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Abstract. In this document we present a new way to bound the prob-
ability of occurrence of an n-round differential in the context of differ-
ential cryptanalysis. Hence this new model allows us to claim proof of
resistance against impossible differential cryptanalysis, as defined by Bi-
ham and al. in 1999. This work will be described through the example
of CS-Cipher, to which, assuming some non-trivial hypothesis, provable
security against impossible differential cryptanalysis is obtained.
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1 Introduction

The resistance against differential cryptanalysis has been studied since the attack
invention by Biham and Shamir (1990 [2]). Formal proofs based on the Markov
cipher approximation (Lai and Massey [3]) and related to the minimal number of
active S-Boxes in a differential characteristic are now well known. On the other
hand, it is hardly possible to evaluate a symmetric cipher w.r.t. impossible dif-
ferential cryptanalysis. Inspired by the work of Sugita and al. in [7], we are going
to introduce a new way to approach the probability of occurrence of an n-round
differential. Although this approach does not give better upper bound than has
already been done, it allows us to display a lower bound and then claim resis-
tance against impossible differential for an example cipher. The study focuses
on CS-Cipher (symmetric cipher introduced by Stern and Vaudenay in [6]); its
resistance against differential and truncated differential cryptanalysis has been
studied in [8]. As in [8] we will use the properties of CS-Cipher multipermuta-
tions in order to decrease the complexity of computing our bounds.
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Let us note that our proof holds on the hypothesis that the symmetric cipher is
a Markov cipher and a Support Markov cipher (notion about to be introduced
in this document) with uniformly distributed round keys.

Notations and material

An iterated or block cipher performs a sequence of rounds to encrypt a plaintext
of fixed size (block size). In all the sequel, the following notations and material
are used with respect to an iterated or block cipher.

n, m : denotes respectively the block size in bits and in bytes (i.e. n = 8×m).
⊕⊕⊕ : denotes a group operation over the Galois field GF (2)8 (in all the sequel

this operation will be the bitwise addition modulo 2).
444x(x′) : denotes the difference between x and x′ by the ⊕ operation.

x⊕ x′ = 4x(x′). Noted 4x when not ambiguous.
iii-round Output (Oi(x)) : let x be a plaintext input of the cipher; Oi(x)

denotes the output after the ith round.
iii-round Differentials : for an iterated cipher, a pair (α, β) is a possible

i-round differential if and only if there is a pair of plaintext input (x, x′) such
that x⊕x′ = α and Oi(x)⊕Oi(x′) = β. Later on, a 1-round differential is simply
called a differential.

iii-round Characteristics : for an iterated cipher, a set Ω = {ω0, ω1, . . . , ωi}
is a possible i-round characteristic if and only if there is a pair of plaintext input
(x, x′) such that x⊕ x′ = ω0 and ∀j ∈ {1 . . . i}, Oj(x)⊕Oj(x′) = ωj . Hence, an
i-round characteristic is a sequence of i j-round differentials with j ∈ {1, . . . , i}.

Probability of a differential (DP fDP fDP f) : given a boolean function
f : GF (2)p −→ GF (2)q, for any α ∈ GF (2)p and any β ∈ GF (2)q we note :

DP f (α, β) = Pr
x
{x|f(x)⊕ f(x⊕ α) = β}

S-Boxes : substitution boxes are fairly common in block ciphers, they are
functions that give the necessary non-linearity of encryption functions. The non-
linearity with respect to differential cryptanalysis is evaluated by computing the
DPS−Box.
Active S-Boxes for a given characteristic (or differential) are the encryption
function’s S-Boxes that present a non null difference for input.

Multipermutations : the notion of multipermutation was introduced by
Schnorr and Vaudenay in [5]. For our needs in this paper we will just define the
general idea of a (2, 2)-multipermutation over GF (2)8, of which complete de-
scription can be found in Vaudenay’s PhD thesis ([4]). A (2, 2)-multipermutation
over GF (2)8 can be seen as a permutation over GF (2)16 such that fixing the first
half of the input (respectively the second part) makes both half of the output
permutations of the second half of the input (respectively the first part).

