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ABSTRACT
In [6], a new approach for certifying the correctness of pro-
gram executions in hostile environments has been proposed.
The authors presented probabilistic certification by massive
attack detection through two algorithms MCT and EMCT .
The execution to certify is represented by a macro-dataflow
graph which is used to randomly extract some tasks to be
re-executed on safe resources in order to determine whether
the execution is correct or faulty. Bounds associated with
certification have been provided for general graphs and for
tasks with out-tree dependencies.
In this paper, we extend those results with a cost analy-
sis of parallel certification based on on-line scheduling by
work-stealing. In particular, we focus on Divide & Conquer
algorithms that are commonly used in symbolic computa-
tions and demonstrate the efficiency of EMCT for the cer-
tification of the resulting Fork-Join graph. Finally, we show
how to combine EMCT with BCH codes to make a matrix-
vector product both tolerant to falsifications and massive
attacks.
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1. INTRODUCTION
Large scale global computing systems like the Grid and

Peer-to-peer computing platforms gather thousands of re-
sources for computing parallel applications. Even if a mid-
dleware is used to secure the communications and to man-
age the resources, the computational nodes operate in an
unbounded environment and are subject to a wide range of
attacks able to alter the computed results. Of course, global
computations are expected to tolerate certain low rates of
faults [14, 10], yet one should consider the possibility of
massive attacks resulting in an error rate larger than tol-
erable by the application. Such massive attacks are espe-
cially of concern due to Distributed Denial of Service, virus
or Trojan attacks, and more generally orchestrated attacks
against widespread vulnerabilities of a specific operating sys-
tem that may result in the corruption of a large number of
resources.

Most research related to protecting large computations
from massive attacks has been done in the restrictive con-
text of independent tasks. [6, 7] introduce new probabilistic
certification algorithms, Monte Carlo Test (MCT ) and Ex-
tended Monte Carlo Test (EMCT ) that establish whether
the computations have been massively attacked. The pro-
posed approach uses a portable representation for the dis-
tributed execution E of a parallel program on a fixed input:
a bipartite Direct Acyclic Graph G = (V, E) known as a
macro-dataflow graph. The first class of vertices is associated
to the tasks (in the sequential scheduling sense) whereas the
second one represents the parameters of the tasks (either in-
puts or outputs according to the direction of the edge). The
total number of tasks Tj in G is denoted by |G| = n.

In the following, we will adopt the notation and assump-
tions of [6]. In particular, G<(T) denotes the sub-graph
induced by all predecessors of a task T ∈ G and G≤(T) =
G<(T)∪{T}. The graphs of successors are denoted similarly,
e.g. G>(T) and G≥(T).

Tasks in G and therefore E are computed on workers
which compose most of the resources of the Global Com-
puting (GC) platform. Such computational nodes cannot be
fully trusted as they execute in a non-secure environment.
In the sequel, U (for unreliable resources) denotes the set
of workers in the GC platform: each task T in E executes
on U with inputs i(T, E) and creates output o(T, E). Con-
versely, we assume a set R of reliable resources able to host
a (possibly distributed) checkpoint server (used to store the



Verifiers

INTERNET

user

Global Computing platform
Checkpoint Server 

Reliable Resources 

Unreliable Resources 

U 

R 

Figure 1: Configuration of a computing platform able to handle both the execution of a parallel program and its

certification [15].

graph) and verifiers which securely re-execute randomly se-
lected tasks T ∈ G in a trusted way to determine whether
T has been forged. More precisely, given a task T , a veri-
fier re-compute T using i(T, E) and check the outputs with
o(T, E).

The certification is conducted on R. As |R| � |U |, one of
the challenge consists in doing the certification with a low
overhead. The configuration of the execution platform is
illustrated in Fig.1 [15].

As this paper focus on EMCT , the main steps of this al-
gorithm are recalled here. More details can be founded in [6].

Algorithm EMCT
Input: G, an execution E composed of dependent tasks
Output: the correctness of E (CORRECT/FALSIFIED)
Pick up randomly T ∈ G;
forall Tj ∈ G≤(T) / Tj has not yet been checked do

ô(Tj , E) ← ReexecuteOnVerifier(Tj , i(Tj , E));
if o(Tj , E) 6= ô(Tj , E) then return FALSIFIED;

end
return CORRECT;

Let nf be the number of forged tasks in G. A massive at-
tack with ratio 0 < q < 1 consists in falsifying the execution
of at least dqne ≤ nf tasks.

