the number of unitary operations per
time unit) and WA(X) be the number of unit operations to compute to score
picture X against A; then the time Tp to carried out the whole computation on



GU is, with high probability, lesser than
P

X∈S
WA(X)

Π(t) +O(WA(X)+log n) which

is merely optimal [14, 15].

4.2 Ensuring resource resilience

Since the checkpoint is safely stored on GC , the checkpoint/restart of the ap-
plication is directly managed by KAAPI which accounts for completed tasks
registration.

5 Conclusion

Even if security in grid infrastructures is a major research area for a decade,
the fact that resources that compose the grid cannot be fully trusted prevents
a wide acceptance of such systems as a cheaper computation platform for high-
valued applications. The corruption either comes from hardware issues (such
as network disconnection) or from malicious act (using malwares and software
vulnerabilities) in order to alter the computation and consequently its result.

In our SAFESCALE platform, we ensure a correct and safe computation by
combining efficient result-checking and fault-tolerance algorithms with a limited
number of strongly secure resources. The result-checking algorithms relies on
stochastic verifications by running again on trusted verifiers, some parts of the
global computation chosen by studying the data-flow graph of the application.
Since verifications can also be tampered, these tasks need to be run on different
computers in different entities to have forgeries likely detected. But by using
a limited number of strongly secure hardware resources, the sensible and time-
consuming task of verification can be executed on some remote tamper-proof
nodes with no fear about any attacker changing these results. According to the
number of trusted resources available in the grid, our method needs more or less
redundant verifications.

This architecture has been validated on a medical application consisting in
similarity computations between medical images and we are now working on
automatic parallelization of application into the KAAPI model, based on the
PIPS source-to-source compiler [16]

Acknowledgments

We would like to thanks all the members of the SAFESCALE project. This
work is supported by the ANR (French National Research Agency) project
SAFESCALE-BGPR ANR-05-SSIA-005 and the French Department of Defense.

References

1. Krings, A., Roch, J.L., Jafar, S., Varrette, S.: A Probabilistic Approach for Task
and Result Certification of Large-scale Distributed Applications in Hostile Environ-
ments. In Verlag, S., ed.: Proceedings of the European Grid Conference (EGC2005).



LNCS 3470, Amsterdam, Netherlands, LNCS, Springer Verlag (February 14–16
2005)

2. Varrette, S., Roch, J.L., Montagnat, J., Seitz, L., Pierson, J.M., Leprévost, F.: Safe
Distributed Architecture for Image-based Computer Assisted Diagnosis. In: IEEE
1st International Workshop on Health Pervasive Systems (HPS’06), Lyon, France
(june 2006)

3. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. In-
ternational J. of Supercomputer Applications and High Performance Computing
11(2) (Summer 1997) 115–128

4. Jafar, S., Varrette, S., Roch, J.L.: Using Data-Flow Analysis for Resilence and
Result Checking in Peer to Peer Computations. In IEEE, ed.: IEEE DEXA’2004 -
Workshop GLOBE’04: Grid and Peer-to-Peer Computing Impacts on Large Scale
Heterogeneous Distributed Database Systems, Zaragoza, Spain (September 2004)
512–516

5. Collberg, C.S., Thomborson, C.: Watermarking, tamper-proofing, and obfuscation
- tools for software protection. In: IEEE Transactions on Software Engineering.
Volume 28. (August 2002) 735–746

6. Loureiro, S., Bussard, L., Roudier, Y.: Extending tamper-proof hardware security
to untrusted execution environments. In: CARDIS. (2002) 111–124

7. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,
M.: Architectural support for copy and tamper resistant software. In: Proceedings
of the Ninth International Conference on Architectural Support for Programming
Languages and Operating Systems (Asplos IX). (October 2000) 168–177

8. Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: Aegis: Architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th
International Conference on Supercomputing (Ics’03). (June 2003) 160–171

9. Keryell, R.: Cryptopage-1 : vers la fin du piratage informatique ? In: Symposium
d’Architecture (SympA’6), Besançon, France (June 2000) 35–44

10. Zhuang, X., Zhang, T., Pande, S.: Hide: an infrastructure for efficiently protecting
information leakage on the address bus. In: Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Asplos-XI), Acm Press (October 2004) 72–84

11. Duc, G., Keryell, R., Lauradoux, C.: CryptoPage : Support matériel pour cryp-
toprocessus. Technique et Science Informatiques 24 (2005) 667–701

12. Duc, G., Keryell, R.: CryptoPage: an efficient secure architecture with mem-
ory encryption, integrity and information leakage protection. In: Proceedings of
the 22th Annual Computer Security Applications Conference (Acsac’06), IEEE
Computer Society (December 2006)

13. Chaumette, S., Grange, P., Sauveron, D., Vignéras, P.: Computing with java cards.
In: International Conference on Computer, Communication and Control Technolo-
gies (CCCT’03), Orlando, FL, USA (July 2003)

14. Bender, M.A., Rabin, M.O.: Online scheduling of parallel programs on hetero-
geneous systems with applications to cilk. Theory Comput. Syst. 35(3) (2002)
289–304

15. Roch, J.L., Traore, D., Bernard, J.: On-line adaptive parallel prefix computation.
In Springer-Verlag, L..h., ed.: EUROPAR’2006, Dresden, Germany (August 2006)
843–850

16. Ancourt, C., Coelho, F., Creusillet, B., Keryell, R.: How to add a new phase in
PIPS: the case of dead code elimination. In: Proceedings of the Sixth Workshop on
Compilers for Parallel Computers (CPC’96), Aachen, Germany (December 1996)
19–30