Markov Chain : a sequence of discrete random variables (Xr, . . . , X0) forms
a Markov chain if and only if : ∀i ∈ {0 . . . r − 1},

Pr(Xi+1 = xi+1|Xi = xi, . . . , X0 = x0) = Pr(Xi+1 = xi+1|Xi = xi)
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Markov Ciphers : denotes a subclass of iterated ciphers, first introduced by
Lai, Massey and Murphy in [3] to give a formal environment to iterated ciphers
and then lead to provable security against differential cryptanalysis. An r-round
iterated cipher is a Markov cipher when the sequence (4x = 4y0,4y1, . . . ,4yr)
of round output differences forms a Markov chain. That is to say

Pr(4yr = ωr|4y0 = ω0,4y1 = ω1, . . . ,4yr−1 = ωr−1) =
Pr(4yr = ωr|4yr−1 = ωr−1)

CS-Cipher

CS-Cipher was introduced by Jacques Stern and Serge Vaudenay in [6]. In this
section we will just introduce its main characteristics. For more information, the
reader can refer to the original description.
CS-Cipher is an iterated block cipher of 64 bits block size, and 128 bits key size.
It consists of 8 iterations of a round function E followed by a bit-width XOR
operation (⊕) with the last 64-bits round key.
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Fig. 1. CS-Cipher round Block diagram. Function E

Round description The Figure 1 presents one round of CS-Cipher. The XORed
values Kr, C and C ′ are respectively the 64-bits round key, a first and a second
constant.
By definition, M(x, y) = (µ(P (x), P (y)) (see Figure 2) , the functions µ and
P being respectively a (2, 2)−multipermutation over GF (2)8 and a non-linear
permutation over GF (2)8. They are defined as follows:

– µ(a, b) = (ϕ(a)⊕ b, Rl(a)⊕ b). Where Rl is a 1−bit shift circular rotation to
the left and ϕ is defined by ϕ(x) = (Rl(x)∧0x55)⊕x where ∧ represents the
bitwise AND. Hence the input/output pattern around a µ box will follow
one out of those six patterns (Stars meaning any non-zero values):

µ(0, 0) = (0, 0), µ(∗, 0) = (∗, ∗), µ(0, ∗) = (∗, ∗)
µ(∗, ∗) = (∗, ∗) or (∗, 0) or (0, ∗)
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Fig. 2. CS-Cipher M box.

– P , defined by a 256-elements table, is CS-Cipher S-Box. Let us give upper
and lower bounds of P ’s differential probability :

DPmax = max
a 6=0,b

DPP (a, b) ≤ 2−4

DPmin = min
a,b

DPP (a, b) ≥ 2−7

These values are easy to compute, one has just to compute all the possible
values of DPP (a, b) for any value (a, b) (there are 216 pairs).

Differential and Linear Cryptanalysis In [8], Serge Vaudenay gives suffi-
cient arguments to heuristically prove the security of CS-Cipher against differen-
tial and truncated differential (when considering characteristics and not simple
differential). The formal treatment of differential cryptanalysis based on Markov
cipher is not detailed in the present document, please refer to [3] for a more
complete description.
Considering the probabilistic event :

Eωi,ω0 : {Oi(x)⊕Oi(x′) = ωi | x⊕ x′ = ω0},

where (x, x′) are two plaintexts.
Randomly chosen plaintexts pair of difference ω0 will create an output difference
ωi after i rounds with probability Pr

x,x′
(Eωi,ω0). Differential cryptanalysis works

when one can find (ω0, ωi) for which the value Pr
x,x′

(Eωi,ω0) is “high”.

Vaudenay proves that CS-Cipher is immune against any cryptanalysis using
statistics over differential characteristics which have more than 2 rounds. The
author can then claim immunity against all kind of differential attacks when CS-
Cipher has more than 4 rounds. Finally the study of resistance against truncated
differential, which corresponds to group sets of characteristics in order to improve
differential cryptanalysis, is evaluated to be strong enough after 5.33 rounds.