Assuming uniform random choice of the checked task T ∈
G, Nε,q = d log ε

log(1−q)
e independent calls to EMCT ensure a

certification by detecting massive attack with ratio q and
error probability bounded by ε [6].

The cost of the certification performed by EMCT vary
depending on the cost of the randomly chosen task T . Then,
in all the sequel, we consider the average cost of certification
over all (uniform) possible choices of T . The average number
of tasks to re-execute on the verifiers in one call to EMCT
is CG = 1

n

P
T∈G |G

≤(T)|.
In this paper, we analyze the average cost of parallel certi-

fication for parallel divide&conquer computations. As pre-
sented in section 2, the cost model is based on an on-line
scheduling by work-stealing. We show that in the worst
case, the certification is too expansive as it conducts to a
complete re-execution on the reliable resources. Conversely,
section 3 exhibits upper bounds on the certification cost for
tree and fork-join computations which are commonly used
in algebraic computations. With such graphs, the certifica-
tion can be achieved with a low overhead. To conclude, this
new bound is applied to an algorithm-based fault-tolerant

computation of a matrix-vector product.

2. ON-LINE SCHEDULING BY WORK STEAL-
ING AND WORST-CASE CERTIFICATION
COST

Both the execution and the certification are scheduled
on-line by work-stealing following the work-first principle.
The principle is simple. Each processor serially executes
the tasks it has locally created according to a depth-first
order. When a processor becomes idle, it steals the old-
est ready task (breadth first order) on a non-idle processor
which is randomly chosen in general. This approach is im-
plemented by the parallel programming interfaces Cilk [3,
1] and Kaapi [9]. In particular, Kaapi supports processors
with changing speeds and volatility [5]. We restrict to the
case where E is fully-strict series-parallel [1] such as the
trees and fork-join computations considered in the sequel.
Following [1, 12], on each platform U and R we assume a
bounded ratio between the fastest and the slowest partic-
ipating processors. Let ΠU and Πtot

U be respectively the
average speed (number of unit operations per second) per
processor and the total average speed on U . Similarly, ΠR

and Πtot
R are defined for R (e.g., assuming nR processors in

R, Πtot
R = nRΠR). Let W1 be the total work (number of unit

operations) of E and W∞ its depth (maximal number of unit
operations on a critical path) on an unbounded number of
processors. Then, from Theorem 6 in [1], E is scheduled

with high probability on U in time TU ≤ W1
Πtot

U
+ O

“
W∞
ΠU

”
.

In practice, we have Πtot
U � Πtot

R and only the probabilis-
tic certification of E by EMCT is computed on R. Sim-
ilarly, let W C

1 and W C
∞ be the total work and depth for

the certification of E by EMCT on an unbounded number
of processors. Then, certification is achieved on R in time

TR ≤ W C
1

Πtot
R

+O
“

W C
∞

ΠR

”
. Note that, since EMCT recomputes

only predecessors of a randomly chosen task, W C
1 ≤W1 and

W C
∞ ≤ W∞. The next lemma bounds the time for both

execution and certification on the computing platform.

Lemma 1. With high probability, the average time TEC

for both the execution and the certification on the computing
platform is bounded by:

TEC ≤
W1

Πtot
U

+O
„

W∞

ΠU

«
+

W C
1

Πtot
R

+O
„

W C
∞

ΠR

«
.



and in the worst case, W C
1 = Ω(W1) and W C

∞ = Ω(W∞).

Proof. The proof on TEC is direct from bounds on TU

and TR. In the worst case, the certification performs a com-
plete re-execution on R therefore annihilating the advantage
of using the grid U . The lower bound is for instance obtained
if G is a chain of n unit tasks. In that case, the average cost
of a single call to EMCT is CG = n−1

2
= Θ(W1) and, in

average, W C
1 = CG.

If some graphs conduct to the worst-case cost during the
certification by EMCT with TR = O(W1), there exist nu-
merous graphs with a much lower overhead. The next sec-
tion stands that TR = O(W 2

∞) if G is a tree or a Fork-Join
graph which are common in exact linear algebra.

