
Fine Grain Distributed Implementation of aData�ow Language with Provable PerformanesThierry Gautier, Jean-Louis Roh, Frédéri WagnerMOAIS Projet, LIG Lab., INRIA-CNRS, Universités de Grenoble, Frane{thierry.gautier,jean-louis.roh,frederi.wagner}�imag.frAbstrat. E�ient exeution of multithreaded iterative numerial omputationsrequires to arefully take into aount data dependenies. This paper presents anoriginal way to express and shedule general data�ow multithreaded omputa-tions. We propose a distributed data�ow stak implementation whih e�ientlysupports work stealing and ahieves provable performanes on heterogeneousgrids. It exhibits properties suh as non-bloking loal stak aesses and gener-ation at runtime of optimized one-sided data ommuniations.Keywords: data�ow, distributed stak, work-stealing, work depth model.1 IntrodutionMultithreaded languages have been proposed as a general approah to model dy-nami, unstrutured parallelism. They inlude data parallel ones � e.g. NESL [5℄ �, data �ow � ID [7℄ �, maro data�ow � Athapasan [10℄ , Jade [15℄ � languageswith fork-join based onstruts �Cilk [6℄ � or with additional synhronizationprimitives �Hood [2℄, EARTH [11℄ �. E�ient exeution of a multithreaded om-putation on a parallel omputer relies on the shedule of the threads among theproessors. In the work stealing sheduling [2,1℄, when beoming idle, a proes-sor steals a ready task (the oldest one) on a randomly hosen vitim proessor.Usual implementations of work stealing are based on staks to store, loally oneah proessor, the tasks still to omplete.Suh sheduling has been proven to be e�ient for fully-strit multithreadedomputations [6,8℄ while requiring a bounded memory spae with respet to adepth �rst sequential exeution [14℄. However, some numerial simulations gen-erate non serie-parallel data dependenies between tasks; for instane, itera-tive �nite di�erenes omputations have a diamond dag dependeny struture.Suh a struture annot be e�iently expressed in term of neither fully-stritnor strit multithreaded omputation without adding arti�ial synhronizationswhih may limit drastially the e�etive degree of parallelism. The Athapasan[10℄ parallel language enables to desribe suh reursive multithreaded ompu-tations with non serie-parallel data dependenies as desribed in Setion 2.In this paper, we propose an original extension named DDS (Setion 3) ofthe stak management in order to handle programs whih data dependeniesdo not �t the lass of strit multithreaded omputations. The key point on-sists in linking one-sided write-read data dependenies in the stak to ensureonstant time non-bloking stak operations. Moreover, on distributed arhite-tures, data links between staks are used to implement write-read dependenies