Impossible Differential Cryptanalysis This type of attack was introduced
by Biham, Biryukov and Shamir in 1999 in [1]. From [1], in an Impossible differ-
ential attack, “a differential predicts that particular differences should not occur
(i.e., that their probability is exactly zero), and thus the correct key can never
decrypt a pair of ciphertexts to that difference. Therefore, if a pair is decrypted
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to this difference under some trial key, then certainly this trial key is not the
correct key. This is a sieving attack which finds the correct keys by eliminating
all the other keys which lead to contradictions.“

CSC* For purpose of clarity, we are going to consider a slightly different cipher
than CS-Cipher, CSC*. This variant was introduced by Vaudenay in [8] in order
to simplify the proof of resistance. In CSC* the key schedule is replaced by a
true random generator of 25 64-bits round keys. Hence the CS-Cipher round
keys are replaced by 9 CSC* round keys and each XOR to constants C or C ′

is replaced by a XOR to one of the CSC* round keys. The new cipher CSC*
can then be seen as a 24 rounds block cipher with a simple round function (see
Figure 3). The results found in [8] for CSC* are believed to hold for CS-Cipher,
and in this document we make the same assumption.

+ + + + + + + +

M M M M

X7 X6 X5 X4 X3 X2 X1 X0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Kr

Fig. 3. CSC* round Block diagram.

Notations. In all the sequel, we will use [8]’s notations to describe CSC* com-
ponents, thus the ith round of CSC* can be written as follow :

ρi = Lπ ◦ P 8 ◦ µ4 ◦ si−1

where, for any 64-bits element x = (x7, x6, x5, x4, x3, x2, x1, x0),

– si−1(x) = x⊕Ki (Ki is the ith round key)
– µ4(x) = (µ(x7, x6), µ(x5, x4), µ(x3, x2), µ(x1, x0))
– P 8(x) = (P (x7), P (x6), P (x5), P (x4), P (x3), P (x2), P (x1), P (x0))
– Lπ(x) = (x7, x5, x3, x1, x6, x4, x2, x0)

Hence, the block encryption CSC* can be written as :

Enc = s24 ◦ ρ24 ◦ . . . ◦ ρ1

2 Output differential

In this section we are going to introduce the notion of Support Markov Cipher
and show that under the hypothesis of Markov Cipher, Support Markov Cipher
and uniformly distributed round keys it is possible to display a lower bound of
r-round differential probability. Then, as an example we will apply this proof to
CS-Cipher and show that it is indeed resistant against impossible differential.
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2.1 Formal treatment for CSC*

Note: All probabilities are average probabilities over the key distribution (which
is assumed to be uniform).

Definition 1. The support function χ (referred as the characteristic function
in [7])

χ : (GF (2)k)m → (GF (2))m, (x0, . . . , xm) −→ (y0, . . . , ym)

such that

yi =
{

0 if the k uplet xi = 0,
1 otherwise.

Remark : for CS-Cipher and CSC*, k = m = 8.

Lemma 1. Let us consider a plaintext pair (x, x′) such that x⊕ x′ = 4y0 and
the output differences (4yr, . . . ,4y0) generated by an encryption of x and x′ by
CSC*. We have for any i in {0, . . . , r − 1}:

χ(4yi+1) = χ(Lπ ◦ µ4(4yi)).

Proof. The proof, easy to obtain, is provided in an online version of this paper.

Definition 2. An r-round iterated cipher is a Support Markov Cipher when
the sequence (χ(4x = 4y0), χ(4y1), . . . , χ(4yr)) of round output differences
support forms a Markov chain.

Hereafter, in order to simplify the formulas, the sequence round output differ-
ences as random variables will be referred as the sequence (Xr, . . . , X0) instead
of (4yr, . . . ,4y0).

Lemma 2. Let us consider a Markov cipher E and its associated Markov chain
(Xr, Xr−1, . . . , X1, X0), we have trivially:

Pr(X1 = x1 | X0 = x0) ≤ DPh(x
′
1)

max Pr(χ(X1) = x′1 | X0 = x0),

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.

Lemma 3. Let us consider a Markov cipher E and its associated Markov chain
(Xr, Xr−1, . . . , X1, X0), we have trivially:
if Pr(X1 = x1 | X0 = x0) 6= 0 then

Pr(X1 = x1 | X0 = x0) ≥ DPh(x
′
1)

min Pr(χ(X1) = x′1 | X0 = x0),

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.

Theorem 1. Let us consider CSC* as a Markov cipher and a Support Markov
cipher E and its associated Markov chains (Xr, Xr−1, . . . , X0).