3. AVERAGE CERTIFICATION COST ON
TREES AND FORK-JOIN GRAPHS

A Fork-Join graph G is a directed acyclic graph where
the tasks nodes are either of type Fork (a node having at
most one predecessor) or Join (a node having at most one
successor); G has exactly one source node and one sink node.
The restricted family of Fork-Join graphs is described using
the following grammar. G is either:

1. a graph with only one vertex (both source and sink)
which is considered as a Fork task;

2. the parallel composition of k > 0 Fork-Join graphs
G1, . . . , Gk with addition of two vertices F (a task of
type Fork) and J (a task of type Join): F is the source
node and has k direct successors which are the sources
of G1, . . . , Gk; J is the sink node and has k direct
predecessors that are the sinks of G1, . . . , Gk. Such a
graph is clearly of height h = 2d− 1; it can be seen as
an out-tree GF of height d (composed by Fork tasks)
followed by the symmetric in-tree GJ of height d − 1
(composed by Join tasks), see Fig.2.

Note that the above definition forbids serial composition
of fork-join graphs and thus is restrictive with respect to
series-parallel graphs. However, subgraphs such as out-tree
(respectively in-tree) can be encompassed by adding artifi-
cial Join tasks (respectively Fork tasks) with null work (nop
operation); those artificial tasks are only considered for the
random choices made by EMCT but not for the effective
execution, either on U or R.

d−1

h=0

h=1

Fork tasks

Join tasks

d

Figure 2: A Binary Fork-Join graph

The objective of this section is to prove following theorem:

Theorem 1. Let G be a graph of tasks with height h,
total work W1 and work depth W∞. If G is either a tree or

a Fork-Join graph, the average number of tasks to re-execute
for a certification by EMCT is CG = O(h). In addition,

TEC ≤
W1

Πtot
U

+O
„

W∞

ΠU

«
+O

„
hNε,qW∞

Πtot
R

«
+O

„
W∞

ΠR

«
.

Basically, this theorem states that the certification of ex-
ecution represented by trees or Fork-Join graphs of height
h could be achieved with a very low overhead as W C

1 =
O(hW∞) = O(W 2

∞). This cost is far from the worst-case
certification cost exhibited in the Lemma 1 for the class of
programs generally considered in parallel computing where
W∞ �W1.

3.1 Certification cost with in/out-trees
To prove the Theorem 1, we first need to demonstrate

some results relative to in-trees and out-trees. This is the
purpose of the following lemma.

Lemma 2. Let G be an in-tree or an out-tree of height h.
Then CG ≤ h + 1 and W C

1 ≤ (h + 1)Nε,qW∞.

IN−TREE

h=0

h=1

h=0

h=1
h

OUT−TREE

Figure 3: Complete binary trees

Proof. We distinguish both configuration:

• For out-trees, any task T has at most h+1 predecessors
(including itself) in G. Therefore CG ≤ h + 1.

• As regards in-trees, let proceed by recurrence on the
height h of a tree with n nodes. The proposition is
verified if h = 0 (then n = 1).

For h > 0, the sink node is the root of k trees (Ai)1≤i≤k;
Ai has ni nodes and height at most h − 1. By recur-
rence, the average number of tasks to re-execute on the
verifiers in one call to EMCT applied to Ai satisfies
CAi ≤ h. Then

n.CG = n +

kX
i=1

niCAi ≤ n + (n− 1)h < n(h + 1)

which leads to CG ≤ h + 1.

The bound on W C
1 follows from the fact that each task in G

costs at most W∞ and Nε,q independent calls to EMCT are
sufficient to achieve a probabilistic certification with error
probability bounded by ε.

3.2 Certification cost with Fork-Join graphs
We now prove a similar lemma relative to Fork-Join graphs

generated by the grammar mentioned at the beginning of
this section.

Lemma 3. Let G be an Fork-Join graph of height h. Then
CG ≤ h + 3 and W C

1 ≤ (h + 3)Nε,qW∞.



Proof. The lemma is clearly correct if h = 0. We now
assume h > 0; consider the out-tree GF of height d ≥ 1
composed by nF Fork tasks followed by the symmetric in-
tree GJ of height d−1 composed by nJ Join tasks The height
h of G is h = 2d− 1 and n = nF + nJ .

Let CGF (resp. CGJ ) be the average number of predeces-
sors in GF (resp. GJ).

Let T ∈ G: if T is a Fork Task, then G≤(T) = GF
≤(T).

Otherwise, G≤(T) is composed of:

1. its |GJ
≤(T)| predecessors in GJ ;

2. its corresponding predecessors in GF which form an
out-tree GF

≥(T ′) with root task T ′ symmetric of T;

3. at most d + 1 predecessors of T ′ in GF .

Then, the total number of predecessors in G is bounded by:

nCG ≤ nF CGF + nJ(2CGJ + d + 1).

However, CGF < d + 1 and CGJ < d from lemma 2. Then

nCG ≤ nF (d+1)+nJ(3d+1) ≤ (d+1)(2nJ +n) ≤ 2(d+1)n

as nJ ≤ n
2
. Finally, CG ≤ h + 3.