as one-sided e�ient ommuniations. Those properties enable DDS to imple-ment marodata�ow languages suh as Athapasan with provable performanes(Setion 4). Setion 5 reports experimental performanes on lassial benhmarkson both luster and grid arhitetures up to a thousand proessors on�rmingthe theoretial performanes.2 Model for reursive data�ow omputationsThis setion desribes the basi set of instrutions (abstrat mahine) used toexpress parallel exeution as a dynami data �ow graph. It is based on Atha-pasan whih models a parallel omputation from three onepts: tasks, sharedobjets and aess spei�ations [10℄. Following Jade [15℄, Athapasan extendsCilk [9℄ to take into aount data dependenies; however, while Jade is restritedto iterative omputations, Athapasan inludes nested reursive parallelism totake bene�t from the work stealing.The programming model. A task represents a non-bloking sequene of in-strutions: Like in ordinary funtional programming languages, a task is theexeution of a funtion that is strit in all arguments (no side e�et) and makesall result values available upon termination. Tasks may delare new tasks. Syn-hronization between tasks is performed through the use of write-one sharedobjets denoted Data. Eah task has an aess spei�ation that delares howit (and its hild tasks) will read and write individual shared objets: the typeData::Read (resp. Data::Write) spei�es a read (resp. write) aess to the e�etiveparameter. To reate a task, a blok of memory alled a losure is �rst alloatedusing AlloateClosure (Figure 1). Then the e�etive parameters of the taskare pushed to the losure, either immediate values or shared objets. For eahshared parameter, the aess spei�ation is given: either read (push::Read) orwrite (push::Write). An immediate value parameter is opied using push::Value.Finally, the ommit instrution ompletes the desription of the task.Synhronization between tasks is only related to aess spei�ation. The se-manti is lexiographi: statements are lexiographially ordered by ';'. In otherwords, any read of a parameter with a Read aess spei�ation sees the last writeaording to a lexiographi order alled referene order. Figure 1 is an exam-ple of ode using Athapasan for the folk reursive omputation of Fibonainumbers: the tasks Sum reads a, b and writes r.Spawn tree and Referene order. Reursive desription of tasks is repre-sented by a tree T , alled spawn tree, whose root is the main task. A node n in
T orresponds to a task t and the suessor nodes of n to the hild tasks of t.Due to the semantis of Athapasan, the non-preemptive sequential shedule oftasks that follows the depth-�rst ordering of T is a valid shedule. This orderingis alled referene order and denoted by R. Aording to R, the losures on-seutively ommitted by a task t are exeuted after ompletion of t in the sameorder, while in a depth-�rst sequential shedule, a losure is exeuted just afterommitting.



1. void Sum (Data a, Data b, Data r) {2. r.write(a.read() + b.read());3. }4. void Fibo(int n,Data r) {5. if (n <2) r.write( n );6. else {7. int r1, r2;8. Task f1 = AlloateClosure( Fibo );9. f1.push( ReadAess, n-1 );10. f1.push( WriteAess, r1 );11. f1.ommit();
12. Task f2 = AlloateClosure ( Fibo );13. f2.push( ReadAess, n-2);14. f2.push( WriteAess, r2);15. f2.ommit();16. Task sum = AlloateClosure ( Sum );17. sum.push( WriteAess, r);18. sum.push( ReadAess, r1);19. sum.push( ReadAess, r2);20. sum.ommit();21. }22. }Fig. 1. Fibonai program with abstrat mahine instrutions (it orresponds to thefolk original Athapasan ode for Fibonai in [10℄, �g. 3.).Work-stealing sheduling based on referene order. The nested stru-ture of the spawn tree enables a depth-�rst work-stealing sheduling, similar toDFDeques sheduling proposed in [14℄ but here based on the referene order Rinstead of the standard sequential depth �rst order. All tasks in the systems areordered aording to R in a distributed way. Loally, eah proessor managesits own deque in whih tasks are ordered aording to R. When a losure isalloated on a proessor, it is pushed on the top of the loal deque but, following