Pr(Xr = xr | X0 = x0) ≤ [DPmax × (28 − 1)]h(x
′
1)

×Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
×Pr(χ(Xr) = x′r | χ(X1) = x′1),

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.
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Proof. From the probability total formula

Pr(Xr = xr | X0 = x0)
=
∑
x1

Pr(Xr = xr | X1 = x1, X0 = x0)× Pr(X1 = x1 | X0 = x0)

From Lemma 2 and the fact that (Xr, Xr−1, . . . , X0) is a Markov chain, we have

Pr(Xr = xr | X0 = x0)
≤ DPh(x

′
1)

max

×
∑
x1

[Pr(Xr = xr | X1 = x1)× Pr(χ(X1) = χ(x1) | X0 = x0)]

From Lemma 1 we have χ(X1) = χ(Lπ ◦ µ4(X0)) and then

Pr(χ(X1) = χ(x1) | X0 = x0) =
{

1 if χ(x1) = χ(Lπ ◦ µ4(x0))
0 otherwise

Let us set x′1 = χ(Lπ ◦ µ4(x0)), we have

Pr(Xr = xr | X0 = x0)

≤ DPh(x
′
1)

max ×
∑
x1s.t.

χ(x1)=x
′
1

1
Pr(X1 = x1)

× Pr(Xr = xr & X1 = x1)

And since Pr(X1 = x1) is a constant over all values of x1, we have

Pr(Xr = xr | X0 = x0)

≤ DPh(x
′
1)

max ×
Pr(χ(X1) = x′1)
Pr(X1 = 0)

× Pr(Xr = xr | χ(X1) = x′1)

Let us now introduce χ(Xr) in the equation

Pr(Xr = xr | X0 = x0) ≤ [DPmax × (28 − 1)]h(x
′
1)

×
∑
x′r

Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)

×Pr(χ(Xr) = x′r | χ(X1) = x′1)

And since Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1) =
{

1 if χ(xr) = x′r
0 otherwise

Let us set x′r = χ(xr)

Pr(Xr = xr | X0 = x0) ≤ [DPmax × (28 − 1)]h(x
′
1)

×Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
×Pr(χ(Xr) = x′r | χ(X1) = x′1)

Theorem 2. Let us consider CSC* as a Markov cipher and a Support Markov
cipher E and its associated Markov chains (Xr, Xr−1, . . . , X0).

Pr(Xr = xr | X0 = x0) ≥ [DPmin × 2−4 × (28 − 1)]h(x
′
1)

×Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
×Pr(χ(Xr) = x′r | χ(X1) = x′1)

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.
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Proof. As in the proof of Theorem 1, let us first introduce X1 in the equation

Pr(Xr = xr | X0 = x0)
=
∑
x1

Pr(Xr = xr | X1 = x1, X0 = x0)× Pr(X1 = x1 | X0 = x0)

From Lemma 3 and the fact that (Xr, Xr−1, . . . , X0) is a Markov chain, we have

Pr(Xr = xr | X0 = x0)
≥ DPh(x

′
1)

min ×
∑
x1, s.t.

DP (µ4(x0),L
−1
π (x1))6=0

Pr(Xr = xr | X1 = x1)

Let us set
{
Possx0 = {x, s.t. DP (µ4(x0), L−1

π (x)) 6= 0}
Suppx0 = {x, s.t. χ(x) = χ(Lπ ◦ µ4(x0))}

We are now going to estimate the value of∑
x1∈Possx0

Pr(Xr = xr | X1 = x1) w.r.t.
∑

x1∈Suppx0

Pr(Xr = xr | X1 = x1).

One can easily note that Possx0 ⊂ Suppx0 and from CSC* characteristics,

Card({Possx0}) ≥ (2−4)h(χ(µ4(x0)))Card({Suppx0})

From the markovian property of the chain (Xr, Xr−1, . . . , X0), the value of
Pr(Xr = xr | X1 = x1) is independent to the fact that x1 ∈ Possx0 or
x1 ∈ Suppx0 . Finally, we have

Pr(Xr = xr | X0 = x0)
≥ [DPmin × (28 − 1)]h(x

′
1) × (2−4)h(x

′
1) × Pr(Xr = xr | χ(X1) = x′1)

The proof ends exactly like in Theorem 1

2.2 Results for CSC*/CS-Cipher

Let us assume an uniform distribution of the round keys and that CSC* and
CS-Cipher can be considered as Markov Ciphers and Support Markov Ciphers .