As for trees, the bound on W C
1 follows the fact that each

task in G performs at most W∞ operations and that Nε,q in-
dependent calls to EMCT are sufficient to achieve a proba-
bilistic certification with error probability bounded by ε.

3.3 Proof of Theorem 1
We prove this theorem by a direct application of Lemma 1

using upper bounds on W C
1 provided by Lemmas 2 and 3.

4. APPLICATION TO AN EXACT MATRIX-
VECTOR PRODUCT

Theorem 1 shows that the certification of Divide & Con-
quer algorithms whose execution is represented by a Fork-
Join graph can be achieved with a very low average over-
head. Assuming that an algebraic computation is defined by
such an algorithm and corrects up to dqne falsifications, the
non-detection of a massive attack with ratio q could autho-
rize the correction at low cost. Low rate fault-tolerant algo-
rithms, referred as Algorithm-Based fault-tolerant (ABFT)
have been proposed for exact computations in groups and
rings [13, 8, 4], for linear algebra based on parity check-
pointing [10, 2] but not for tolerating forgery of results. We
extend those results to efficiently support tolerance against
malicious faults by combining BCH codes with massive at-
tack detection.

For instance, let us consider an iteration with a matrix-
vector product over a finite field Fm, the same matrix being
used for a huge number of iterations. In the sequel, for the
sake of simplicity, we consider that arithmetic operations on
Fm are computed in O(1) time.

More precisely, let A denote a square matrix inMk(Fm).
We assume that A is applied to a large number of vectors
x = (x0, . . . , xk−1) ∈ Fk

m. Computing y = xtrA can be made
tolerant to falsification in the following way, based on the
following pre-computation on the reliable resources R:

1. first choose an attack ratio 0 < q < 1
2

and compute

n = k
1−2q

. For instance, q = 1
6

implies n = 1, 5k.

2. then construct a [n, k] BCH error correcting code over
Fm [11].This code has distance d ≥ n−k+1 ≥ 2qn+1
and corrector rate t ≥ nq. Let G denote the genera-
tor matrix of the code corresponding to the generator
polynomial g(X). On reliable resources R: Pre-
compute B = A.G.

As the code is cyclic, this can be computed by k parallel
polynomial products modulo Xn−1 over Fm, therefore with

O(k.n log k) = O( k2 log k
1−2q

) operations. Since the matrix A is
used for a large number of iterations, we do not consider the
overhead of this pre-computation1

Now, the algorithm for computing and certifying the re-
sult y = xtrA is:

• On unreliable resources U : compute z = xtrB =

(z0, . . . , zn−1) with W1 = O(kn) = O( k2

1−2q
) and W∞ =

O(log k). Note that if no falsification occurs, z = yG.
The execution corresponds to a Fork-Join graph.

• On reliable resources R: Use EMCT to detect
if a massive attack with ratio q has been performed.
with W C

1 = O(hNε,qW∞) = O(Nε,q log2 k) operations
and W C

∞ = O(log k). If yes, restart computation of z.
Otherwise, correct z in z′ by BCH-decoding and com-
pute y = z′/g(X) with W ′

1 = O( k log k
1−2q

) and W ′
∞ =

O
“
log2

“
k

1−2q

””
.

Finally, without considering the pre-computation of B,
each matrix-vector product is computed in time

TU = O
„

k2

(1− 2q)Πtot
U

+
log k

ΠU

«
on U and certified on R in

TR = O
„

k log k

(1− 2q)Πtot
R

+
log2 k

ΠR

«
5. CONCLUSION

In this paper, we extend results on EMCT with a cost
analysis of a parallel certification based on on-line scheduling
by work-stealing. We first proved that a probabilistic cer-
tification by massive attack detection using EMCT could
be achieved efficiently with a very low overhead on trees
and Fork-Join graphs. Finally, we combine this probabilistic
certification with error-correcting codes to make a matrix-
vector product over a finite field Fm both tolerant to fal-
sifications and massive attacks. This last technique uses
BCH-coding and could be generalized to other exact linear
algebra computations; but its generalization to non-linear
computations (e.g., arithmetic circuits of higher degree) is
open.

1This hypothesis is reasonable if the number of matrix-
vector products to perform is very large w.r.t. log k. Be-
sides, the pre-computation cost is almost linear in the size
k2 of A which compares favourably to the overhead of dis-
tribution of A on the global computing platform U .
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