R, exeution of urrent losure pursues. When the urrent losure ompletes, anew one is popped from the loal deque. If this deque is empty, a new losure isstolen from the bottom of the deque of another randomly hosen proessor.3 Distributed implementation: DDSThis setion presents the distributed data-�ow stak implementation, namedDDS, of the abstrat mahine model presented in setion 2. DDS implementsloal staks by alloating ontiguous bloks of memory that an store severalframes. A frame is related to the exeution of a task; it is used to store alllosures reated by the task with diret links desribing Read or Write dataaesses. A new frame is pushed on the stak when a task begins its exeution.Tasks are exeuted aording to the referene order R.Figure 2.a, shows the state of the stak during the exeution of the reursiveomputation of the program of Figure 1. Starting from the base stak pointer,the frame related to the task fibo(n,r) is �rst pushed on the stak. During its ex-eution fibo(n,r) reates three new tasks: fibo(n-1,r1), fibo(n-2,r2) and a sumtask to ompute r:=r1+r2. The assoiated losures inluding their arguments arethen alloated in the frame. When fibo(n,r) ompletes, the task fibo(n-1,r1) ispopped from the top of the frame and a new frame is alloated for its exeution.This new frame is pushed on the stak. When all losures alloated by a taskare ompleted or stolen, its assoiated frame is popped and the exeution of itssuessor aording to R an start. In order to manage data dependenies, Reador Write data aesses are pushed into the losure and linked between losuresaording to the referene order (Figure 2.b).
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Fig. 2. (a) Stak struture with ativation frames. (b) Data �ow link.Distributed work stealing and extended stak management A new stakis reated when a proessor beomes idle and steals work from another proessor.When the urrent stak of a thread beomes empty or the urrent task is notready, a steal request ours. In this ase, the thief thread �rst tries to steal aready losure in another stak: �rst loally on SMP mahines or, when no losuresare found, a steal request is sent to a randomly hosen distant proessor.The stolen losure is ready to exeute, i.e. all its input parameters are pro-dued. For instane, in �gure 2 a), in the top frame, the losure fibo(n-1,r1) isalready ompleted, the losure fibo(n-2, r2) is ready while the losure sum(r,r1, r2) is not ready sine its input parameter r2 has not been produed. Usingaess links, the omputation of ready losures is only performed on steal re-quests. Indeed, sine the referene order is a valid sequential shedule, loal tasksin a stak are exeuted without omputing the readiness of losures. Followingwork �rst priniple [9℄, this enables to minimize sheduling overhead by transfer-ring the ost overruns from loal omputations to steal operations. In partiular,atomiity of loal aesses is ensured by non-bloking loks (ompare-and-swapinstrution).One the hoie of a vitim has been made, a opy of the hosen losureis pushed in a new stak owned by the thief proessor. The original losure ismarked as stolen. If the thief is a remote proessor, input parameters of the taskare opied and sent with the losure. In order to manage the data-�ow for outputparameters, a signalization task is pushed after the losure opy. This task playsthe role of signaling that output aesses of the stolen task are produed � inorder to ompute readiness of suessors � and sending the produed data to thevitim proessor.
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Fig. 3. Struture of both vitim (a) and thief (b) staks. A new task (Send Signal)is forked into the thief stak. Its role is to send bak the result and signal the tasksmarked as non ready that depend on the stolen task.Remark Sine DDS desribes all tasks and their dependenies, it stores aonsistent global state; this is used in [12℄ to implement fault tolerant hek-point/restart protools.4 Theoretial analysisThis setion provides a theoretial analysis of the DDS implementation, resultingin a language-based performane model for Athapasan marodata�ow parallelprograms on heterogeneous grids. To model suh an arhiteture, we adopt themodel proposed in [3℄. Given p proessors, let Πi(t) be the instantaneous speedof proessor i at time t, measured as the number of elementary operations perunit of time; let Πave =
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T be the average speed of the grid for aomputation with duration T .To predit the exeution time T on the grid, following [4℄, we adopt alanguage-based performane model using work and depth. The work W is the to-tal number of elementary (unit) operations performed; the depth D is the ritial-path, i.e. the number of (unit) operations for an exeution on an unboundednumber of proessors. Note that D aounts not only for data-dependeniesamong tasks but also for reursive task reations, i.e. the depth of the spawntree.The work (and depth) of an Athapasan parallel program inludes both thesequential work (WS) and the ost of task reations but without onsideringthe sheduling overhead; similarly to a sequential funtion all, the ost of atask reation with n unit arguments is τfork + n.τarg. If the ost of those taskreations is negligible in front of WS , then W ≃ WS .



Theorem 1. In the DDS implementation, when no steal operation ours, anyloal aess or modi�ation in any stak is performed in a onstant number ofoperations. Then, τfork and τarg are onstants.The proof is diret: when no steal operation ours, eah proess only aessesits own loal stak. Due to the links in the stak and non-bloking loks, eahaess is performed in (small) onstant time.Sine DDS implements a distributed work-stealing sheduling, a steal oper-ation only ours when a stak beomes empty or when the urrent task is notready. In this ase, the proess beomes a thief and randomly sans the stak ofthe other proesses (from their top) to �nd a ready losure; the resulting over-head is amortized by the work W when D ≪ W . Indeed steal operations arevery rare events as stated in [2,3℄ on a grid with proessors speeds ratios mayvary only within a bounded interval.Theorem 2. With high probability, the number of steal operations is O(p.D)and the exeution time T is bounded by T ≤ W
Πave