Theorem 1 and Theorem 2 give an upper and lower bound for the probability
of occurrence of a r-round differential.
In order to evaluate these bounds, we have to approach the two values
Pr(χ(Xr) = x′r | χ(X1) = x′1) and Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1).

1. Pr(χ(Xr) = x′r | χ(X1) = x′1). By definition, the set (χ(Xr), . . . , χ(X1))
forms a Markov chain, hence the complexity of computing P (χ(Xr) = x′r | χ(X1) =
x′1) for any value of x′r and x′1 is about r × 23m where m is the cipher’s block
size in byte (i.e. 224 for CS-Cipher, 248 for AES).
Let us detail the computation step :
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Data: For a value x′1 fixed
for j = 1 . . . r do

for i = 0 . . . 2m − 1 do
compute Pr(χ(Xj) = i|χ(X1) = x′1) :
2m−1∑
k=0

Pr(χ(Xj) = i|χ(Xj−1) = k)Pr(χ(Xj−1) = k|χ(X1) = x′1)

end
end

Note: From µ properties, we know there is at most 34(< 28) values of k in the
above sum where Pr(χ(Xj) = i | χ(Xj−1) = k) 6= 0. Hence the complexity of
this computation is, for CSC*, slightly less than 23m.

2. Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1). Evaluating such a probability is a
hard problem in general, therefore we will discuss its approximation.
Due to the fact that the propagation of 0s bytes (i.e. non active S-Boxes) in a
differential characteristic is much more predictable than propagations of non-0s
bytes values (thanks to the non-linear permutations) we strongly believe that
the influence of χ(X1) on the value of non-0 bytes of Xr is substantially weaker
than its influence on null bytes of Xr. That is to say, the influence of χ(X1) on
χ(Xr) is stronger than its influence on Xr given the value of χ(Xr). Thus, if we
assume that
Pr(χ(Xr) = x′r | χ(X1) = x′1) = Pr(χ(Xr) = x′r)± ε
then
Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1) = Pr(Xr = xr | χ(Xr) = x′r)± ε±O(ε).

Results for CSC*:

– From computation we found that for r ≥ 11

Pr(χ(Xr) = x′r)− 2−8∗m ≤ Pr(χ(Xr) = x′r|χ(X1) = x′1) ≤ Pr(χ(Xr) = x′r) + 2−8∗m

– We deduce from the above bounds that for r ≥ 11

Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
{
≥ Pr(Xr = xr | χ(Xr) = x′r)− 2−8∗m

≤ Pr(Xr = xr | χ(Xr) = x′r) + 2−8∗m

Finally, let us remark that

Pr(Xr = xr | χ(Xr) = x′r) = ( 1
28−1 )h(x

′
r)

Pr(χ(Xr) = x′r) = (28−1
28 )h(x

′
r) × ( 1

28 )m−h(x
′
r) = (28 − 1)h(x

′
r) × 2−8∗m
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And then after 11 rounds (i.e. 4 rounds of CS-Cipher) we have

Pr(Xr = xr | X0 = x0){
≥ (( 1

28−1 )h(x
′
r) − 2−8∗m)((28 − 1)h(x

′
r)2−8∗m − 2−8∗m)× [DPmin × (24 − 2−4)]h(x

′
1)

≤ (( 1
28−1 )h(x

′
r) + 2−8∗m)((28 − 1)h(x

′
r)2−8∗m + 2−8∗m)× [DPmax × (28 − 1)]h(x

′
1)

The final bounds of the probability of an r-round differential :

Pr(Xr = xr | X0 = x0)
{
≥ 2−8∗m[DPmin × (24 − 2−4)]h(x

′
1) +O(2−8∗2∗m)

≤ 2−8∗m[DPmax × (28 − 1)]h(x
′
1) +O(2−8∗m)

From the above lower bound, we claim that there is no impossible differential
on CS-Cipher after 4 rounds and thus CS-Cipher is immune against impossible
differential after 6 rounds.

3 Conclusion

Under the strong assumption that CS-Cipher acts very much like a Markov
and a Support Markov cipher, we can prove its resistance against impossible
differential. To our knowledge this is the first formal result on provable security
against impossible differential, even though it remains to be proven that the
model is a tight approximation of the cipher.
Future work should focus on this proof and expand the study to other ciphers
(particularly AES that has common features with CS-Cipher).
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