+ O
(

p D
Πave

)

.The proof (not inluded) is derived from theorems 6,8 in [3℄. Then, when D ≪ W ,the resulting time is lose to the expeted optimal one W
Πave

.5 ExperimentsA portable implementation of DDS supporting Athapasan has been realizedwithin the Kaapi C++ library [13℄.Results on a luster A �rst set of experiments has been exeuted on aLinux luster of 100 PC (100 Pentium III, 733Mhz, 256MBytes of main mem-ory) interonneted by fast Ethernet (100MBits/s). On this implementation,
τfork = 0.23µs and τarg = 0.16µs are observed onstant in aordane to theo-rem1.In the timing results (Figure 1): T1 denotes the time, orresponding to W , toexeute the benhmark on one proessor; Tp the time on p proessors; TS thetime of the pure C++ sequential version of the benhmark, it orresponds to
WS . Reursive subtasks reation is stopped under a threshold th where furtherreursive alls are performed with a sequential C++ reursive funtion all; thetiming of a leaf task with th = 15 (resp. th = 20) is 0.1 ms (resp. 1 ms). Leftand right tables report times respetively for the Fibonai benhmark with upto 32 proessors and for the Knary benhmark up to 100 proessors. Both showsalable performanes up to 100 proessors, onformally to theorem 2.Results of grid experimentsWe present here experimental results omputedon the frenh heterogeneous GRID5000 platform during the plugtest1 interna-tional ontest held in november 2006. On the NQueens hallenge (Takkaken1 http://www.etsi.org/plugtests/Upoming/GRID2006/GRID2006.htm



�b(40) ; th = 15 �b(45) ; th = 20p Tp T1/Tp TS/Tp Tp T1/Tp TS/Tp1 9.1 1 0.846 88.2 1 0.9814 2.75 3.3 2.8 22.5 3.92 3.848 1.66 5.48 4.6 12.35 7.14 716 1.01 9 7.62 6.4 13.78 13.5232 .99 9.19 7.78 3.7 23.83 23.37

Knary(35,10) ; th = 15p Tp T1/Tp TS/Tp1 2435.28 1 0.9848 306.17 7.95 7.8316 153.52 15.86 15.6132 77.68 31.35 30.8664 40.51 60.12 59.18100 26.60 91.55 90.13Table 1. T1, Tp and TS (in seond) for Fibonai (a) and KNary (b) benhmarks.sequential ode), our implementation in Athapasan on DDS/Kaapi showedthe best performanes, honored by a speial prize: On instane 23 solved in
T = 4434.9s, an idle time of 22.72s was measured on the 1422 proessors; thisexperimentally veri�es theorem 2 with a maximal relative error 22.72

4434.9 = 0.63%.Figure 4 shows the global grid load together with CPU and network load on oneof the lusters omposing the grid (luster from the sophia site). These resultshave been obtained using GRID5000 monitoring tools during the last hour ofexeution. Our omputations start approximately at 01:50. Di�erent instanesof nqueens problems are exeuted sequentially. The di�erent graphs show a verygood use of CPU ressoures. At the end of eah exeution work stealing ours,inreasing brie�y network load while enabling to maintain e�ient CPU usage.
NQueens p T21 1000 78s22 1458 502.9s23 1422 4434.9sFig. 4. CPU/network loads and timing reports.6 ConlusionsMultithreaded omputations may take bene�t of the desription of non stritdata dependenies. In this paper we present a novel approah, DDS, to im-plement e�ient work stealing for multithreaded omputations with data �owdependenies. Loal stak operations are guaranteed in small and onstant time,while most of the overhead is postponed onto unfrequent steal operations. Thisimportant property enables us to predit aurately the time of a (�ne grain)
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